Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Dimension: px
Commencer à balayer dès la page:

Download "Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé."

Transcription

1 Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la fonction définie par f x = 1 x 2 e x pour tout nombre réel x. Un carré est toujours positif dans R donc 1 x 2 0. La fonction exponentielle est strictement positive donc la fonction f est strictement positive et la courbe représentative de f est au-dessus de l'axe des abscisses. L'affirmation est vraie. d'équation fausse. 2_ Soit g la fonction définie par g x =2 x 1 1 x La fonction dérivée de g est : g ' x =2 1 1 x 2 Le coefficient directeur de la tangente en A 0 pour tout nombre x de ] 1 ; [. f 0 est g ' 0 =3 donc la droite y=2 x 1 n'est pas la tangente à la courbe représentative de g en A. L'affirmation est 3_ Soit deux évènements A et B. La probabilité de A est 0,4 donc p A =1 p A =0,6. La probabilité de A B est 0,12 donc : p A B = p A B = 0,12 p A 0,6 =0,2 L'affirmation est vraie. 4_ On lance deux dés cubiques équilibrés et on lit la somme des résultats des faces supérieures. On suppose que les dés sont discernables ( il y a un dé rouge et un dé noir par exemple, cette supposition ne change pas la probabilité ). L'univers a donc 36 issues équiprobables. Le tableau ci-dessous donne les valeurs de la somme obtenue pour chaque issue La probabilité d'obtenir une somme égale à 5 est donc 4 égale à 36 =1 9 L'affirmation est fausse Thierry Vedel page 1 sur 10

2 Exercice 2 4points Dans cet exercice, on s intéresse à la propriété «le nombre 3 2n 2 n est divisible par 7», où n est un nombre entier naturel. Appelons u n la suite définie par u n =3 2 n 2 n ( j'utilise simplement cette notation pour simplifier la rédaction, cette exercice ne demande pas de connaissance sur les suites. De plus, si le jour du baccalauréat vous «tombez» sur un exercice mélangeant des «thèmes» différents vous ne serez pas dépaysés. ) 1_a_ Pour n = 0, u 0 =0 donc est divisible par 7. 1_b_ 3 2 =1 7 2 donc le reste de la division euclidienne de 32 par 7 est 2. 2_a_ n 2 n 7 2 n = n 2 n 7 2 n = n n 7 2 n = 3 2 n 1 2 n = 3 2 n 1 2 n n 2 n 7 2 n = 3 2 n 1 2 n 1 2_b_ Si u n =3 2 n 2 n est divisible par 7 alors u n =7 q D'après le résultat précédent : 3 2 n 1 2 n 1 = n 2 n 7 2 n = 9 7q 7 2 n 3 2 n 1 2 n 1 = 7 9q 2 n u n 1 =3 2 n 1 2 n 1 est divisible par 7 Donc, si u n =3 2 n 2 n est divisible par 7 alors u n 1 =3 2 n 1 2 n 1 est divisible par 7. 3_ On note P n la proposition «le nombre 3 2n 2 n est divisible par 7». Première méthode. On est typiquement dans le cas d'une démonstration par récurrence (pour les lecteurs qui savent ce que c'est). Initialisation. D'après le résultat de la question 1_a_ P 0 est vraie. Hérédité. D'après le résultat de la question 2_b, si P n est vraie alors P n 1 est vraie. Conclusion. P n est vraie pour tout n. Pour tout n, entier naturel, le nombre 3 2n 2 n est divisible par 7. Thierry Vedel page 2 sur 10

3 Deuxième méthode. On se sert des congruences modulo 7, notées n[7] (la congruence modulo 7 d'un nombre n est le reste dans la division euclidienne de n par 7. Les règles de calcul avec les congruences sont les même que dans N. On peut le voir aussi comme le chiffre des unités quand on écrit les nombres en base 7. On sait que le chiffre des unités d'une somme ou d'un produit ne dépend que des chiffres des unités des nombres de départ.) Voici les résultats obtenus dans un tableur libre et gratuit : reste de la division par 7 Ecriture en base 7 n 3 2n 2 n 3 2n 2 n 3 2n [7] 2 n [7] 3 2n 2 n [7] 3 2n 2 n 3 2n 2 n On s'aperçoit que les congruences de 3 2 n et 2 n sont cycliques de période 3. On va démontrer ce résultat. 3 6 =729= donc 3 6 =1[7] Effectuons la division euclidienne de n par 3 : n = 3p + r, r < n =3 2 3 p r =3 6 p 2 r =3 6 p 3 2 r = 3 6 p 3 2 r 3 6 =1[7] donc 3 2 n = 3 6 p 3 2 r [7]=1 p 3 2r [7]=3 2r [7] De même 2 n =2 3 p r =2 3 p 2 r = 2 3 p 2 r 2 3 =8=1[7] donc 2 n =1 p 2 r [7]=2 r [7] Le reste r est égal à 0, 1 ou 2 donc il suffit de démontrer que P n est vraie pour n=7 p, n=7 p 1 et n=7 p 2. Pour n = 7p, r = 0, 3 2 n =3 0 =1[7] et 2 n =2 0 =1[7] donc =0[7] et P n vraie. Pour n = 7p + 1, r = 1, 3 2 n =3 2 =2[7] et 2 n =2 1 =2 [7 ] donc =0 [7] et P n est vraie. Pour n = 7p + 2, r = 2, 3 2 n =3 4 =4[7] et 2 n =2 2 =4[7] donc =0[7] et P n est vraie. Pour tout n, entier naturel, le nombre 3 2 n 2 n est divisible par 7. Troisième méthode. On factorise 3 2 n 2 n en utilisant l'identité remarquable : a n b n = a b a n 1 a n 2 b a n 3 b 2... a 2 b n 3 a b n 2 b n 1 p=n 1 = a b p=0 a n p 1 b p Thierry Vedel page 3 sur 10

4 3 2 n 2 n = 3 2 n 2 n = 9 n 2 n = n 1 9 n n n n 2 2 n n 2 n = 7 9 n 1 9 n n n n 2 2 n 1 Pour tout n, entier naturel, le nombre 3 2n 2 n est divisible par 7. Si ça vous intéresse. Une démonstration de cette identité remarquable. Cette identité remarquable peut être démontré à partir de la somme des termes d'une suite géométrique. 1 q q 2... q n 1 = 1 q n 1 q 1 q q 2... q n 1 1 q = 1 q n ou 1 q n = 1 q q 2... q n 1 1 q En posant q= b on obtient : a 1 b n a 1 bn = 1 b a 1 b a b 2 a = a 1 b n a 1 b a b2 a a n b n = a a b n a a n b n a n =... b a n 1 bn a n 1 an 1 a n 2 b a n 3 b 2... b n 1 a n 1 a b a n 1 a n 2 b a n 3 b 2... b n 1 a n a n b n = a b a n 1 a n 2 b a n 3 b 2... b n 1 C.Q.F.D. Thierry Vedel page 4 sur 10

5 Exercice 3 6points On effectue un coloriage en plusieurs étapes d un carré de côté de longueur 2cm donc l'aire du carré est 4. Partie A. 1_ Soit A n l'aire totale coloriée à l'étape n. Première étape du coloriage. On partage ce carré en quatre carrés de même aire et on colorie le carré situé en bas à gauche comme indiqué sur la figure ci-dessous donc l'aire coloriée est A 1 =1 Deuxième étape du coloriage. On partage chacun des 3 carrés non encore colorié en quatre carrés de même aire donc ces 12 petits carrés ont chacun pour aire 1 4. On colorie dans chacun, le carré situé en bas à gauche, comme indiqué sur la figure ci-dessous donc l'aire coloriée a augmentée de L'aire coloriée est donc A 2 =A = Troisième étape du coloriage. On partage chaque carré non encore colorié en quatre carrés de même aire et on colorie dans chacun, le carré situé en bas à gauche on a donc colorié à cette étape 1 4 de l'aire non coloriée à l'étape précédente. L'aire totale est 4 donc l'aire totale coloriée est A 3 = A 3 = A A 2 = 3 4 A 2 1= Thierry Vedel page 5 sur 10

6 2_ On considère l algorithme suivant : Entrée : P un entier naturel non nul. Initialisation: N=1 ; U=1. Traitement: Tant que N P Afficher U Affecter à N la valeur N+1 5 Affecter à U la valeur 4 U 1 2 2_a_ On fait tourner cet algorithme pour P = 3. Première étape. N = 1 P = 3 on effectue la boucle «tant que». Affichage : U = 1 Affectation : N vaut 2 U vaut = 7 4 Deuxième étape. N = 2 P = 3 on effectue la boucle «tant que». Affichage : U= 7 4 Affectation : N vaut 3 5 U vaut = Troisième étape. N = 3 P = 3 on effectue la boucle «tant que». Affichage : U= Affectation : N vaut 4 5 U vaut = Fin du traitement. N = 4 > P = 3, fin de l'algorithme. 2_b_ Cet algorithme permet d afficher les P premiers termes d une suite U de terme général U n U 2 = 7 4 =A 2 donc il existe un entier naturel n strictement supérieur à 1 tel que U n =A n.. La proposition 1 est vraie. Thierry Vedel page 6 sur 10

7 U 3 = A 3 donc A n n'est pas égal à U n pour tout n naturel non nul. La proposition 2 est fausse. Partie B On admet que, pour tout entier naturel n supérieur ou égal à 1, A n 1 = 3 4 A n 1 Remarque. On obtient ce résultat en généralisant à n le raisonnement fait à l'étape 3 du coloriage. Pour tout entier n supérieur ou égal à 1, B n =A n 4 1_a_ B 1 = A 1 4= 3 1_b_ Pour tout n 1 : B n 1 = A n 1 4 = 3 4 A n 1 4 = 3 4 A n 4 B n 1 = 3 4 B n 1_c_ Pour tout n 1, B n 1 = 3 4 B n donc la suite B n est géométrique de premier terme B 1 = 3 et de raison q= 3 4 1_d_ B n = 3 3 n 4 2_ B n est une suite géométrique de raison donc la suite B n tend vers B n =A n 4 donc lim A n 4=0 n La suite A n converge vers 4. A la limite, le carré sera complètement colorié. Thierry Vedel page 7 sur 10

8 Exercice 4 5points A, B, C, D, E, F, G et H sont les sommets d un cube opaque dont la face ABCD est posée sur le sol. 1_ Ombre projetée en perspective parallèle. EFF'E' est un parallélogramme donc on a construit le milieu I de la diagonale [E'F] puis le symétrique F' de E par rapport à I. Même construction pour G'. L'ombre est le polygone rose. Thierry Vedel page 8 sur 10

9 2_ Cube en projection cavalière. abcd est un carré donc l'angle bac mesure 45. La diagonale [ac] est parallèle à la ligne d'horizon donc l'angle entre cette droite et la ligne d'horizon est égal à 45. Le point d'intersection de ces deux droites est donc le point de distance d 1. De même le point de distance d 2 est le point d'intersection de (bc) et de ligne d'horizon. Thierry Vedel page 9 sur 10

10 3_ Cube entouré d'une ficelle en perspective centrale. On trace la droite (fg) qui coupe la ligne d'horizon en M. La face abfe est frontale donc M est le point de fuite principal. On trace les diagonales du carré efgh qui se coupent au centre I du carré. On trace la droite (MI) et on obtient les milieux J de [hg] et K de [ef]. [JK] est un morceau de la ficelle. On trace la parallèle à (ef) passant par I, la médiane du carré efgh ainsi définie est un morceau de la ficelle. On trace le segment vertical passant par K, la médiane du carré efba ainsi définie est un morceau de la ficelle. La diagonale (eb) coupe cette médiane en son milieu L. On trace le segment horizontal passant par L, la médiane du carré efba ainsi définie est un morceau de la ficelle. Cette médiane coupe [fb] en son milieu N. On trace (MN) puis la médiane verticale de fgcb. Il y a bien sûr d'autres constructions. Thierry Vedel page 10 sur 10

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Baccalauréat L spécialité Métropole La Réunion septembre 2008

Baccalauréat L spécialité Métropole La Réunion septembre 2008 Baccalauréat L spécialité Métropole La Réunion septembre 2008 L usage d une calculatrice est autorisé Ce sujet ne nécessite pas de papier millimétré 3 heures EXERCICE 1 4 s Un magasin de matériels informatiques

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Epreuve de spécialité de Mathématiques Série L

Epreuve de spécialité de Mathématiques Série L Epreuve de spécialité de Mathématiques Série L Durée de l'épreuve: 3 heures. Le candidat doit traiter tous les exercices. La qualité de la rédaction, la clarté et la précision des raisonnements entrent

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72 3 ème DNB 001 NICE PARTIE NUMERIQUE CORRIGE Exercice 1 1. Donner l'égalité traduisant la division euclidienne de 1 51 par 1 1 51 = 1 7. Rendre irréductible la fraction 70 1 51 70 1 51 = 7 10 7 1 donc 70

Plus en détail

Baccalauréat L Enseignement de spécialité Asie Juin 2010

Baccalauréat L Enseignement de spécialité Asie Juin 2010 Baccalauréat L Enseignement de spécialité Asie Juin 2010 EXERCICE 1 Il s agit de remplir la grille suivante dont chaque case blanche doit contenir exactement un chiffre (entre 0 et 9). 1. Pour y parvenir,

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS.

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS. A la fin de ce chapitre vous devez être capable de : connaître différents procédés pour établir une divisibilité : utilisation de la définition, utilisation d identités remarquables, disjonction des cas,

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

L essentiel du cours

L essentiel du cours Terminale S et concours L essentiel du cours mathématiques Arithmétique - matrices Jean-Marc FITOUSSI Progress Editions Table des matières Arithmétique 01 LA DIVISIBILITÉ page 6 02 LA DIVISION EUCLIDIENNE

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

Baccalauréat L spécialité 2012. L intégrale de juin à novembre 2012

Baccalauréat L spécialité 2012. L intégrale de juin à novembre 2012 Baccalauréat L spécialité 2012 L intégrale de juin à novembre 2012 Pour un accès direct cliquez sur les liens bleus Amérique du Nord juin 2012.............................3 Antilles-Guyane juin 2012...............................

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

CORRECTION DU BREVET 2010

CORRECTION DU BREVET 2010 CORRECTION DU BREVET 2010 Troisième Polynésie I - ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 1) D après l algorithme d Euclide : a b reste division euclidienne 144 120 24 144 = 1 120 + 24 120 24 0 120

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures Mathématiques Contrôle commun de Seconde Mardi 01 mars 011 Durée de l épreuve : heures L usage de la calculatrice est autorisé. Aucun prêt de matériel n est toléré. La qualité de la rédaction et le soin

Plus en détail

1ere L option mathématiques Terminale L spécialité mathématiques. Nouveaux programmes Rentrée 2005

1ere L option mathématiques Terminale L spécialité mathématiques. Nouveaux programmes Rentrée 2005 1ere L option mathématiques Terminale L spécialité mathématiques Nouveaux programmes Rentrée 2005 Les programmes applicables pour l année 2005-2006 En 1ere L: nouveau programme, BO du 9 septembre 2004

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2009

DIPLÔME NATIONAL DU BREVET SESSION 2009 DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet

Plus en détail

Cours de mathématiques de cinquième

Cours de mathématiques de cinquième Cours de mathématiques de cinquième Bertrand Carry SOMMAIRE 1. Factorisation, développement... 1 1.1 Quelques règles d écriture de calculs... 1 1.1.1 Parenthèses :... 1 1.1.2 Multiplication :... 1 1.2

Plus en détail

POLYNESIE Juin 2010 Brevet Corrigés Page 1 sur 5

POLYNESIE Juin 2010 Brevet Corrigés Page 1 sur 5 POLYNESIE Juin 010 Brevet Corrigés Page 1 sur 5 Exercice 1 : Activités numériques (1 points) 1. Algorithme d Euclide : 144 = 1 10 + 4 10 = 5 4 + 0 Le dernier reste non nul est 4 donc PGCD(10 ; 144) = 4.

