Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Dimension: px
Commencer à balayer dès la page:

Download "Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point"

Transcription

1 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de la rédaction et à la présentation ; Exercice n 1 ; 2 et 3 : 1 point par question. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point Exercice n 5 : Hypothèses : 0,5 points Nom du Théorème : 0,5 points Egalité des rapports : 1 point Calcul : 1 point Exercice n 6 : 1 ) 3 points 2 ) 3 points 3 ) 2 points Exercice n 7 : 1 ) a) 1 point 1 ) b) 0,5 points 2 ) a) 1 point 2 ) b) 0,5 points 3 ) 0,5 points 4 ) 2,5 points 5 ) à 8 ) 0,5 point par question Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 1

2 Exercice n 1 : (5 points) Quelle est l expression développée de : 4x x 2 8x +1 4x 2 8x +1 ( 4x 1) Quelle est l expression factorisée de : 25x 2 81 Le PGCD de 364 et 156 est : Si on remplace x par 1 dans l expression A x ( ) = 3x 2 3x 1, on obtient : (IJK) est rectangle en I tel que : IK = 2,7cm et KJ = 4,5 cm. Quelle est la longueur du côté [IJ]? ( 5x 9) ( 5x + 9) 25x( x 9) ( 5x 9) ,6 cm 5,2 cm 12,96 cm Exercice n 2 : (4 points) On considère les programmes de calculs suivants : Programme A 1 ) Choisir un nombre ; 2 ) Lui ajouter 1 ; 3 ) Calculer le carré de la somme obtenue ; 4 ) Soustraire au résultat le carré du nombre de départ. Programme B 1 ) Choisir un nombre ; 2 ) Ajouter 1 au double de ce nombre. 1 ) On choisit 5 comme nombre de départ. Montrer que l on obtient 11 avec les deux programmes. Programme A Programme B ( 5 +1) = = 11 Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 2

3 2 ) On choisit maintenant 2 comme nombre de départ. Quel résultat obtient-on avec chacun des deux programmes? Programme A Programme B ( 2 +1) 2 ( 2) 2 = = 3 3 ) Démontrer que, quel que soit le nombre x choisi, les résultats obtenus avec les deux programmes sont toujours égaux. Programme A Programme B ( x +1) 2 x 2 = x 2 + 2x +1 x 2 = 2x +1 x 2 +1 = 2x +1 On obtient ainsi la même expression, pour n importe quel nombre x choisi au départ. 4 ) Avec quel nombre de départ obtient-on 17? 1 ère méthode : Soit x le nombre de départ. Alors : 2x +1 = 17 x = = 8 2 e méthode : Algorithme de remontée. apple On a le résultat 17 ; apple 17 1 = 16; apple 16 2 = 8. Exercice n 3 : (4 points) Un ouvrier dispose de plaques de métal de 110 cm de longueur et de 88 cm de largeur. Il a reçu la consigne suivante : «Découpe dans ces plaques des carrés tous identiques, dont les longueurs des côtés sont un nombre entier de cm, et de façon à ne pas avoir de perte.» 1 ) Peut-il choisir de découper des plaques de 10 cm de côté? Justifier. 88 = 8,8 n est pas entier, donc : il ne peut pas découper des plaques de 10 cm de côté ) Peut-il choisir de découper des plaques de 11 cm de côté? Justifier = 8 Donc : il peut découper des plaques de 11 cm de côté = 10 Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 3

4 3 ) On lui impose désormais de découper des carrés les plus grands possibles. a) Quelle sera la longueur du côté d un carré? Algorithme d Euclide : 110 = = Donc : PGCD(110 ;88) = 22 et : la longueur maximale du côté d un carré est 22 cm. b) Combien y aura-t-il de carrés par plaque? = = 20 Il y aura 20 carrés par plaque = 5 Exercice n 4 : (4 points) On considère les expressions : 1 ) Calculer E et F pour :. 2 ) Développer F. Les résultats obtenus à la question 1 ) sont-ils surprenants? F = ( 2x 7) ( x 2) ( x 3) 2 F = 2x 2 4x 7x +14 x 2 + 6x 9 F = x 2 5x + 5 F = E D où : les résultats du 1 ). Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 4

5 3 ) Avec un tableur, on veut calculer, en colonne B, les valeurs prises par l expression E, pour les valeurs de x, inscrites en colonne A. Quelle formule faut-il rentrer dans la cellule B2 pour faire effectuer le calcul souhaité? (la formule devra pouvoir être étendue aux cellules situées en dessous) Voici la formule à rentrer dans la cellule B2 : = A2*A2-5*A2+5 Puis on utilise la poignée de recopie. Exercice n 5 : (3 points) On a modélisé géométriquement un tabouret pliant par les segments [CB] et [AD], pour l armature métallique, et le segment [CD], pour l assise en toile. On a CG = DG = 30 cm ; AG = BG = 45 cm et AB = 51 cm (G représentant le point d intersection des segments [CB] et [AD]). Pour des raisons de confort, l assise [CD] est supposée parallèle au sol représenté par la droite (AB). Déterminer la longueur CD de l assise. Vous laisserez apparentes toutes vos recherches. Même si le travail n est pas terminé : il en sera tenu compte dans la notation. On a : apple (CB) et (AD) deux droites sécantes en G. apple Donc : d après le Théorème de Thalès : Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 5

6 Exercice n 6 : (8 points) On considère la figure ci-dessous où l unité est le centimètre. Les points T, I, U et L sont alignés ainsi que R, I, O et C. Le triangle TIR est rectangle en T. Les droites (CL) et (OU) sont parallèles. 1 ) On a : (TRI) un triangle rectangle en T. Donc : d après le Théorème de Pythagore : RI 2 = TR 2 + TI = TR 2 + 3,6 2 TR 2 = 6 2 3,6 2 = 23,04 TR = 23,04cm = 4,8cm 2 ) On a : apple (IC) et (IL) deux droites sécantes en I. apple (OU) / /(CL). Donc : d après le Théorème de Thalès : IO IC = IU IL = OU CL 3,9 4,5 = 6,5 IC IC = 6,5 4,5 3,9 = 7,5cm 3 ) On a : apple (TU) et (RO) deux droites sécantes en I. apple T, I, U et R, I, O alignés dans le même ordre. IT IU = 3,6 3,9 0,92 IR IO = 6 IT 6,5 0,92 IU = IR IO Donc : d après la réciproque du Théorème de Thalès : (TR) / /(OU). Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 6

7 Exercice n 7 : (8 points) On compare trois forfaits mensuels pour Forfait A : fixe de 20 quel que soit le nombre de SMS envoyés ; Forfait B : 0,15 par SMS ; Forfait C : 0,05 par SMS et 12 fixe. 1 ) a) Dans le cas du forfait B, calculer le prix à payer pour l envoi de 4 SMS, de 10 SMS, de 15 SMS. apple Prix pour l envoi de 4 4 0,15 = 0,60 apple Prix pour l envoi de ,15 = 1,50 apple Prix pour l envoi de ,15 = 2,25 b) On désigne par g(x), le prix à payer pour l envoi de x SMS. Exprimer ce prix g(x) en fonction de x. g(x) = 0,15x 2 ) a) Dans le cas du forfait C, calculer le prix à payer pour l envoi de 5 SMS, de 8 SMS, de 14 SMS. apple Prix pour l envoi de 5 5 0, = 12,25 apple Prix pour l envoi de 8 8 0, = 12,40 apple Prix pour l envoi de , = 12,70 b) On désigne par h(x), le prix à payer pour l envoi de x SMS. Exprimer ce prix h(x) en fonction de x. h(x) = 0,05x ) On désigne par f(x), le prix à payer pour l envoi de x SMS. Exprimer ce prix f(x) en fonction de x, dans le cas du forfait A. f (x) = 20 Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 7

8 4 ) Représenter alors ces trois fonctions dans un même repère orthogonal (on pourra prendre pour unités : 1 cm pour 20 SMS en abscisse et 1cm pour 1 en ordonnée). 5 ) Par simple lecture graphique, déterminer le nombre de SMS pour lequel le prix à payer est le même dans le cas des forfaits A et B. Le nombre de SMS à envoyer est 133 (tolérance De ± 2). 6 ) Même question pour les forfaits A et C. Le nombre de SMS à envoyer est 160 (tolérance De ± 2). 7 ) Même question pour les forfaits B et C. Le nombre de SMS à envoyer est 120 (tolérance De ± 2). 8 ) Quel forfait est le plus avantageux pour l envoie de plus de 160 SMS? Justifier. Par lecture graphique, c est le forfait C qui est le plus avantageux, pour l envoie de plus de 160 SMS. Brevet Blanc 2013 Epreuve de Mathématiques Collège Oasis 8

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES L usage de la calculatrice est autorisé. Durée : 2 heures. Le barème tient compte de la qualité de la rédaction et de la présentation

