CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27

Dimension: px
Commencer à balayer dès la page:

Download "CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27"

Transcription

1 Problèmes du premier degré à une ou deux inconnues Rappel Méthodologique Problèmes qui se ramènent à une équation à une inconnue Soit l énoncé suivant : Monsieur Duval a 4 fois l âge de son garçon et sa femme 3 fois. Monsieur et Madame Duval ont ensemble 77 ans. Quel est l âge du garçon? Que cherche t-on? Voir la question qui est posée : Quel est l âge du garçon? Le plus souvent le choix de l inconnue est guidé par la question, mais on peut être amené à faire un autre choix pour simplifier la mise en équation. On choisira dans cet exemple x pour l âge du garçon. Mais il y a deux autres inconnues, l âge de Monsieur et l âge de Madame. Repérer dans l énoncé la phrase qui contient des informations sur les deux autres inconnues : Monsieur Duval a 4 fois l âge de son garçon et sa femme 3 fois : Ces inconnues peuvent être exprimées directement en fonction de x Age de Monsieur Duval : 4x Age de Madame Duval : 3x Repérer la phrase qui permet d écrire l équation à résoudre. Monsieur et Madame Duval ont ensemble 77 ans 4 x + 3x = 77 Département Mathématiques E 821 : Problèmes du premier degré 1/27

2 Résoudre l équation et donner la solution 7x = 77 x = 11 Le garçon a 11 ans. Vérifier : Monsieur Duval a 44 ans (4 x 11) Madame Duval a 33 ans (3 x 11) Monsieur et Madame Duval ont ensemble 77 ans ( ) Département Mathématiques E 821 : Problèmes du premier degré 2/27

3 Problèmes qui se ramènent à un système de deux équations à deux inconnues Soit l énoncé suivant : Une salle de spectacle propose deux sortes de spectacles : pièces de théâtre ou concert. Toutes les places sont au même prix mais le tarif n est pas le même s il s agit d une pièce de théâtre ou s il s agit d un concert. Alexandre réserve 2 places pour une pièce de théâtre et 4 places pour un concert, il paie 170. Bérénice réserve 3 places pour une pièce de théâtre et 2 places pour un concert, elle paie 135 Quels sont les tarifs respectifs pour une pièce de théâtre ou pour un concert? Que cherche-t-on? Deux tarifs. : On les nomme x et y et on ne peut pas directement exprimer l un en fonction de l autre. La phrase : «Alexandre réserve 2 places pour une pièce de théâtre et 4 places pour un concert, il paie 170 «permet d écrire une première équation : 2 x + 4y = 170 La phrase : «Bérénice réserve 3 places pour une pièce de théâtre et 2 places pour un concert, elle paie 135» permet d écrire une deuxième équation : 3 x + 2y = 135 On est donc amené à résoudre un système de deux équations à deux inconnues : 2x + 4y = 170 (A) 3x + 2y = 135 (B) Département Mathématiques E 821 : Problèmes du premier degré 3/27

4 On a le choix entre deux méthodes, la méthode par substitution ou la méthode par combinaison linéaire (voir les dossiers appropriés). Il est plus facile dans cet exemple d utiliser la méthode par combinaison linéaire. 2x + 4y = 170 6x + 4y = 270 4x = 100 x = 25 (A) (2B) (2B - A) En remplaçant x par 25 soit dans l équation (A) soit dans l équation (B), on trouve la valeur de y. Dans (A) y = 170 4y = = 120 y = 30 Dans (B) y = 135 2y = = 60 y = 30 Le prix de la place pour une pièce de théâtre est de 25 Le prix de la place pour un concert est de 30 On vérifie dans les deux équations : = = 135 Département Mathématiques E 821 : Problèmes du premier degré 4/27

5 Exercices Enoncés 1) Dans un service de gériatrie qui compte 24 personnes, il y a 2 fois plus de femmes que d hommes. Quel est le nombre d hommes dans ce service? 2) Un gâteau nécessite les ingrédients suivants : 3 fois plus de farine que de sucre, trois fois plus de sucre que de beurre, et deux fois plus de chocolat que de sucre. Calculer le poids de chaque ingrédient pour un gâteau de 750 g. 3) Dans une assemblée, quarante personnes ont plus de 40 ans, un quart a entre 30 et 40 ans et un tiers a moins de 30 ans. Quel est le nombre de personnes de cette assemblée? 4) Deux nombres sont tels que le plus grand est le triple du plus petit.. Si on ajoute six à chacun, on obtient deux nouveaux nombres tels que le plus grand est le double du plus petit. Quels sont ces deux nombres? 5) Au café des amis consomment la même chose. S ils paient 2,2 chacun il manque 6 au total. S ils paient 2,6 chacun, il manque encore 3,6. Combien sont-ils et quel est le prix de leur consommation? 6) Dans un service administratif il y a 32 personnes. 5 hommes et 3 femmes partent en retraite et ne seront pas remplacés. Il y aura alors 2 fois plus de femmes que d hommes dans ce service. Combien y a-t-il d hommes et de femmes actuellement dans ce service? Département Mathématiques E 821 : Problèmes du premier degré 5/27

6 7) Un troupeau est composé de dromadaires et de chameaux. On compte 90 têtes et 152 bosses. Sachant qu un dromadaire a une bosse et un chameau 2, combien y a-t-il d animaux de chaque espèce? 8) On dispose de 34 pièces, les unes de 50 centimes d euro, les autres de 20 centimes d euro. Au total elles représentent une somme de 11,60. Combien y a-t-il de pièces de chaque sorte? 9) Un éditeur vient de publier un nouveau roman. Les frais s élèvent à 60 pour chacun des 450 premiers exemplaires et 5 pour chacun des suivants. Le prix de vente du roman est fixé à 28,50. Quel est le nombre minimum d exemplaires à vendre avant de réaliser des bénéfices? 10) Un hôpital remplace régulièrement son petit matériel. Lors d une première commande, 15 thermomètres et 10 tensiomètres ont été acheté pour Il fait une deuxième commande de 10 thermomètres et 15 tensiomètres. Le montant de la commande s élève à Quel est le prix d un thermomètre et quel le prix d un tensiomètre? Département Mathématiques E 821 : Problèmes du premier degré 6/27

7 Aide générale Bien lire les énoncés, repérer toutes les informations. Qu est-ce qu on cherche? Combien y a-t-il d inconnues? Transcrire toutes les informations. Repérer la ou les phrases permettant d écrire la ou les équations Résoudre l équation ou le système. Répondre avec précision aux questions posées. Vérifier les résultats. Département Mathématiques E 821 : Problèmes du premier degré 7/27

8 Corrigés Exercice1 Dans un service de gériatrie qui compte 24 personnes, il y a 2 fois plus de femmes que d hommes. Quel est le nombre d hommes dans ce service? Mise en équation du problème : On cherche le nombre d hommes : soit x le nombre d hommes. Il y a deux fois plus de femmes que d hommes : Le nombre de femmes est 2x Au total il y a 24 personnes : x + 2x = 24 Résolution de l équation : x + 2x = 24 3x = 24 x = 8 Solution : Dans le service de gériatrie, il y a 8 hommes (et 16 femmes) Vérification : Nombre de femmes : 2 x 8 = 16 Au total = 24 Département Mathématiques E 821 : Problèmes du premier degré 8/27

9 Exercice 2 Un gâteau nécessite les ingrédients suivants : 3 fois plus de farine que de sucre, trois fois plus de sucre que de beurre, et deux fois plus de chocolat que de sucre. Calculer le poids de chaque ingrédient pour un gâteau de 750 g. Mise en équation du problème : On cherche le poids de chaque ingrédients farine, sucre, beurre et chocolat : le problème ne comporte en réalité qu une seule inconnue le poids de sucre car le poids des autres ingrédients est fonction du poids de sucres On cherche le poids de sucre soit x ce poids Il y a trois fois plus de farine que de sucre Il y a trois fois plus de sucre que de beurre donc il y a trois fois moins de beurre que de sucre Il y a deux fois plus de chocolat que de sucre Au total le gâteau pèse 750g Le poids de farine est 3 x x Le poids de beurre est 3 Le poids de chocolat est x x + 3 x + + 2x = x Département Mathématiques E 821 : Problèmes du premier degré 9/27

10 Résolution de l équation : x x + 3x + + 2x = x 9x x 6x = x = x = = 118,4 19 Solution : Le poids de sucre est d environ 118,4g Le poids de farine est d environ 355,2 g (118,4 x 3) Le poids de beurre est d environ 39,5g (118,4 / 3) Le poids de chocolat est d environ 236,8 g (118,4 x 2) Vérification Le poids du gâteau est de : 118, ,5 + 39, ,8 749,9 Département Mathématiques E 821 : Problèmes du premier degré 10/27

11 Exercice 3 Dans une assemblée, quarante personnes ont plus de 40 ans, un quart a entre 30 et 40 ans et un tiers a moins de 30 ans. Quel est le nombre de personnes de cette assemblée? Mise en équation du problème : On cherche le nombre de personnes de l assemblée soit x ce nombre Nombre de personnes de plus de 40 ans Nombre de personnes entre 30 et 40 ans Nombre de personnes de moins de 30 ans 40 le quart du nombre de personnes de l assemblée : 4 x le tiers du nombre de personnes de l assemblée : 3 x Egalité du nombre des personnes x x = x Département Mathématiques E 821 : Problèmes du premier degré 11/27

12 Résolution de l équation : x x = x 4 3 3x 4x 12x = x 12x 40 + = x 7x 5x 40 = = x = = 96 5 Solution : Le nombre de personnes de cette assemblée est 96 Vérification : Nombre de personnes de plus de 40 ans : 40 Nombre de personnes entre 30 et 40 ans : 96 = 4 24 Nombre de personnes de moins de 30 ans : 96 = = 96 Département Mathématiques E 821 : Problèmes du premier degré 12/27

13 Exercice 4 Deux nombres sont tels que le plus grand est le triple du plus petit. Si on ajoute six à chacun, on obtient deux nouveaux nombres tels que le plus grand est le double du plus petit. Quels sont ces deux nombres? Mise en équation du problème : On cherche deux nombres, mais le plus grand est fonction du plus petit, si on trouve la valeur du plus petit on connaîtra celle du plus grand. On cherche le plus petit nombre soit x ce nombre Le plus grand est le triple du plus petit 3x On ajoute 6 au plus petit nouveau plus petit x + 6 On ajoute 6 au plus grand nouveau plus grand 3x + 6 Le nouveau plus grand est le double du nouveau plus petit 3 x + 6 = 2( x + 6) Résolution de l équation : 3x + 6 = 2( x + 6) 3x + 6 = 2x x 2x = 12 6 x = 6 Département Mathématiques E 821 : Problèmes du premier degré 13/27

14 Solution : Le plus petit nombre est 6 Le plus grand nombre est 18 (3 x 6) Vérification : Nouveau plus petit : = 12 Nouveau plus grand : = = 2 x 12 Département Mathématiques E 821 : Problèmes du premier degré 14/27

15 Exercice 5 Au café des amis consomment la même chose. S ils paient 2,2 chacun il manque 6 au total. S ils paient 2,6 chacun, il manque encore 3,6. Combien sont-ils et quel est le prix de leur consommation? Mise en équation du problème : Le problème semble être à plusieurs inconnues : le nombre d amis, la somme due et le prix de leur consommation. Si on connaît le nombre d amis et la somme due, on pourra calculer le prix de leur consommation. On cherche le nombre d amis soit x ce nombre On cherche la somme due soit S cette somme S ils paient 2,2 chacun ils donnent ensemble Il manque 6 à la somme due 2,2x la somme due est de 2,2x + 6 S = 2,2x + 6 S ils paient 2,6 chacun ils donnent ensemble Il manque encore 3,6 à la somme due D où l égalité : 2,6x la somme due est de 2,6x + 3, 6 S = 2,6x + 3, 6 2,2x + 6 = 2,6x + 3,6 Département Mathématiques E 821 : Problèmes du premier degré 15/27

16 En fait on est ramené à une équation à une inconnue Résolution de l équation : 2,2x + 6 = 2,6x + 3,6 6 3,6 = 2,6x 2,2x 2,4 = 0,4x x = 2,4 0,4 = 6 Solution : Ils sont 6 amis La somme due est de 19,2 (2,2 x 6 + 6) ou (2,6 x 6 +3,6) Le prix des consommations est de 3,2 Vérification : S ils paient 2,2 chacun ils donnent ensemble 13,2 il manque bien 6. S ils paient 2,6 chacun ils donnent ensemble 15,6 il manque bien 3,6. Département Mathématiques E 821 : Problèmes du premier degré 16/27

17 Exercice 6 Dans un service administratif il y a 32 personnes. 5 hommes et 3 femmes partent en retraite et ne seront pas remplacés. Il y aura alors 2 fois plus de femmes que d hommes dans ce service. Combien y a-t-il d hommes et de femmes actuellement dans ce service? Mise en équation du problème : On cherche le nombre d hommes et le nombre de femmes actuellement dans le service : Soit H le nombre d hommes et F le nombre de femmes. Il y a 32 personnes dans le service : H + F = 32 Nombre d hommes après départ en retraite H 5 Nombre de femmes après départ en retraite F-3 Egalité traduisant la phrase : Il y aura 2 fois plus de femmes que d hommes 2(H 5) = F -3 On est ramené à un système de 2 équations à 2 inconnues H + F = 32 2( H 5) = F 3 Département Mathématiques E 821 : Problèmes du premier degré 17/27

18 On résout ce système par substitution : Avec la première équation : H + F = 32, on exprime H en fonction de F! H = 32 F On remplace H par 32 F dans la deuxième équation 2(32 F 5) = F = F + 2F H = 32 F 2(27 F) = F 3 57 = 3F H = F = F 3 F = 19 H = 13 Solution : Actuellement le nombre d hommes est de 13 et le nombre de femmes est de 19. Vérification : Nombre d hommes après le départ en retraite : 13 5 = 8 Nombre de femmes après le départ en retraite : 19 3 = 16 Il y aura bien 2 fois plus de femmes que d hommes Département Mathématiques E 821 : Problèmes du premier degré 18/27

19 Autre mise en équation plus simple que la précédente : On appelle x le nombre d hommes dans le service après le départ en retraite. Il y a 8 départ en retraite, il restera 24 personnes dans le service et le problème est alors le même que le n 1. La solution est nombre d hommes : 8 nombre de femmes : 16 Actuellement il y a = 13 hommes Et = 19 femmes Département Mathématiques E 821 : Problèmes du premier degré 19/27

20 Exercice 7 Un troupeau est composé de dromadaires et de chameaux. On compte 90 têtes et 152 bosses. Sachant qu un dromadaire a une bosse et un chameau 2, combien y a-t-il d animaux de chaque espèce? Mise en équation du problème : On cherche le nombre de dromadaires et le nombre de chameaux: soit x le nombre de dromadaire et y le nombre de chameaux On compte 90 têtes, il y a x têtes de dromadaires et y têtes de chameaux x + y = 90 On compte 152 bosses : il y a x bosses de dromadaires et 2y bosses de chameaux x + 2y = 152 On est ramené à résoudre un système de 2 équations (A) et (B) à 2 inconnues x et y x + y = 90 (A) x + 2y = 152 (B) Département Mathématiques E 821 : Problèmes du premier degré 20/27

21 Résolution du système d équations : Par substitution y = 90 x x + 2(90 x) = 152 x x = 152 x = 28 y = = 62 Par combinaison linéaire ( B) ( A) (x + 2y) ( x + y) = y = 62 On remplace y par 62 dans l'équation (A) x + 62 = 90 x = 28 : Solution Il y a 28 dromadaires et 62 chameaux Vérification : = x 62 = 152 Département Mathématiques E 821 : Problèmes du premier degré 21/27

22 Exercice 8 On dispose de 34 pièces, les unes de 50 centimes d euro, les autres de 20 centimes d euro Au total elles représentent une somme de 11,60. Combien y a-t-il de pièces de chaque sorte? Mise en équation du problème : On cherche le nombre de pièces de 50 centimes et le nombre de pièces de 20 centimes Attention il faut penser à utiliser les mêmes unités et ne pas mélanger centimes et euros soit x de pièces de 0,50 et y le nombre de pièces de 0,20 Il y a 34 pièces x + y = 34 Pour un total de 11,60 0,50x + 0,20y = 11,60 Résolution : Il faut résoudre un système de 2 équations à 2 inconnues x + y = 34 0,5x + 0,2 y = 11,6 (A) (B) 0,5x + 0,5y = 34 0,5 = 17 0, 5x + 0, 2y = 116, (0,5A) (B) Département Mathématiques E 821 : Problèmes du premier degré 22/27

23 0,5 y 0,2y = 17 11,6 0,3y = 5,4 y = 18 x = = 16 ( 0,5A - B) Solution : il y a 16 pièces de 50 centimes et 18 pièces de 20 centimes Vérification : = 34 0,5 x ,20 x 18 = 11,6 Département Mathématiques E 821 : Problèmes du premier degré 23/27

24 Exercice 9 Un éditeur vient de publier un nouveau roman. Les frais s élèvent à 60 pour chacun des 450 premiers exemplaires et 5 pour chacun des suivants. Le prix de vente du roman est fixé à 28,50. Quel est le nombre minimum d exemplaires à vendre avant de réaliser des bénéfices? Mise en équation du problème : On cherche le nombre minimum de roman soit x ce nombre Recettes 28,50 x Frais des 450 premiers 450 x 60 = Frais des suivants 5(x 450) Total des frais (x 450) = x Il faut que les recettes soient supérieures aux frais pour faire des bénéfices : 28,5x 5x Il s agit d une inéquation Département Mathématiques E 821 : Problèmes du premier degré 24/27

25 Résolution 28,5x 5x ,5x x 1053,19 Solution : Le nombre minimum d exemplaires à vendre pour faire des bénéfices est de Vérification : Recettes : 1054 x 28,50 = Frais : x ( ) = x 604 = Pour 1054 exemplaires vendus les recettes sont légèrement supérieures aux frais Département Mathématiques E 821 : Problèmes du premier degré 25/27

26 Exercice 10 Un hôpital remplace régulièrement son petit matériel. Lors d une première commande, 15 thermomètres et 10 tensiomètres ont été acheté pour Il fait une deuxième commande de 10 thermomètres et 15 tensiomètres. Le montant de la commande s élève à Quel est le prix d un thermomètre et le prix d un tensiomètre? Mise en équation du problème : On cherche le prix d un thermomètre et le prix d un tensiomètre soit x le prix d un thermomètre et y le prix d un tensiomètre Montant de la première commande Montant de la deuxième commande 15 x + 10y = x + 15y = 1335 Département Mathématiques E 821 : Problèmes du premier degré 26/27

27 Résolution Le problème se réduit à la résolution d un système de deux équations à deux inconnues, on utilisera de préférence la méthode par combinaison linéaire en essayant d avoir les plus petits coefficients possibles. 15x + 10y = x + 15y = 1335 En multipliant la première équation par 3 et la deuxième par 2 on obtient un nouveau système où il y a le même nombre de «y» dans les deux équations, par différence on a une équation à une inconnue en x 45x + 30y = x + 30y = x = 1125 x = y = y = = 590 y = 59 Solution : Les thermomètres coûtent 45 et les tensiomètres coûtent 59 Vérification : 15 x x 59 = x x 59 = Département Mathématiques E 821 : Problèmes du premier degré 27/27

ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005

ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005 ÉQUATIONS PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION 3 x + 5 y = 12 6 x + 4 y = 0 Quel système!!!! Dossier n 3 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par

Plus en détail

SYSTEMES EXERCICES CORRIGES

SYSTEMES EXERCICES CORRIGES Exercice n. SYSTEMES EXERCICES CRRIGES Parmi les couples (8,), (,-,5), (,), (5,), lequel est solution du système Exercice n. x+ y = 7x y= 8 Résoudre par substitution : ) ) x 5y = x+ y= 6 x+ y = 6 5x y=

Plus en détail

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres?

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres? Problèmes et équations. Pour chacun des problèmes ci-dessous, on essaiera de donner une solution algébrique ( à l aide d une équation, d un système d équations, d une inéquation ) mais aussi, à chaque

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

CUEEP Département Mathématiques E 802 : Pourcentages en série ou en parallèle p1/5

CUEEP Département Mathématiques E 802 : Pourcentages en série ou en parallèle p1/5 Pourcentages en série ou en parallèle Série de problèmes de pourcentage à plusieurs étapes : Repérer s il s agit de pourcentages en série ou de pourcentages en parallèle. Est-ce que les 100% sont toujours

Plus en détail

1 ère ES/L MATHÉMATIQUES TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2011 (v2.

1 ère ES/L MATHÉMATIQUES TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2011 (v2. MATHÉMATIQUES 1 ère ES/L TRIMESTRE 1 PROGRAMME 2011 (v2.3) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Les Cours Pi 42-44 rue du Fer à Moulin 75005 PARIS Tél. : 01 42 22 39 46

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

EQUATIONS. Dans l agence LOC AUTO, le coût d une location de voiture est calculé avec la. (d étant la distance parcourue en kilomètres)

EQUATIONS. Dans l agence LOC AUTO, le coût d une location de voiture est calculé avec la. (d étant la distance parcourue en kilomètres) EQUATIONS Activité n 1 Dans l agence LOC AUTO, le coût d une location de voiture est calculé avec la formule suivante : 2,5d + 40 (d étant la distance parcourue en kilomètres) Monsieur DUPUIS paie pour

Plus en détail

Programme de calcul et résolution d équation

Programme de calcul et résolution d équation Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme

Plus en détail

Problèmes supplémentaires (pratiques)

Problèmes supplémentaires (pratiques) 1. Traduis les énoncés suivants par une inéquation du premier degré à deux variables. a) x adultes et y enfants ont assisté à une représentation dans une salle de spectacles ne pouvant contenir que 250

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer

QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice 1. 20 % de 120 est égal à : A 240 B 24 C 144 D 96 Réponse juste : B 20 %

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Thème 6: Systèmes d équations

Thème 6: Systèmes d équations SYSTÈMES D ÉQUATIONS 91 Thème 6: Systèmes d équations Introduction: Certaines applications mathématiques nécessitent parfois l emploi simultané de plusieurs équations à plusieurs inconnues, c est-à-dire

Plus en détail

Temps Distance Vitesse

Temps Distance Vitesse Temps Distance Vitesse Jean-Noël Gers Février 2005 CUEEP Département Mathématiques p1/27 Ce dossier contient un certain nombre de problèmes classiques sur la rencontre de mobiles évoluant à vitesse constante.

Plus en détail

La proportionnalité G. Martiel -2014

La proportionnalité G. Martiel -2014 Laproportionnalité Mise en situation La petite géante de ROYAL DE LUXE Le spectacle de rue «ROYAL DE LUXE» a des marionnettes géantes. Une de ces marionnettes est «La Petite Géante» Quelle est la taille

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

RÈGLE DE TROIS MATHÉMATIQUES

RÈGLE DE TROIS MATHÉMATIQUES RÈGLE DE TROIS MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP199702 C201206 TABLE DES MATIÈRES 1 EXPLICATION 1 Page 2 EXERCICES 3 3 CORRIGÉ

Plus en détail

Les tableaux de proportionnalité

Les tableaux de proportionnalité Les tableaux de proportionnalité I) On sait que 1 yaourt à la vanille coûte 0,5. Compléter le tableau suivant : Nombre de yaourts 1 2 3 4 6 Prix à payer en 4 5,5 Si on achète deux fois plus de yaourts,

Plus en détail

Appliquer un pourcentage série 2

Appliquer un pourcentage série 2 1. Dans un club multisports, il y a 75 enfants inscrits. 20% de ces enfants font du football. Quel est le nombre d enfants qui fait du foot? enfants du club multisports font du foot. 2. Dans l entreprise

Plus en détail

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n CHAPITRE 11 PROPORTIONNALITE I. GENERALITES A. NOTION DE GRANDEURS PROPORTIONNELLES Deux grandeurs x et y sont proportionnelles si, lorsque l une varie, l autre varie dans les mêmes proportions : si x

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Problèmes. Lecture de documents : lire une affiche. 1. À quelle heure commence le spectacle? 2.. Quel prix payent les parents?

Problèmes. Lecture de documents : lire une affiche. 1. À quelle heure commence le spectacle? 2.. Quel prix payent les parents? Fiche 1 1 J observe bien cette affiche et je réponds aux questions. 2 Je résous ce problème. Lecture de documents : lire une affiche 1. À quelle heure commence le spectacle? 2.. Quel prix payent les parents?

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

3 - Vous pouvez aussi vous entraîner avec les fiches soutien C.M.2 numéro 18, 19, 20 et 44.

3 - Vous pouvez aussi vous entraîner avec les fiches soutien C.M.2 numéro 18, 19, 20 et 44. 7.4.1 utiliser quelques fractions simples 1/2, 1/3 et 1/4. Pré requis : 5.4.1 Conseils : La fraction 1/2 se lit "un demi" ou "la moitié" et peut aussi s'écrire ainsi : 1 2 La fraction 1/3 se lit "un tiers"

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

( ) + 4 800 sur l intervalle [0 ; 410]. Sa représentation

( ) + 4 800 sur l intervalle [0 ; 410]. Sa représentation Baccalauréat Professionnel Commerce services vente représentation 1. France, juin 006 1. France, juin 005 4 3. France, juin 005 6 4. France, juin 005 9 5. France, juin 004 11 6. France, juin 004 13 7.

Plus en détail

7% = R140. Exemples 25% de 650 = = 162,50. 650 x. Quand on. pour cela? reçus. reçus. = candidats reçus

7% = R140. Exemples 25% de 650 = = 162,50. 650 x. Quand on. pour cela? reçus. reçus. = candidats reçus FICHE M15 : Pourcentages Un pourcentage est mathématiquement représenté par une fraction sur 100. Appliquer un pourcentage de P% à un nombre revient à le multiplier par 100. P% correspond à la fraction.

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

Baccalauréat STG Mercatique Polynésie 10 juin 2011 correction

Baccalauréat STG Mercatique Polynésie 10 juin 2011 correction accalauréat STG Mercatique Polynésie 0 juin 0 correction La calculatrice (conforme à la circulaire N 99-86 du 6--99) est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). 4

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S b.delap@wanadoo.fr Utiliser un graphique pour résoudre des inéquations à une seule inconnue. 1 er cas : les valeurs sont toutes positives : Sur

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail

- Chap 9 - Proportionnalité

- Chap 9 - Proportionnalité - Chap 9 - Proportionnalité Chap 9: Proportionnalité Exercice 1 : J ai acheté 4 kg de pommes pour 4,80. Combien coûte 1kg de pommes? Calcul : Phrase réponse:.. Compléter ce tableau. Calculs : Quantité

Plus en détail

4. Proportions et pourcentages

4. Proportions et pourcentages - 1 - Proportions et pourcentages 4. Proportions et pourcentages 4.1 Grandeurs directement proportionnelles Exemple : Un ouvrier gagne 152 Fr. pour 8 heures de travail. Pour doubler, tripler, son salaire,

Plus en détail

PLAN DE SEQUENCE La proportionnalité au CM2

PLAN DE SEQUENCE La proportionnalité au CM2 PLAN DE SEQUENCE La proportionnalité au CM2 Introduction pour l enseignant Cette séquence sur la proportionnalité au CM2 s articule avec un travail préparatoire en CM1 permettant d introduire la notion

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues?

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues? ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME Utilisation des équations du er degré à une inconnue x + 5 = - z = x + = 0-5 + x = Mais qui sont ces inconnues? Dossier n Juin 005 Tous droits réservés

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

Elaboration d une séquence d apprentissage

Elaboration d une séquence d apprentissage Elaboration d une séquence d apprentissage La séquence propose de présenter le passage du retour à l unité lors de résolution de problèmes de proportionnalité puis, à partir de cette situation, de retrouver

Plus en détail

Partie I Le consommateur et la demande

Partie I Le consommateur et la demande Partie I Le consommateur et la demande Chapitre 1 La fonction d utilité 1 Plan du cours 1. Le consommateur. 2. La notion d utilité. 3. Les courbes d indifférence. 4. L optimum du consommateur. 5. Exercices.

Plus en détail

Comparer et ranger des nombres entiers (2)

Comparer et ranger des nombres entiers (2) Comparer et ranger des nombres entiers (2) Comparer, ranger et encadrer des nombres entiers. 8 1 Complète en utilisant les signes < et > ou en remplaçant les points par des chiffres. Exemple : 172 856

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation. Ce document a été mis en ligne par le Canopé de l académie de Clermont- Ferrand pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit,

Plus en détail

Test diagnostique en mathématiques - niveau secondaire

Test diagnostique en mathématiques - niveau secondaire Test diagnostique en mathématiques - niveau secondaire Test diagnostique en mathématiques- niveau secondaire Guide de passation Ce test diagnostique en mathématiques a été construit afin d évaluer une

Plus en détail

formation des prix I - Etude d une situation : II - Formation des prix :

formation des prix I - Etude d une situation : II - Formation des prix : formation des prix I - Etude d une situation : - Retrouver et souligner dans le texte les nouveaux termes. - Mettre sous forme d expressions mathématiques les indications du texte. Un commerçant achète

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

Proportionnalité ou pas?

Proportionnalité ou pas? Proportionnalité ou pas? 1 Chez le primeur, pour les pommes, il est affiché «2,85 le kg». Quelles sont les deux grandeurs qui Sont-elles proportionnelles? Justifie. 2 Au marché, pour les pamplemousses,

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x Développer et réduire 3 Chasse aux bulles 1 Vrai ou faux? x 2 3x 2x 2 4 7x Justifie tes réponses. x 2 est toujours égal à 2x. Faux, par exemple, si x = 3, alors x² = 9, mais 2x = 6 (5x) 2 est toujours

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

EQUATIONS ET INEQUATIONS Exercices 1/8

EQUATIONS ET INEQUATIONS Exercices 1/8 EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0

Plus en détail

Les méthodes classiques des coûts complets et la méthode ABC

Les méthodes classiques des coûts complets et la méthode ABC PARTIE 1 Les méthodes classiques des coûts complets et la méthode ABC THÈME 2 Le traitement des charges : les charges directes et indirectes EXERCICE 2 Méthode des centres d analyse et méthode simplifiée

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Test Ceinture Blanche de Problèmes. Test Ceinture Blanche de Problèmes

Test Ceinture Blanche de Problèmes. Test Ceinture Blanche de Problèmes Test Ceinture Blanche de Bravo Tu y es presque Tu dois encore t'entraîner Score :... sur 9 points Pour chaque énoncé de problème, colorie les données utiles pour le résoudre. - Lorsqu elle marche normalement,

Plus en détail

TROISI` EME PARTIE L ALG` EBRE

TROISI` EME PARTIE L ALG` EBRE TROISIÈME PARTIE L ALGÈBRE Chapitre 8 L algèbre babylonienne Sommaire 8.1 Présentation..................... 135 8.2 Résolution d équations du second degré..... 135 8.3 Bibliographie.....................

Plus en détail

Un gâteau au yaourt pour le goûter!

Un gâteau au yaourt pour le goûter! Un gâteau au yaourt pour le goûter! (adapté de la séquence pédagogique "Let's make scones!" publiée sur le site Primlangues) http://www.primlangues.education.fr/php/sequence_detail.php?id_sequence=83 Niveau

Plus en détail

FRLT Page 1 27/07/2014 http://frlt.pagesperso-orange.fr/

FRLT Page 1 27/07/2014 http://frlt.pagesperso-orange.fr/ PROGRAMMES / NOMBRES 1C Je choisis un nombre ; je le multiplie par ; puis je divise le produit obtenu par ; je trouve ainsi,9. Quel nombre ai-je choisi? C Un nombre est le double d un autre. Le produit

Plus en détail

Fonctions affines. Table des matières

Fonctions affines. Table des matières Fonctions affines Table des matières 1 fonction linéaire, fonction constante, fonction affine 3 1.1 activités.............................................. 3 1.1.1 activité 1 : fonction linéaire et variation

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Les mots repères : questions et calculs. Les mots repères : questions et calculs PRO9 PRO9

Les mots repères : questions et calculs. Les mots repères : questions et calculs PRO9 PRO9 Les mots repères : questions et calculs PRO9 Les mots repères : questions et calculs PRO9 Une fois la (ou les) question(s) repérée(s), il convient de repérer les mots-clés, les mots repères qui vont nous

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges FRANCE, ANTILLES, GUYANE Septembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points.

Plus en détail

Notion de fonction. Résolution graphique Fonction affine

Notion de fonction. Résolution graphique Fonction affine Eercices 6 décembre 0 Notion de fonction. Résolution graphique Fonction affine Eercice Représentation d une fonction Parmi les courbe suivantes, quelles sont celles qui ne sont pas des représentations

Plus en détail

Pourcentages Exercices

Pourcentages Exercices Première L Pourcentages Exercices Exercice 1. 1 Calculer 18% de 350 ; 32% de 500 ; 20,6% de 1200. Exercice 1. 2 Donner les coefficients multiplicateurs associés à : 1 ) une augmentation de 7% 2 ) une augmentation

Plus en détail

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd Cours de mathématiques fondamentales 1 année, DUT GEA Mourad Abouzaïd 9 décembre 2008 2 Table des matières Introduction 7 0 Rappels d algèbre élémentaire 9 0.1 Calcul algébrique................................

Plus en détail

Suite géométrique et résolution graphique d une inéquation

Suite géométrique et résolution graphique d une inéquation - - 1 - - - - 1 - -24/12/2010J - - 1 - - Suite géométrique et résolution graphique d une inéquation ENONCE : Une entreprise achète un véhicule neuf au prix de V 0 = 20 000. Elle considère que le véhicule

Plus en détail

FRANCAIS et MATHEMATIQUES

FRANCAIS et MATHEMATIQUES Évaluation à l'entrée au CM2 FRANCAIS et MATHEMATIQUES compétences cibles Livret de l élève Nom : Prénom : circonscription de Pontivy JLG version 1 FRANCAIS : Compétences cibles évaluées Orthographe Ecrire

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Résoudre des problèmes simples

Résoudre des problèmes simples Résoudre des problèmes simples Objectif: Acquérir une méthodologie générale de résolution de problèmes. Résoudre des problèmes additifs et soustractifs en une étape. Résoudre des problèmes simples Objectif:

Plus en détail

THEME 1 : STATUT DE L EGALITE

THEME 1 : STATUT DE L EGALITE Ce document a été élaboré par des enseignants des collèges Romée de Villeneuve, Jules Verne de Cagnes sur Mer et du lycée Renoir (par ordre alphabétique : Mme Aicart, M. Crézé, Mme Faraud, M. Pascal, Mme

Plus en détail

2. Fractions et pourcentages

2. Fractions et pourcentages FRACTIONS ET POURCENTAGES. Fractions et pourcentages.. Définitions Certaines divisions tombent justes. C'est par exemple le cas de la division 4 8 qui donne.. D'autres ne s'arrêtent jamais. C'est ce qui

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

1) Quel est le tarif le plus avantageux pour un spectateur assistant à :

1) Quel est le tarif le plus avantageux pour un spectateur assistant à : http://maths-sciences.fr EXERCICES SUR LES FONCTIONS Eercice 1 Un club de football propose trois tarifs d entrée au stade : Tarif A : sans abonnement, le spectateur paye 8 par match. Tarif B : avec un

Plus en détail

Equations de droites. Coefficient directeur

Equations de droites. Coefficient directeur Equations de droites. Coefficient directeur I) Caractérisation analytique d une droite m, p et c désignent des nombres réels. 1) Propriété : Dans un repère l ensemble des points M de coordonnées ( ; )

Plus en détail

1 Savoirs fondamentaux

1 Savoirs fondamentaux Révisions sur l oscillogramme, la puissance et l énergie électrique 1 Savoirs fondamentaux Exercice 1 : choix multiples 1. Quelle est l unité de la puissance dans le système international? Volt Watt Ampère

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

Évaluation de début d'année 2011/2012 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES

Évaluation de début d'année 2011/2012 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES Évaluation de début d'année 2011/2012 Compétences attendues à la fin du cycle des approfondissements (CM2/palier 2) MATHÉMATIQUES NOMB 09 [NC12] Écrire, nommer, comparer et utiliser les nombres entiers,

Plus en détail

Carré parfait et son côté

Carré parfait et son côté LE NOMBRE Carré parfait et son côté Résultat d apprentissage Description 8 e année, Le nombre, n 1 Démontrer une compréhension des carrés parfaits et des racines carrées (se limitant aux nombres entiers

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Quel système d équations traduit cette situation? x : la hauteur du rectangle. y : l aire du rectangle. C) y = 4x + 25.

Quel système d équations traduit cette situation? x : la hauteur du rectangle. y : l aire du rectangle. C) y = 4x + 25. 1 La base d un rectangle dépasse sa hauteur de 4 cm. Si on ajoute 17 au périmètre de ce rectangle, on obtient un nombre égal à celui qui représente l aire de ce rectangle. Soit x : la hauteur du rectangle

Plus en détail

ACTIVITES NUMERIQUES 12 points

ACTIVITES NUMERIQUES 12 points BREVET BLANC Mai 2012 Mathématiques Le corrigé La rédaction et la présentation sont prises en compte pour 4 points. Les calculatrices sont autorisées. Durée de l'épreuve : 2 heures. EXERCICE 1 On donne

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Exercice 40 page 142. Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) 0. b) 9 10x.

Exercice 40 page 142. Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) 0. b) 9 10x. Exercice 4 page 142 Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) b) 9 1x 9x 5 > c) 2x+6 2 4x d) ( 3x 9)(7x 8) < a) Résolution de l inéquation (5x 9)(5x 8)

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Dispositif d évaluation. Mathématiques. Livret de l élève

Dispositif d évaluation. Mathématiques. Livret de l élève Dispositif d évaluation 6 ème EGPA Mathématiques Livret de l élève NOM : Prénom : Date de naissance :.... Année scolaire :. Etablissement :.... Etablissement :.... Académie de Lille - 2015 Sommaire Passation

Plus en détail