Plus en détail

Fragments de géométrie du triangle

Fragments de géométrie du triangle Fragments de géométrie du triangle Pierre Jammes (version préliminaire du 2 août 2013) 1. Dénitions On donne ici les dénitions des principaux objets mis en jeu dans le début du texte. Dans le plan euclidien,

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

GYMNASE DU BUGNON LAUSANNE Mai 2010. EXAMEN D ADMISSION DE L ÉCOLE DE MATURITÉ 2 ème ANNÉE MATHÉMATIQUES OPTION SPÉCIFIQUE

GYMNASE DU BUGNON LAUSANNE Mai 2010. EXAMEN D ADMISSION DE L ÉCOLE DE MATURITÉ 2 ème ANNÉE MATHÉMATIQUES OPTION SPÉCIFIQUE GYMNASE DU BUGNON LAUSANNE Mai 2010 EXAMEN D ADMISSION DE L ÉCOLE DE MATURITÉ 2 ème ANNÉE MATHÉMATIQUES OPTION SPÉCIFIQUE Date : 7 mai 2010 Durée : 3 h Matériel mis à disposition par le gymnase : - Matériel

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES 1. La médiatrice d'un segment 2 2. La bissectrice d'un angle 3 3. Les triangles 4 4. Parallèles et perpendiculaires 6 5. Les parallélogrammes 7 6. Le problème de Napoléon

Plus en détail

GLOSSAIRE MATHÉMATIQUE

GLOSSAIRE MATHÉMATIQUE Chapitre 9 - GM GLOSSAIRE MATHÉMATIQUE EN GÉOMÉTRIE DE L'ESPACE GM_01 règle GM_02 GM_03 GM_04 GM_05 GM_06 GM_07 tourne GM_08 GM_09 GM_10 GM_11 plan GM_12 GM_13 GM_14 GM_15 GM_16 GM_17 GM_18 Dessin schématisant

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail

PRODUIT SCALAIRE DANS L'ESPACE

PRODUIT SCALAIRE DANS L'ESPACE PRODUIT SCLIRE DNS L'ESPCE Dans tout ce chapitre, les bases ou repères considérés sont orthonormés. Pour des révisions sur le produit scalaire dans le plan, voir le cours de première. 1. Définition du

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

La perspective à point de fuite

La perspective à point de fuite La perspective à point de fuite 1. L'expérience de Brunelleschi C'est à l'architecte, ingénieur et sculpteur florentin Filippo Brunelleschi (1377-1446) que revient le mérite d'avoir démontré les principes

Plus en détail

Académies et années. Type de fonction Type de problème Résolution conjointe

Académies et années. Type de fonction Type de problème Résolution conjointe Académies et années Type de fonction Type de problème Résolution conjointe Affine Linéaire Autre Tarifs Géom. Plane Espace équation Inéquat. Système Grenoble 00 x x Nancy 00 x x Orléans 00 x x Caen 00

Plus en détail

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros Cours de mathématiques Terminale S Enseignement obligatoire Jean-Paul Widehem 2009-2010 Lycée Roland Garros Table des matières partie 1. Récurrence et suites 1 Chapitre 1. Raisonnement par récurrence

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

Concours de recrutement de professeur des écoles session 2014, groupement académique 2

Concours de recrutement de professeur des écoles session 2014, groupement académique 2 Concours de recrutement de professeur des écoles session 014, groupement académique Corrigé non officiel de la deuxième épreuve d admissibilité proposé par http ://primaths.fr 1 Première partie La montée

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

4.2.2 Épreuve sur dossier

4.2.2 Épreuve sur dossier 4.2.2 Épreuve sur dossier 32 Thème : suites En traçant la diagonale d un carré de côté a, on obtient un triangle rectangle que l on colore en gris, comme sur la figure ci-contre. On recommence de la même

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

BREVET CENTRES ETRANGERS juin 2012

BREVET CENTRES ETRANGERS juin 2012 ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 1- Calculer 1 4 + 2 x 4. 1 4 + 2 x 4 = 1 4 + 2 4 = 1 + 2 4 = 4 BREVET CENTRES ETRANGERS juin 2012 2- Au goûter, Lise mange 1 du paquet de gâteaux qu elle vient

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2011 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie au surveillant à la fin de l épreuve Nature de

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

DESSIN EN PERSPECTIVE.

DESSIN EN PERSPECTIVE. DESSIN EN PERSPECTIVE. Pour représenter le volume d un objet ou d une image dans un plan, on utilise la perspective. C'est l'art de représenter les objets en trois dimensions sur une surface à deux dimensions,

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail