CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27

Dimension: px
Commencer à balayer dès la page:

Download "CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27"

Transcription

1 Problèmes du premier degré à une ou deux inconnues Rappel Méthodologique Problèmes qui se ramènent à une équation à une inconnue Soit l énoncé suivant : Monsieur Duval a 4 fois l âge de son garçon et sa femme 3 fois. Monsieur et Madame Duval ont ensemble 77 ans. Quel est l âge du garçon? Que cherche t-on? Voir la question qui est posée : Quel est l âge du garçon? Le plus souvent le choix de l inconnue est guidé par la question, mais on peut être amené à faire un autre choix pour simplifier la mise en équation. On choisira dans cet exemple x pour l âge du garçon. Mais il y a deux autres inconnues, l âge de Monsieur et l âge de Madame. Repérer dans l énoncé la phrase qui contient des informations sur les deux autres inconnues : Monsieur Duval a 4 fois l âge de son garçon et sa femme 3 fois : Ces inconnues peuvent être exprimées directement en fonction de x Age de Monsieur Duval : 4x Age de Madame Duval : 3x Repérer la phrase qui permet d écrire l équation à résoudre. Monsieur et Madame Duval ont ensemble 77 ans 4 x + 3x = 77 Département Mathématiques E 821 : Problèmes du premier degré 1/27

2 Résoudre l équation et donner la solution 7x = 77 x = 11 Le garçon a 11 ans. Vérifier : Monsieur Duval a 44 ans (4 x 11) Madame Duval a 33 ans (3 x 11) Monsieur et Madame Duval ont ensemble 77 ans ( ) Département Mathématiques E 821 : Problèmes du premier degré 2/27

3 Problèmes qui se ramènent à un système de deux équations à deux inconnues Soit l énoncé suivant : Une salle de spectacle propose deux sortes de spectacles : pièces de théâtre ou concert. Toutes les places sont au même prix mais le tarif n est pas le même s il s agit d une pièce de théâtre ou s il s agit d un concert. Alexandre réserve 2 places pour une pièce de théâtre et 4 places pour un concert, il paie 170. Bérénice réserve 3 places pour une pièce de théâtre et 2 places pour un concert, elle paie 135 Quels sont les tarifs respectifs pour une pièce de théâtre ou pour un concert? Que cherche-t-on? Deux tarifs. : On les nomme x et y et on ne peut pas directement exprimer l un en fonction de l autre. La phrase : «Alexandre réserve 2 places pour une pièce de théâtre et 4 places pour un concert, il paie 170 «permet d écrire une première équation : 2 x + 4y = 170 La phrase : «Bérénice réserve 3 places pour une pièce de théâtre et 2 places pour un concert, elle paie 135» permet d écrire une deuxième équation : 3 x + 2y = 135 On est donc amené à résoudre un système de deux équations à deux inconnues : 2x + 4y = 170 (A) 3x + 2y = 135 (B) Département Mathématiques E 821 : Problèmes du premier degré 3/27

4 On a le choix entre deux méthodes, la méthode par substitution ou la méthode par combinaison linéaire (voir les dossiers appropriés). Il est plus facile dans cet exemple d utiliser la méthode par combinaison linéaire. 2x + 4y = 170 6x + 4y = 270 4x = 100 x = 25 (A) (2B) (2B - A) En remplaçant x par 25 soit dans l équation (A) soit dans l équation (B), on trouve la valeur de y. Dans (A) y = 170 4y = = 120 y = 30 Dans (B) y = 135 2y = = 60 y = 30 Le prix de la place pour une pièce de théâtre est de 25 Le prix de la place pour un concert est de 30 On vérifie dans les deux équations : = = 135 Département Mathématiques E 821 : Problèmes du premier degré 4/27