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015 MATHEMATIQUES BREVET BLANC Vendredi 3 Avril 2015 Exercice 1 : ( 2,5 points) Un sac contient 5 boules noires numérotées de 1 à 5 et 3 boules blanches numérotées de 1 à 3. Chacune de ces boules a la même

Plus en détail

POLYNESIE Juin 2010 Brevet Corrigés Page 1 sur 5

POLYNESIE Juin 2010 Brevet Corrigés Page 1 sur 5 POLYNESIE Juin 010 Brevet Corrigés Page 1 sur 5 Exercice 1 : Activités numériques (1 points) 1. Algorithme d Euclide : 144 = 1 10 + 4 10 = 5 4 + 0 Le dernier reste non nul est 4 donc PGCD(10 ; 144) = 4.

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES Durée de l épreuve : 2 heures. Ce sujet comporte 6 pages numérotées de 1 à 6. Dès qu il vous est remis, assurez-vous qu il est complet. L usage de la calculatrice

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

MATHEMATIQUES 1 partie. Activités numériques

MATHEMATIQUES 1 partie. Activités numériques NOM : Classe : Prénom : MATHEMATIQUES partie Les réponses seront justifiées. Le détail des calculs figurera sur la copie. Activités numériques Quel est le PGCD des nombres 185 et 444? 2 Un chef d orchestre

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2009

DIPLÔME NATIONAL DU BREVET SESSION 2009 DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

Correction du brevet des collèges Polynésie juin 2010

Correction du brevet des collèges Polynésie juin 2010 Correction du brevet des collèges Polynésie juin 2010 Durée : 2 heures ACTIVITÉS NUMÉRIQUES Exercice 1 1. Déterminons le PGCD de 120 et 144 par l algorithme d Euclide : PGCD(144 ;120) =PGCD(120 ;24) =

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2011 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie au surveillant à la fin de l épreuve Nature de

Plus en détail

Devoir-maison, à rendre le lundi 4 novembre 2013

Devoir-maison, à rendre le lundi 4 novembre 2013 Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet

Plus en détail

POLYNESIE Juin 2010 Brevet Page 1 sur 6

POLYNESIE Juin 2010 Brevet Page 1 sur 6 POLYNESIE Juin 2010 Brevet Page 1 sur 6 Exercice 1 : Activités numériques (12 points) 1. Déterminer le PGCD de 120 et 144 par la méthode de votre choix. Faire apparaître les calculs intermédiaires. 2.

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72 3 ème DNB 001 NICE PARTIE NUMERIQUE CORRIGE Exercice 1 1. Donner l'égalité traduisant la division euclidienne de 1 51 par 1 1 51 = 1 7. Rendre irréductible la fraction 70 1 51 70 1 51 = 7 10 7 1 donc 70

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION JUIN 2008 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE Durée de l épreuve: 2h00 Métropole - La Réunion- Mayotte L emploi des calculatrices est autorisé Barème: - Activités

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

Brevet des collèges Polynésie juin 2010

Brevet des collèges Polynésie juin 2010 Brevet des collèges Polynésie juin 2010 Durée : 2 heures CTIVITÉS NUMÉRIQUES Exercice 1 1. Déterminer le PGCD de 120 et 144 par la méthode de votre choix. Faire apparaître les calculs intermédiaires. 2.

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

CORRECTION DU BREVET 2010

CORRECTION DU BREVET 2010 CORRECTION DU BREVET 2010 Troisième Polynésie I - ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 1) D après l algorithme d Euclide : a b reste division euclidienne 144 120 24 144 = 1 120 + 24 120 24 0 120

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes.

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes. CORRECTION BREVET MATHS PONDICHERY 2014 Exercice 1 Emma et Arthur ont acheté pour leur mariage 00 dragées au chocolat et 71 dragées aux amandes. 1 ) Arthur propose de répartir ces dragées de façon identique

Plus en détail

JEUDI 7 FEVRIER 2013 CONTROLE COMMUN 3 ème Sujet A CORRECTION

JEUDI 7 FEVRIER 2013 CONTROLE COMMUN 3 ème Sujet A CORRECTION JEUDI 7 FEVRIER 2013 CONTROLE COMMUN 3 ème Sujet A CORRECTION EXERCICE 1 : 4 pts Il a été demandé aux familles de deux villages voisins S et T de répondre à la question suivante : «Etes-vous favorable

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence.

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence. Exercice 1 (4 points) d après Amérique du Sud, novembre 2010. et donc les nombres semblent égaux, mais il faut le démontrer. Je sais que si alors. Je cherche à savoir si Alors j aurai si je trouve. Conclusion

Plus en détail

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES MATHÉMATIQUES LIAISON ème / 2 nde Lycée Notre Dame des Minimes Année scolaire 205-206 LIVRET DE VACANCES L objet du présent livret de vacances est d aborder le programme de mathématiques de seconde générale

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques

CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques PREMIERE PARTIE (13 points) Dans ce problème, on étudiera un procédé de fabrication d'une " brique "

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

BREVET BLANC N 1 EPREUVE DE MATHEMATIQUES

BREVET BLANC N 1 EPREUVE DE MATHEMATIQUES BREVET BLANC N 1 EPREUVE DE MATHEMATIQUES Durée de l épreuve : 2 heures. Ce sujet comporte 5 pages numérotées de 1 à 5. Dès qu il vous est remis, assurez-vous qu il est complet. L usage de la calculatrice

Plus en détail

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%.

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%. 3 ème REVISIONS BREVET EXERCICE 1 : Soit P = (x 2) (2x + 1) (2x + 1)² 1. Développer et réduire P. 2. Factoriser P. 3. Résoudre l équation (2x + 1) (x + 3) = 0 4. Pour x = 3, écrire P sous forme fractionnaire.

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

1) Quel est le PGCD de 36 et 28? (donner juste le résultat sans explication) (1 point) : 2) Ecrire la division euclidienne de 278 par 17.

1) Quel est le PGCD de 36 et 28? (donner juste le résultat sans explication) (1 point) : 2) Ecrire la division euclidienne de 278 par 17. Test 1 : RATTRAPAGE NOM : Note : Connaitre le sens de «diviseur commun» Déterminer le PGCD de deux nombres Compétences du socle commun Déterminer si deux entiers sont premiers entre eux. Effectuer la division

Plus en détail

BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures

BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures Numéro d'anonymat :.... BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures L utilisation des calculatrices est autorisée. CE SUJET SERVIRA DE CHEMISE DANS LAQUELLE LE CANDIDAT RENDRA

Plus en détail

Exercice 1 /6 Calculer et donner le résultat sous la forme d une fraction irréductible ou d un nombre décimal.

Exercice 1 /6 Calculer et donner le résultat sous la forme d une fraction irréductible ou d un nombre décimal. NOM : Prénom : Classe : Observations : Compétences testées lors de ce devoir Rechercher, extraire et organiser l information utile. Raisonner, argumenter, pratiquer une démarche expérimentale ou technologique,

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

MathADoc Diplôme National du Brevet : Groupe Nord 2003

MathADoc Diplôme National du Brevet : Groupe Nord 2003 MathADoc Diplôme National du Brevet : Groupe Nord 2003 Activités numériques : 12 points (Amiens, Lille, Paris, Créteil, Versailles, Rouen) 1. Soit A = 8 3 5 3 20 21 Calculer A en détaillant les étapes

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges PONDICHÉRY Avril 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. EXERCICE 1 Cet

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail

( ) Exercice 1 : On donne le programme de calcul suivant :

( ) Exercice 1 : On donne le programme de calcul suivant : Exercice : On donne le programme de calcul suivant : ) Montrer que si le nombre choisi au départ est, on obtient comme résultat 8. ) Calculer la valeur exacte du résultat obtenu lorsque : a) Le nombre

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2010

DIPLÔME NATIONAL DU BREVET SESSION 2010 DIPLÔME NATIONAL DU BREVET SESSION 2010 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont deux feuilles

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2011 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie modèle Éducation Nationale. Ce sujet comporte 7 pages numérotées de 1/7

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

Partie 1 ( 13 points )

Partie 1 ( 13 points ) Partie 1 ( 13 points ) Exercice 1 : (3,5 points ) Lili décide de poser du parquet dans son appartement de 32 m². Elle va coller son parquet. Elle va ensuite vernir le parquet collé et passer une couche

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Exercice N 1 : Extrait du BEP secteur 1 session 2005

Exercice N 1 : Extrait du BEP secteur 1 session 2005 Exercice N 1 : Extrait du BEP secteur 1 session 2005 Tarifs Sam souhaite aller à la piscine municipale dont les tarifs sont présentés dans le tableau ci-contre : Normal 3,80 Groupe 3 On note x le nombre

Plus en détail

Correction du brevet blanc avril 2010 EPREUVE DE MATHEMATIQUES

Correction du brevet blanc avril 2010 EPREUVE DE MATHEMATIQUES Correction du brevet blanc avril 200 EPREUVE DE MATHEMATIQUES 2 points de présentation et rédaction I ACTIVITES NUMERIQUES : 4 points Exercice On considère le programme de calcul cicontre. Choisir un nombre

Plus en détail

ACTIVITES NUMERIQUES 12 points

ACTIVITES NUMERIQUES 12 points BREVET BLANC Mai 2012 Mathématiques Le corrigé La rédaction et la présentation sont prises en compte pour 4 points. Les calculatrices sont autorisées. Durée de l'épreuve : 2 heures. EXERCICE 1 On donne

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse ACTIVITES NUMERIQUES 30 min - 12 points EXERCICE 1 (extrait de brevet, Nouvelle-Calédonie,

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013 BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Fonctions affines. Table des matières

Fonctions affines. Table des matières Fonctions affines Table des matières 1 fonction linéaire, fonction constante, fonction affine 3 1.1 activités.............................................. 3 1.1.1 activité 1 : fonction linéaire et variation

Plus en détail

BAREME (Présentation et rédaction : 4 pts)

BAREME (Présentation et rédaction : 4 pts) 10 décembre 2013 Corrigé du Devoir Commun de Mathématiques 3 ème Exercice 1 (3 pts) BAREME (Présentation et rédaction : 4 pts) Le débit d une connexion internet varie en fonction de la distance du modem

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

Chapitre 5 : Géométrie dans l'espace

Chapitre 5 : Géométrie dans l'espace Source : site Bacamahts (G.Constantini) et Mathématiques 2 nde (Terracher) I. Règles de base de la géométrie dans l'espace Il existe une et une seule droite de l'espace passant par deux points distincts.

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

Brevet Blanc de Mathématiques n 4

Brevet Blanc de Mathématiques n 4 Collège français Sadi Carnot Diego Suarez 15/05/2015 Brevet Blanc de Mathématiques n 4 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4

Plus en détail

Académies et années. Type de fonction Type de problème Résolution conjointe

Académies et années. Type de fonction Type de problème Résolution conjointe Académies et années Type de fonction Type de problème Résolution conjointe Affine Linéaire Autre Tarifs Géom. Plane Espace équation Inéquat. Système Grenoble 00 x x Nancy 00 x x Orléans 00 x x Caen 00

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

CORRECTION DU BREVET BLANC MATHÉMATIQUES

CORRECTION DU BREVET BLANC MATHÉMATIQUES CORRECTION DU BREVET BLANC MATHÉMATIQUES Collège François Mitterrand de Créon Mardi 14 janvier 2014 Durée de l'épreuve : 2 h 00 Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Dès que ce sujet vous

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

BREVET BLANC 2 - MATHEMATIQUES

BREVET BLANC 2 - MATHEMATIQUES BREVET BLANC 2 - MATHEMATIQUES I- PRESENTATION DE L'EPREUVE DE MATHEMATIQUES AU BREVET 1. Durée de l'épreuve : 2 heures 2. Nature de l'épreuve : écrite 3. Objectifs de l'épreuve : Les acquis à évaluer

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Brevet des collèges Polynésie septembre 2014

Brevet des collèges Polynésie septembre 2014 Brevet des collèges Polynésie septembre 2014 Durée : 2 heures Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour

Plus en détail

Le tricercle de Mohr

Le tricercle de Mohr Sujet 1 Épreuve pratique de mathématiques en troisième Fiche élève Le tricercle de Mohr On considère un segment [AB] tel que AB = 10 cm et un point C quelconque du segment [AB]. Soit 1 le demi-cercle de

Plus en détail

Fiche d entraînement sur : LE CALCUL LITTERAL

Fiche d entraînement sur : LE CALCUL LITTERAL Fiche d entraînement sur : LE CALCUL LITTERAL Collège Exercices d entraînement personnel, classés par compétences. Compétence n 1 : savoir simplifier et réduire une expression littérale. 1.a) Simplifier

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,

Plus en détail

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S.

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S. Corrigé Nouvelle-Calédonie. Mars 2011. ctivités numériques. Exercice 1 : 1. Calcul du PGCD de 1 755 et 1 053 par l algorithme d Euclide : 1 755 = 1 053 1 + 702 1 053 = 702 1 + 351 702 = 351 2 + 0 Le PGCD

Plus en détail