5 Exercices Enoncés 1) Dans un service de gériatrie qui compte 24 personnes, il y a 2 fois plus de femmes que d hommes. Quel est le nombre d hommes dans ce service? 2) Un gâteau nécessite les ingrédients suivants : 3 fois plus de farine que de sucre, trois fois plus de sucre que de beurre, et deux fois plus de chocolat que de sucre. Calculer le poids de chaque ingrédient pour un gâteau de 750 g. 3) Dans une assemblée, quarante personnes ont plus de 40 ans, un quart a entre 30 et 40 ans et un tiers a moins de 30 ans. Quel est le nombre de personnes de cette assemblée? 4) Deux nombres sont tels que le plus grand est le triple du plus petit.. Si on ajoute six à chacun, on obtient deux nouveaux nombres tels que le plus grand est le double du plus petit. Quels sont ces deux nombres? 5) Au café des amis consomment la même chose. S ils paient 2,2 chacun il manque 6 au total. S ils paient 2,6 chacun, il manque encore 3,6. Combien sont-ils et quel est le prix de leur consommation? 6) Dans un service administratif il y a 32 personnes. 5 hommes et 3 femmes partent en retraite et ne seront pas remplacés. Il y aura alors 2 fois plus de femmes que d hommes dans ce service. Combien y a-t-il d hommes et de femmes actuellement dans ce service? Département Mathématiques E 821 : Problèmes du premier degré 5/27

6 7) Un troupeau est composé de dromadaires et de chameaux. On compte 90 têtes et 152 bosses. Sachant qu un dromadaire a une bosse et un chameau 2, combien y a-t-il d animaux de chaque espèce? 8) On dispose de 34 pièces, les unes de 50 centimes d euro, les autres de 20 centimes d euro. Au total elles représentent une somme de 11,60. Combien y a-t-il de pièces de chaque sorte? 9) Un éditeur vient de publier un nouveau roman. Les frais s élèvent à 60 pour chacun des 450 premiers exemplaires et 5 pour chacun des suivants. Le prix de vente du roman est fixé à 28,50. Quel est le nombre minimum d exemplaires à vendre avant de réaliser des bénéfices? 10) Un hôpital remplace régulièrement son petit matériel. Lors d une première commande, 15 thermomètres et 10 tensiomètres ont été acheté pour Il fait une deuxième commande de 10 thermomètres et 15 tensiomètres. Le montant de la commande s élève à Quel est le prix d un thermomètre et quel le prix d un tensiomètre? Département Mathématiques E 821 : Problèmes du premier degré 6/27

7 Aide générale Bien lire les énoncés, repérer toutes les informations. Qu est-ce qu on cherche? Combien y a-t-il d inconnues? Transcrire toutes les informations. Repérer la ou les phrases permettant d écrire la ou les équations Résoudre l équation ou le système. Répondre avec précision aux questions posées. Vérifier les résultats. Département Mathématiques E 821 : Problèmes du premier degré 7/27

8 Corrigés Exercice1 Dans un service de gériatrie qui compte 24 personnes, il y a 2 fois plus de femmes que d hommes. Quel est le nombre d hommes dans ce service? Mise en équation du problème : On cherche le nombre d hommes : soit x le nombre d hommes. Il y a deux fois plus de femmes que d hommes : Le nombre de femmes est 2x Au total il y a 24 personnes : x + 2x = 24 Résolution de l équation : x + 2x = 24 3x = 24 x = 8 Solution : Dans le service de gériatrie, il y a 8 hommes (et 16 femmes) Vérification : Nombre de femmes : 2 x 8 = 16 Au total = 24 Département Mathématiques E 821 : Problèmes du premier degré 8/27

9 Exercice 2 Un gâteau nécessite les ingrédients suivants : 3 fois plus de farine que de sucre, trois fois plus de sucre que de beurre, et deux fois plus de chocolat que de sucre. Calculer le poids de chaque ingrédient pour un gâteau de 750 g. Mise en équation du problème : On cherche le poids de chaque ingrédients farine, sucre, beurre et chocolat : le problème ne comporte en réalité qu une seule inconnue le poids de sucre car le poids des autres ingrédients est fonction du poids de sucres On cherche le poids de sucre soit x ce poids Il y a trois fois plus de farine que de sucre Il y a trois fois plus de sucre que de beurre donc il y a trois fois moins de beurre que de sucre Il y a deux fois plus de chocolat que de sucre Au total le gâteau pèse 750g Le poids de farine est 3 x x Le poids de beurre est 3 Le poids de chocolat est x x + 3 x + + 2x = x Département Mathématiques E 821 : Problèmes du premier degré 9/27

10 Résolution de l équation : x x + 3x + + 2x = x 9x x 6x = x = x = = 118,4 19 Solution : Le poids de sucre est d environ 118,4g Le poids de farine est d environ 355,2 g (118,4 x 3) Le poids de beurre est d environ 39,5g (118,4 / 3) Le poids de chocolat est d environ 236,8 g (118,4 x 2) Vérification Le poids du gâteau est de : 118, ,5 + 39, ,8 749,9 Département Mathématiques E 821 : Problèmes du premier degré 10/27

11 Exercice 3 Dans une assemblée, quarante personnes ont plus de 40 ans, un quart a entre 30 et 40 ans et un tiers a moins de 30 ans. Quel est le nombre de personnes de cette assemblée? Mise en équation du problème : On cherche le nombre de personnes de l assemblée soit x ce nombre Nombre de personnes de plus de 40 ans Nombre de personnes entre 30 et 40 ans Nombre de personnes de moins de 30 ans 40 le quart du nombre de personnes de l assemblée : 4 x le tiers du nombre de personnes de l assemblée : 3 x Egalité du nombre des personnes x x = x Département Mathématiques E 821 : Problèmes du premier degré 11/27

12 Résolution de l équation : x x = x 4 3 3x 4x 12x = x 12x 40 + = x 7x 5x 40 = = x = = 96 5 Solution : Le nombre de personnes de cette assemblée est 96 Vérification : Nombre de personnes de plus de 40 ans : 40 Nombre de personnes entre 30 et 40 ans : 96 = 4 24 Nombre de personnes de moins de 30 ans : 96 = = 96 Département Mathématiques E 821 : Problèmes du premier degré 12/27

13 Exercice 4 Deux nombres sont tels que le plus grand est le triple du plus petit. Si on ajoute six à chacun, on obtient deux nouveaux nombres tels que le plus grand est le double du plus petit. Quels sont ces deux nombres? Mise en équation du problème : On cherche deux nombres, mais le plus grand est fonction du plus petit, si on trouve la valeur du plus petit on connaîtra celle du plus grand. On cherche le plus petit nombre soit x ce nombre Le plus grand est le triple du plus petit 3x On ajoute 6 au plus petit nouveau plus petit x + 6 On ajoute 6 au plus grand nouveau plus grand 3x + 6 Le nouveau plus grand est le double du nouveau plus petit 3 x + 6 = 2( x + 6) Résolution de l équation : 3x + 6 = 2( x + 6) 3x + 6 = 2x x 2x = 12 6 x = 6 Département Mathématiques E 821 : Problèmes du premier degré 13/27

14 Solution : Le plus petit nombre est 6 Le plus grand nombre est 18 (3 x 6) Vérification : Nouveau plus petit : = 12 Nouveau plus grand : = = 2 x 12 Département Mathématiques E 821 : Problèmes du premier degré 14/27

15 Exercice 5 Au café des amis consomment la même chose. S ils paient 2,2 chacun il manque 6 au total. S ils paient 2,6 chacun, il manque encore 3,6. Combien sont-ils et quel est le prix de leur consommation? Mise en équation du problème : Le problème semble être à plusieurs inconnues : le nombre d amis, la somme due et le prix de leur consommation. Si on connaît le nombre d amis et la somme due, on pourra calculer le prix de leur consommation. On cherche le nombre d amis soit x ce nombre On cherche la somme due soit S cette somme S ils paient 2,2 chacun ils donnent ensemble Il manque 6 à la somme due 2,2x la somme due est de 2,2x + 6 S = 2,2x + 6 S ils paient 2,6 chacun ils donnent ensemble Il manque encore 3,6 à la somme due D où l égalité : 2,6x la somme due est de 2,6x + 3, 6 S = 2,6x + 3, 6 2,2x + 6 = 2,6x + 3,6 Département Mathématiques E 821 : Problèmes du premier degré 15/27

16 En fait on est ramené à une équation à une inconnue Résolution de l équation : 2,2x + 6 = 2,6x + 3,6 6 3,6 = 2,6x 2,2x 2,4 = 0,4x x = 2,4 0,4 = 6 Solution : Ils sont 6 amis La somme due est de 19,2 (2,2 x 6 + 6) ou (2,6 x 6 +3,6) Le prix des consommations est de 3,2 Vérification : S ils paient 2,2 chacun ils donnent ensemble 13,2 il manque bien 6. S ils paient 2,6 chacun ils donnent ensemble 15,6 il manque bien 3,6. Département Mathématiques E 821 : Problèmes du premier degré 16/27

17 Exercice 6 Dans un service administratif il y a 32 personnes. 5 hommes et 3 femmes partent en retraite et ne seront pas remplacés. Il y aura alors 2 fois plus de femmes que d hommes dans ce service. Combien y a-t-il d hommes et de femmes actuellement dans ce service? Mise en équation du problème : On cherche le nombre d hommes et le nombre de femmes actuellement dans le service : Soit H le nombre d hommes et F le nombre de femmes. Il y a 32 personnes dans le service : H + F = 32 Nombre d hommes après départ en retraite H 5 Nombre de femmes après départ en retraite F-3 Egalité traduisant la phrase : Il y aura 2 fois plus de femmes que d hommes 2(H 5) = F -3 On est ramené à un système de 2 équations à 2 inconnues H + F = 32 2( H 5) = F 3 Département Mathématiques E 821 : Problèmes du premier degré 17/27

18 On résout ce système par substitution : Avec la première équation : H + F = 32, on exprime H en fonction de F! H = 32 F On remplace H par 32 F dans la deuxième équation 2(32 F 5) = F = F + 2F H = 32 F 2(27 F) = F 3 57 = 3F H = F = F 3 F = 19 H = 13 Solution : Actuellement le nombre d hommes est de 13 et le nombre de femmes est de 19. Vérification : Nombre d hommes après le départ en retraite : 13 5 = 8 Nombre de femmes après le départ en retraite : 19 3 = 16 Il y aura bien 2 fois plus de femmes que d hommes Département Mathématiques E 821 : Problèmes du premier degré 18/27

19 Autre mise en équation plus simple que la précédente : On appelle x le nombre d hommes dans le service après le départ en retraite. Il y a 8 départ en retraite, il restera 24 personnes dans le service et le problème est alors le même que le n 1. La solution est nombre d hommes : 8 nombre de femmes : 16 Actuellement il y a = 13 hommes Et = 19 femmes Département Mathématiques E 821 : Problèmes du premier degré 19/27

20 Exercice 7 Un troupeau est composé de dromadaires et de chameaux. On compte 90 têtes et 152 bosses. Sachant qu un dromadaire a une bosse et un chameau 2, combien y a-t-il d animaux de chaque espèce? Mise en équation du problème : On cherche le nombre de dromadaires et le nombre de chameaux: soit x le nombre de dromadaire et y le nombre de chameaux On compte 90 têtes, il y a x têtes de dromadaires et y têtes de chameaux x + y = 90 On compte 152 bosses : il y a x bosses de dromadaires et 2y bosses de chameaux x + 2y = 152 On est ramené à résoudre un système de 2 équations (A) et (B) à 2 inconnues x et y x + y = 90 (A) x + 2y = 152 (B) Département Mathématiques E 821 : Problèmes du premier degré 20/27

21 Résolution du système d équations : Par substitution y = 90 x x + 2(90 x) = 152 x x = 152 x = 28 y = = 62 Par combinaison linéaire ( B) ( A) (x + 2y) ( x + y) = y = 62 On remplace y par 62 dans l'équation (A) x + 62 = 90 x = 28 : Solution Il y a 28 dromadaires et 62 chameaux Vérification : = x 62 = 152 Département Mathématiques E 821 : Problèmes du premier degré 21/27

22 Exercice 8 On dispose de 34 pièces, les unes de 50 centimes d euro, les autres de 20 centimes d euro Au total elles représentent une somme de 11,60. Combien y a-t-il de pièces de chaque sorte? Mise en équation du problème : On cherche le nombre de pièces de 50 centimes et le nombre de pièces de 20 centimes Attention il faut penser à utiliser les mêmes unités et ne pas mélanger centimes et euros soit x de pièces de 0,50 et y le nombre de pièces de 0,20 Il y a 34 pièces x + y = 34 Pour un total de 11,60 0,50x + 0,20y = 11,60 Résolution : Il faut résoudre un système de 2 équations à 2 inconnues x + y = 34 0,5x + 0,2 y = 11,6 (A) (B) 0,5x + 0,5y = 34 0,5 = 17 0, 5x + 0, 2y = 116, (0,5A) (B) Département Mathématiques E 821 : Problèmes du premier degré 22/27

23 0,5 y 0,2y = 17 11,6 0,3y = 5,4 y = 18 x = = 16 ( 0,5A - B) Solution : il y a 16 pièces de 50 centimes et 18 pièces de 20 centimes Vérification : = 34 0,5 x ,20 x 18 = 11,6 Département Mathématiques E 821 : Problèmes du premier degré 23/27

24 Exercice 9 Un éditeur vient de publier un nouveau roman. Les frais s élèvent à 60 pour chacun des 450 premiers exemplaires et 5 pour chacun des suivants. Le prix de vente du roman est fixé à 28,50. Quel est le nombre minimum d exemplaires à vendre avant de réaliser des bénéfices? Mise en équation du problème : On cherche le nombre minimum de roman soit x ce nombre Recettes 28,50 x Frais des 450 premiers 450 x 60 = Frais des suivants 5(x 450) Total des frais (x 450) = x Il faut que les recettes soient supérieures aux frais pour faire des bénéfices : 28,5x 5x Il s agit d une inéquation Département Mathématiques E 821 : Problèmes du premier degré 24/27

25 Résolution 28,5x 5x ,5x x 1053,19 Solution : Le nombre minimum d exemplaires à vendre pour faire des bénéfices est de Vérification : Recettes : 1054 x 28,50 = Frais : x ( ) = x 604 = Pour 1054 exemplaires vendus les recettes sont légèrement supérieures aux frais Département Mathématiques E 821 : Problèmes du premier degré 25/27

26 Exercice 10 Un hôpital remplace régulièrement son petit matériel. Lors d une première commande, 15 thermomètres et 10 tensiomètres ont été acheté pour Il fait une deuxième commande de 10 thermomètres et 15 tensiomètres. Le montant de la commande s élève à Quel est le prix d un thermomètre et le prix d un tensiomètre? Mise en équation du problème : On cherche le prix d un thermomètre et le prix d un tensiomètre soit x le prix d un thermomètre et y le prix d un tensiomètre Montant de la première commande Montant de la deuxième commande 15 x + 10y = x + 15y = 1335 Département Mathématiques E 821 : Problèmes du premier degré 26/27

27 Résolution Le problème se réduit à la résolution d un système de deux équations à deux inconnues, on utilisera de préférence la méthode par combinaison linéaire en essayant d avoir les plus petits coefficients possibles. 15x + 10y = x + 15y = 1335 En multipliant la première équation par 3 et la deuxième par 2 on obtient un nouveau système où il y a le même nombre de «y» dans les deux équations, par différence on a une équation à une inconnue en x 45x + 30y = x + 30y = x = 1125 x = y = y = = 590 y = 59 Solution : Les thermomètres coûtent 45 et les tensiomètres coûtent 59 Vérification : 15 x x 59 = x x 59 = Département Mathématiques E 821 : Problèmes du premier degré 27/27

ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005

ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005 ÉQUATIONS PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION 3 x + 5 y = 12 6 x + 4 y = 0 Quel système!!!! Dossier n 3 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Problèmes supplémentaires (pratiques)

Problèmes supplémentaires (pratiques) 1. Traduis les énoncés suivants par une inéquation du premier degré à deux variables. a) x adultes et y enfants ont assisté à une représentation dans une salle de spectacles ne pouvant contenir que 250

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Programme de calcul et résolution d équation

Programme de calcul et résolution d équation Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme

Plus en détail

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n CHAPITRE 11 PROPORTIONNALITE I. GENERALITES A. NOTION DE GRANDEURS PROPORTIONNELLES Deux grandeurs x et y sont proportionnelles si, lorsque l une varie, l autre varie dans les mêmes proportions : si x

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation. Ce document a été mis en ligne par le Canopé de l académie de Clermont- Ferrand pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit,

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x Développer et réduire 3 Chasse aux bulles 1 Vrai ou faux? x 2 3x 2x 2 4 7x Justifie tes réponses. x 2 est toujours égal à 2x. Faux, par exemple, si x = 3, alors x² = 9, mais 2x = 6 (5x) 2 est toujours

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

Diplôme national du brevet. Devoir commun Janvier 2014 MATHEMATIQUES CORRECTION

Diplôme national du brevet. Devoir commun Janvier 2014 MATHEMATIQUES CORRECTION Diplôme national du brevet Devoir commun Janvier 204 MATHEMATIQUES CORRECTION L'usage de la calculatrice est autorisé. L'énoncé du sujet sera rendu avec la copie Durée de l'épreuve : 2 heures. Notation

Plus en détail

Un gâteau au yaourt pour le goûter!

Un gâteau au yaourt pour le goûter! Un gâteau au yaourt pour le goûter! (adapté de la séquence pédagogique "Let's make scones!" publiée sur le site Primlangues) http://www.primlangues.education.fr/php/sequence_detail.php?id_sequence=83 Niveau

Plus en détail

1 Savoirs fondamentaux

1 Savoirs fondamentaux Révisions sur l oscillogramme, la puissance et l énergie électrique 1 Savoirs fondamentaux Exercice 1 : choix multiples 1. Quelle est l unité de la puissance dans le système international? Volt Watt Ampère

Plus en détail

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 Valérie CLISSON Arnaud DUVAL Tests de logique Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 CHAPITRE 1 Mise en bouche Les exemples qui suivent constituent un panorama de l ensemble des tests de logique habituellement

Plus en détail

Quel système d équations traduit cette situation? x : la hauteur du rectangle. y : l aire du rectangle. C) y = 4x + 25.

Quel système d équations traduit cette situation? x : la hauteur du rectangle. y : l aire du rectangle. C) y = 4x + 25. 1 La base d un rectangle dépasse sa hauteur de 4 cm. Si on ajoute 17 au périmètre de ce rectangle, on obtient un nombre égal à celui qui représente l aire de ce rectangle. Soit x : la hauteur du rectangle

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Elaboration d une séquence d apprentissage

Elaboration d une séquence d apprentissage Elaboration d une séquence d apprentissage La séquence propose de présenter le passage du retour à l unité lors de résolution de problèmes de proportionnalité puis, à partir de cette situation, de retrouver

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES

CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)

Plus en détail

TROISI` EME PARTIE L ALG` EBRE

TROISI` EME PARTIE L ALG` EBRE TROISIÈME PARTIE L ALGÈBRE Chapitre 8 L algèbre babylonienne Sommaire 8.1 Présentation..................... 135 8.2 Résolution d équations du second degré..... 135 8.3 Bibliographie.....................

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Première partie. Modélisation des problèmes en programmes linéaires notés PL

Première partie. Modélisation des problèmes en programmes linéaires notés PL Première partie Modélisation des problèmes en programmes linéaires notés PL ième année Licence LMD de mathématiques, USDBlida 0. Un grossiste doit livrer unités d un produit déterminé P à trois détaillants

Plus en détail

Les fonction affines

Les fonction affines Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

EQUATIONS ET INEQUATIONS Exercices 1/8

EQUATIONS ET INEQUATIONS Exercices 1/8 EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Livret de l évaluateur : Calcul niveau 2

Livret de l évaluateur : Calcul niveau 2 Livret de l évaluateur : Calcul niveau 2 Ce livret de l évaluateur se divise en deux sections. La première section comprend : des instructions à l intention de l évaluateur sur la façon d administrer le

Plus en détail

2. Fractions et pourcentages

2. Fractions et pourcentages FRACTIONS ET POURCENTAGES. Fractions et pourcentages.. Définitions Certaines divisions tombent justes. C'est par exemple le cas de la division 4 8 qui donne.. D'autres ne s'arrêtent jamais. C'est ce qui

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Tous les exercices des analyses d aptitudes Multicheck Junior

Tous les exercices des analyses d aptitudes Multicheck Junior Capacité de mémorisation: Mémorisation des pictogrammes/images/ vêtements/objets/personnes Capacité de mémorisation: Se souvenir d un texte Capacité de mémorisation: Mémoriser les personnes 1 Français:

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges.

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. 16 au 19 décembre 2014 Table des matières 1 Introduction 2 2 Identités remarquables 3 3 Résoudre x 2 + 2bx = c 6 4 L équation x 2 + x = 3 4

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES ~--------------~~-----~- ----~-- Session 2009 BREVET DE TECNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES U22 - SCIENCES PYSIQUES Durée: 2 heures Coefficient : 3 Les calculatrices

Plus en détail

Carré parfait et son côté

Carré parfait et son côté LE NOMBRE Carré parfait et son côté Résultat d apprentissage Description 8 e année, Le nombre, n 1 Démontrer une compréhension des carrés parfaits et des racines carrées (se limitant aux nombres entiers

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Qu est-ce que le relevé de compte?

Qu est-ce que le relevé de compte? Qu est-ce que le relevé de compte? Le relevé de compte constitue la trace légale de toutes les opérations effectuées sur un compte bancaire. Ce document permet au titulaire d'un compte de connaître en

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

M a t h é m a t i q u e s a u

M a t h é m a t i q u e s a u M a t h é m a t i q u e s a u q u o t i d i e n 1 2 e a n n é e ( 4 0 S ) Examen de préparation de mi-session M a t h é m a t i q u e s a u q u o t i d i e n - 1 2 e A n n é e Examen de préparation de

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Exercices sur les équations du premier degré

Exercices sur les équations du premier degré 1 Exercices sur les équations du premier degré Application des règles 1 et Résoudre dans R les équations suivantes en essayant d appliquer une méthode systématique : 1 x + = x + 9 x + = x x 1 = x + x +

Plus en détail

Séquence 1. Matrices - Applications

Séquence 1. Matrices - Applications Séquence 1 Matrices - Applications Sommaire 1. Pré-requis 2. Notion de matrice Addition-Multiplication par un réel 3. Multiplication de matrices 4. Applications 5. Synthèse de la séquence 6. Exercices

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Agrandissement et réduction de figures

Agrandissement et réduction de figures Agrandissement et réduction de figures Tracer une figure sur papier quadrillé ou pointé à partir d un dessin (avec des indications relatives aux dimensions). 29 Unité Activité 1 Je découvre Dessine la

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

1. La famille d accueil de Nadja est composée de combien de personnes? 2. Un membre de la famille de Mme Millet n est pas Français. Qui est-ce?

1. La famille d accueil de Nadja est composée de combien de personnes? 2. Un membre de la famille de Mme Millet n est pas Français. Qui est-ce? 1 LA FAMILLE 1.1 Lecture premier texte Nadja va passer quatre mois de la prochaine année scolaire en France. Aujourd hui, elle a reçu cette lettre de sa famille d accueil. Chère Nadja, Je m appelle Martine

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Les nombres entiers. Durée suggérée: 3 semaines

Les nombres entiers. Durée suggérée: 3 semaines Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,

Plus en détail

LA CHASSE AUX ANTIMOUSTIQUES EST OUVERTE

LA CHASSE AUX ANTIMOUSTIQUES EST OUVERTE LA CHASSE AUX ANTIMOUSTIQUES EST OUVERTE QUE FAUT_IL ACHETER? OU ACHETER? COMMENT? COMBIEN ÇA COUTE? OBJECTIF : ETRE UN CONSOMMATEUR AVERTI Chick : consommation 1/4 L.P.J.Perrin QUELLES SONT LES PRODUITS

Plus en détail

Résolution de problèmes

Résolution de problèmes 6 Résolution de problèmes HISTOIRE : Al-Khwārizmī était un astronome et un mathématicien. Il fut un des membres les plus connus de la Maison de la sagesse de Bagdad au IX e siècle. Dans l un de ses livres,

Plus en détail

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues?

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues? ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME Utilisation des équations du er degré à une inconnue x + 5 = - z = x + = 0-5 + x = Mais qui sont ces inconnues? Dossier n Juin 005 Tous droits réservés

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Les pourcentages. Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t.

Les pourcentages. Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t. Les pourcentages I Définition : Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t. Exemple : Ecrire sous forme décimale les taux de

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq

Plus en détail

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels

Plus en détail

La Suisse, pays du chocolat Fiche de travail

La Suisse, pays du chocolat Fiche de travail Information aux enseignants 1/6 Ordre de travail Objectif Combien de chocolat mangeons-nous? Pourquoi est-ce que c est justement la Suisse le pays du chocolat? Répondre aux questions de la fiche de travail

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

PRINCIPES DE LA CONSOLIDATION. CHAPITRE 4 : Méthodes de consolidation. Maître de conférences en Sciences de Gestion Diplômé d expertise comptable

PRINCIPES DE LA CONSOLIDATION. CHAPITRE 4 : Méthodes de consolidation. Maître de conférences en Sciences de Gestion Diplômé d expertise comptable PRINCIPES DE LA CONSOLIDATION CHAPITRE 4 : Méthodes de consolidation David Carassus Maître de conférences en Sciences de Gestion Diplômé d expertise comptable SOMMAIRE CHAPITRE I Les fondements de la consolidation

Plus en détail

1. Exposants non entiers 16 2. Taux d évolution moyen et moyenne géométrique 18 3. Indice de base 100 20 4. Approximation d un taux d évolution 22

1. Exposants non entiers 16 2. Taux d évolution moyen et moyenne géométrique 18 3. Indice de base 100 20 4. Approximation d un taux d évolution 22 TAUX D ÉVOLUTION SÉQUENCES. Exposants non entiers 6 2. Taux d évolution moyen et moyenne géométrique 8 3. Indice de base 00 20 4. Approximation d un taux d évolution 22 EXERCICES Pour démarrer 27 Pour

Plus en détail

Mathématiques 6 ème Grade Unité 1 (exemple)

Mathématiques 6 ème Grade Unité 1 (exemple) Délais possibles: Unité 1: 13-15 jours Proportionnalité et Taux Les concepts de proportionnalité, taux, taux unitaire et pourcentage sont présentés dans cette unité. Les élèves prolongent leur compréhension

Plus en détail

Comment battre Milos Raonic?

Comment battre Milos Raonic? Comment battre Milos Raonic? Milos Raonic est un jeune joueur de tennis professionnel Canadien. Il dispose de capacités physiques impressionnantes avec une taille de 1,96 m pour 90 kg. Depuis le début

Plus en détail

ECO L1 - - Qu est-ce que l économie? modèles micro et macroéconomiques. ECO L1 - Université de Tours, Arnold Chassagnon, Septembre 2013

ECO L1 - - Qu est-ce que l économie? modèles micro et macroéconomiques. ECO L1 - Université de Tours, Arnold Chassagnon, Septembre 2013 ECO L1 - - Qu est-ce que l économie? modèles micro et macroéconomiques - ECO L1 - Université de Tours, Arnold Chassagnon, Septembre 2013 PLAN DE LA CONFERENCE Introduction à l Analyse économique - Maximisation

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

Les expressions imagées d Archibald

Les expressions imagées d Archibald Expressions françaises : les aliments Thèmes France, francophonie et langue française Concept «En faire un fromage», «se tirer une bûche», «faire le Bob», «se réduire» En tout 89 expressions francophones

Plus en détail

3Proportions. et pourcentages. Les questions abordées dans ce chapitre CHAPITRE

3Proportions. et pourcentages. Les questions abordées dans ce chapitre CHAPITRE CHAPITRE Proportions et pourcentages La presse nous apporte régulièrement des informations chiffrées, comportant souvent des pourcentages, des graphiques, des tableaux etc. Il est important que le lecteur

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Première ES IE1 pourcentages 2014-2015 S1

Première ES IE1 pourcentages 2014-2015 S1 1 Première ES IE1 pourcentages 2014-2015 S1 Exercice 1 : (4 points) En 2009, le nombre des immatriculations des voitures neuves en France, a été le suivant : Renault 506 000 Peugeot 378 000 Citroën 340

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Chapitre 1-Entreprise et production. Sous section 1- Qui produit des richesses? avec manuel Nathan 2010

Chapitre 1-Entreprise et production. Sous section 1- Qui produit des richesses? avec manuel Nathan 2010 Chapitre 1-Entreprise et production Sous section 1- Qui produit des richesses? avec manuel Nathan 2010 I) Qui produit des biens et des services? Illustrer par activité découverte :photos p41 et document1

Plus en détail

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales.

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales. Révision mars 2015 1. Mario part de sa maison. Pour se rendre au restaurant, sa famille doit conduire 11,5 km vers le nord et ensuite ils doivent tourner vers l ouest pendant 5,4km. Calcule la distance

Plus en détail

************************************************************************ Français

************************************************************************ Français Ministère de l Education Centre National d innovation Pédagogique et de Recherches en Education Département d Evaluation ************************************************************************ Français

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail