Thème 17: Optimisation

Dimension: px
Commencer à balayer dès la page:

Download "Thème 17: Optimisation"

Transcription

1 OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir de la température d un corps au moment t, du volume d un gaz dans un ballon sphérique de rayon x, de la vitesse d un corps au temps t Disposant de cette fonction, sa dérivée pourra nous être utile pour déterminer ses valeurs extrêmes. Celles-ci sont parfois appelées valeurs optimales parce que, vu leur signification, elles constituent les valeurs les plus favorables. Déterminer ces valeurs constitue ce que l on appelle un problème d optimisation L optimisation lors de la construction de boîtes Modèle 1 : On souhaite construire une boîte en découpant quatre carrés aux coins d une feuille cartonnée, et en rabattant les bords restants. La feuille mesure 22 cm de long et 18 cm de large. De la taille des carrés découpés dépendra le volume de la boîte. Calculer la dimension des carrés de sorte que la boîte ait le plus grand volume possible. Optimisation

2 46 THÈME 17 Exercice 17.1: On désire construire une boîte en carton à partir d une feuille rectangulaire en coupant 6 carrés à chaque coin et au milieu des côtés et en pliant les côtés. Si la feuille de carton admet comme dimensions: 45 x 30 cm, le but de cet exercice sera de déterminer les dimensions de la boîte fermée admettant un volume maximum. p x a) Quelle est la fonction à optimiser, quelle en est la formule de base? b) Justifier les relations suivantes : 45 3x p = 30 2x l = 2 c) Déterminer E D, l ensemble des valeurs admissibles pour x. d) Montrer que le volume exprimé en fonction de x est : V(x) = 3x 3 90x x e) Déterminer la valeur de x pour laquelle le volume est maximum. f) Que vaut alors ce volume optimisé? l

3 OPTIMISATION 47 Exercice 17.2: Les boîtes d allumettes sont généralement formées de 2 parties distinctes ; la boîte elle-même ainsi qu un couvercle coulissant. Ses dimensions doivent assurer un volume de 28,875 cm 3 pour une longueur de 5,5 cm. La figure ci-dessous montre le patron des 2 parties où l on constate que le couvercle doit être légèrement plus large pour assurer le coulissement. Déterminer la hauteur h et la largeur x permettant de construire la boîte admettant un volume (extérieur) de 28,875 cm 3 en minimisant l aire de la surface en carton utilisé. h/2 5,5 cm h h/2 h x h 5,5 cm x + 0,05 x + 0,05 h h + 0,05 h + 0,05 a) Quelle est la fonction à optimiser, quelle en est la formule en fonction de x et h? b) À l aide de l information concernant le volume, montrer que h peut s exprimer en fonction de x par la relation : h = 5,25 x c) Montrer que la surface totale en carton en fonction de x est : S(x) = 16,5x3 +16,85x ,375x +110,25 x 2 d) Montrer que x 3, 54 cm est un zéro de S (x). e) À l aide du graphe ci-contre, en déduire le tableau de croissance de S(x) pour x 0. f) Quelles sont alors les dimensions optimales de cette boîte d allumettes. g) Les dimensions des boîtes vendues par Feudor (Coop, Migros) sont de 1,5 3,5 5,5 cm. Ces dimensions sont-elles optimales?

4 48 THÈME 17 Une méthode générale? La variété des problèmes d optimisation est telle qu il est bien difficile de donner une méthode générale de résolution. Nous allons néanmoins donner sous forme d une marche à suivre, une stratégie d approche de ces problèmes. Cependant, ce n est qu au prix de quelques efforts et d entraînements que vous arriverez à une certaine aisance dans la résolution de ces problèmes. Essayez donc avec persévérance! 17.2 Marche à suivre pour la résolution des problèmes d optimisation Lisez le problème attentivement (plusieurs fois) en réalisant parallèlement une figure d étude pour y indiquer toutes les informations. Exprimez la quantité Q à optimiser (une aire, un volume, des coûts, ) comme fonction d une ou de plusieurs variables. Si Q dépend de plus d une variable, disons n variables, trouvez au moins (n 1) équations liant ces variables. Utilisez ces équations pour exprimer Q comme fonction d une seule variable (par substitutions). Déterminer l ensemble de définition E D des valeurs admissibles de cette variable. À l aide d un tableau de signes de la dérivée de Q, étudiez la croissance de cette fonction. Calculez les extremums de Q sans oublier de contrôler ce qui se passe au bord de E D. Répondez finalement à la question posée à l aide d une phrase.

5 OPTIMISATION L optimisation d une aire dans une figure géométrique Optimisation Modèle 2 : ABCD est un carré de côté 6. Le point I est le milieu de [CD]. M est un point quelconque de [AB], N est le point de [CB] tel que CN = BM. Quelle doit être la position de M sur [AB] pour que l aire du Δ MNI soit minimale? B M Solution: Relire l énoncé du problème et profiter de faire une figure d étude "intelligente" : A N La quantité à optimiser est l aire du triangle MNI et se calcule grâce à : C I D Les (n 1) équations liant ces variables : Exprimons l aire du triangle en fonction d une variable : L ensemble des valeurs possibles E D :

6 50 THÈME 17 Solution (fin): Calcul de la dérivée de A(x) puis étudier sa croissance : Recherche des min (avec le bord du domaine) : La réponse est donc : Exercice 17.3: ABCD est un carré de 8 cm de côté. A B C D est un carré de x cm de côté. Pour quelle valeur de x, la partie ombrée a-t-elle la plus grande aire? A B' x C' D' D Que vaut alors cette aire optimale? B C Exercice 17.4: On considère le rectangle ABCD de 12 cm de long et 8 cm de large. Soit M le point milieu de CD. On inscrit dans ce rectangle un parallélogramme admettant deux de ses côtés parallèles à AM. Déterminer la position du point P sur AB tel que ce parallélogramme soit d aire maximum. Que vaut alors cette aire? D A M P C B

7 OPTIMISATION L optimisation d un coût de construction Modèle 3 : hauteur profondeur On désire construire une caisse en bois (sans couvercle) de volume 0,64 m 3 et dont la hauteur est égale à la profondeur. Le bois prévu pour le fond coûte Fr par m 2, celui pour les faces Fr par m 2. Quels sont les dimensions et le prix de la caisse la moins chère (on admet que l épaisseur du bois est négligeable)? Optimisation

8 52 THÈME 17 Exercice 17.5: Une cabine de douche de forme parallélépipédique à base carrée est fabriquée à partir de 2 matériaux différents : le sol (carré) revient à Fr par m 2 ; les cinq autres parois coûtent Fr par m 2. Sachant que le coût total des matériaux est de Fr , quelles sont les dimensions de la cabine si l on veut que son volume soit le plus grand possible? a) Quelle est la fonction à optimiser, quelle en est la formule en fonction de x (côté du carré) et h (la hauteur de la douche)? b) À l aide de l information concernant le prix des différentes parois, montrer que h peut s exprimer en fonction de x par la relation : h = 15 5x2 4x c) Montrer que le volume de la cabine en fonction de x est : V(x) = 5 4 x x d) Déterminer la valeur de x pour laquelle ce volume est maximum. e) Quelles sont alors les dimensions optimales de cette cabine de douche? Exercice 17.6: L entreprise de portes et fenêtres qui vous emploie projette la construction d un entrepôt de 450 m 2 de surface au sol. Les exigences municipales de la commune de Morges sur l esthétisme des rues commerciales obligent les commerçants à recouvrir la façade de leurs édifices avec des matériaux de première qualité alors que les côtés et l arrière peuvent être recouverts avec des matériaux de moindre qualité. Les coûts ont été estimés à Fr le mètre carré pour la façade et de Fr le mètre carré pour les côtés et l arrière. Sachant que la hauteur de l édifice sera de 3 mètres, déterminer le coût minimum possible de recouvrement des 4 parois de l entrepôt.

9 OPTIMISATION L optimisation de la surface Modèle 4 : Parmi tous les rectangles admettant un périmètre de 1 m, quel est celui dont l aire est maximale? Que vaut alors cette aire? Optimisation

10 54 THÈME 17 x Exercice 17.7: y On dispose de 250 m de clôture grillagée pour construire 6 cages mitoyennes et identiques pour un zoo (cf. schéma ci-contre) a) Exprimer y en fonction de x. b) Montrer que la surface au sol d une cage est donnée par : S(x) = 1 24 ( 3x x) c) Quelles dimensions doit-on donner à une de ces cages de manière à maximaliser sa surface au sol? Exercice 17.8: Un éleveur de bovins désire enclore un terrain rectangulaire bordant une rivière rectiligne. Il dispose de 1000 m de fil et ne veut pas enclore le côté longeant la rivière, car ses bovins ne savent pas nager. Calculer la surface maximale qu il peut créer L optimisation d un cylindre Modèle 5 : On fait tourner un rectangle de périmètre 40 cm autour de l un de ses axes de symétrie. Déterminer les dimensions du rectangle pour que le cylindre ainsi obtenu ait le plus grand volume. Optimisation

11 OPTIMISATION 55 Exercice 17.9: On fait tourner un rectangle de périmètre 40 cm autour de l un de ses axes de symétrie. Déterminer les dimensions du rectangle pour que le cylindre ainsi obtenu ait : a) la plus grande aire latérale ; b) la plus grande aire totale Un petit mélange de tout!! Exercice 17.10: Un aquarium (ouvert au-dessus) de 15 cm de haut doit avoir une contenance de 600 cm 3. Désignons par x la longueur et par y la largeur de la base (voir figure). Déterminer les dimensions de cet aquarium permettant de minimiser la surface S de verre. Exercice 17.11: x y 1 m On désire accoler à une construction existante un abri rectangulaire ouvert composé de deux parois verticales de 1 m de profondeur et d un toit plat (voir figure). Le toit est exécuté en zinc qui coûte 40 fr. le m 2 et les deux autres côtés en contreplaqué qui coûte 15 fr. le m 2. Si on dispose de 300 fr, déterminer les dimensions de cet abri admettant un volume maximum. Que vaut alors ce volume? Exercice 17.12: On se propose d envoyer un colis de volume égal à 12 dm 3 dont la forme est celle d un parallélépipède rectangle de base carrée (AB = BC). Son emballage est maintenu à l aide d une ficelle comme le montre la figure. Trouver les dimensions du colis permettant d utiliser le moins de ficelle possible. Exercice 17.13: Une feuille de papier doit contenir 600 cm 2 de texte imprimé. Les marges supérieures et inférieures doivent avoir 5 cm chacune, et celles de côté 3 cm chacune. Déterminer les dimensions de la feuille pour lesquelles il faudra un minimum de papier.

12 56 THÈME 17

13 OPTIMISATION 57

14 58 THÈME 17

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Brevet des collèges, correction, Métropole, 28 juin 2011

Brevet des collèges, correction, Métropole, 28 juin 2011 Brevet des collèges, correction, Métropole, 28 juin 2011 Activités numériques 12 points Exercice 1 Un dé cubique a 6 faces peintes : une en bleu, une en rouge, une en jaune, une en vert et deux en noir.

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse ACTIVITES NUMERIQUES 30 min - 12 points EXERCICE 1 (extrait de brevet, Nouvelle-Calédonie,

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire Représentations et transformations géométriques 2102 Version évaluation formative Livraison de cellulaire Cahier de l adulte Nom de l élève Numéro de fiche Nom de l'enseignant Date de naissance Centre

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

INSTALLATION DU BARDEAU DE CÈDRE BLANC

INSTALLATION DU BARDEAU DE CÈDRE BLANC MISE EN GARDE Si un produit est défectueux, ne le posez pas. Les matériaux défectueux seront remplacés sous garantie uniquement si vous en faites la demande avant l installation et si les conditions d

Plus en détail

GÉOMÉTRIQUES REPRÉSENTATIONS ET TRANSFORMATIONS MAT-2102-3. Activité notée 2. Date de remise :... Nom :...

GÉOMÉTRIQUES REPRÉSENTATIONS ET TRANSFORMATIONS MAT-2102-3. Activité notée 2. Date de remise :... Nom :... REPRÉSENTATIONS ET TRANSFORMATIONS GÉOMÉTRIQUES MAT-2102-3 Activité notée 2 Date de remise :... Identification de l'élève Nom :... Adresse :...... Tél :... Courriel :... Note :... /100 Juillet 2012 Code

Plus en détail

Dans cette figure, le rectangle ABCD a pour dimensions : AB = 17 cm et BC = 12 cm. Dans le rectangle ABCD, les points M, R, S et P déterminent trois

Dans cette figure, le rectangle ABCD a pour dimensions : AB = 17 cm et BC = 12 cm. Dans le rectangle ABCD, les points M, R, S et P déterminent trois Dans cette figure, le rectangle BCD a pour dimensions : B = 7 cm et BC = cm. Dans le rectangle BCD, les points M, R, S et P déterminent trois rectangles. Où peut-on placer les points M, R, S et P pour

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

INTRO. Comment isoler des combles aménageables? NIVEAU DE DIFFICULTÉ CAISSE À OUTILS MATÉRIAUX NÉCESSAIRES ÉQUIPEMENT

INTRO. Comment isoler des combles aménageables? NIVEAU DE DIFFICULTÉ CAISSE À OUTILS MATÉRIAUX NÉCESSAIRES ÉQUIPEMENT Comment isoler des combles aménageables? NIVEAU DE DIFFICULTÉ DÉBUTANT CONFIRMÉ EXPERT CAISSE À OUTILS MATÉRIAUX NÉCESSAIRES Crayon Mètre Niveau à bulle Règle de maçon Visseuse Cordeau nylon Equerre Grignoteuse

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

La pose d un plafond. La prise des mesures

La pose d un plafond. La prise des mesures La prise des mesures La prise des mesures, souvent contraignante chez nos confrères, même pour l établissement d un devis, est réduite à sa plus simple expression chez nous. Il suffit de prendre la plus

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x Développer et réduire 3 Chasse aux bulles 1 Vrai ou faux? x 2 3x 2x 2 4 7x Justifie tes réponses. x 2 est toujours égal à 2x. Faux, par exemple, si x = 3, alors x² = 9, mais 2x = 6 (5x) 2 est toujours

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales.

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales. Révision mars 2015 1. Mario part de sa maison. Pour se rendre au restaurant, sa famille doit conduire 11,5 km vers le nord et ensuite ils doivent tourner vers l ouest pendant 5,4km. Calcule la distance

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

1 Mise en application

1 Mise en application Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau

Plus en détail

ACCESSOIRES ET TEMPORAIRES AUTORISÉS DANS LES COURS ET LES MARGES

ACCESSOIRES ET TEMPORAIRES AUTORISÉS DANS LES COURS ET LES MARGES TERMINOLOGIE (RÈGLEMENT 5001, ART.21) ABRI D AUTO PERMANENT (CAR-PORT) Construction accessoire reliée à un bâtiment principal formée d'un toit appuyé sur des piliers, dont un des côtés est mitoyen au bâtiment

Plus en détail

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES) EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7

Plus en détail

BREVET BLANC 2 - MATHEMATIQUES

BREVET BLANC 2 - MATHEMATIQUES BREVET BLANC 2 - MATHEMATIQUES I- PRESENTATION DE L'EPREUVE DE MATHEMATIQUES AU BREVET 1. Durée de l'épreuve : 2 heures 2. Nature de l'épreuve : écrite 3. Objectifs de l'épreuve : Les acquis à évaluer

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005 UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

Les fonctions au collège. Sommaire

Les fonctions au collège. Sommaire Les fonctions au collège Sommaire I. Comment aborder la not ion de fonction au collège? II. Quelles activités pour mettre en place la notion de «fonction»? Activité n 1.- Émissions de CO2 en France métropolitaine

Plus en détail

BREVET BLANC CORRIGE

BREVET BLANC CORRIGE ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 (2 points) On a relevé le nombre de médailles gagnées par les sportifs calédoniens lors des Jeux du Pacifique. Voici les résultats regroupés à l aide d un tableur

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

C.A.P. Groupement B : Hygiène Santé Chimie et procédés. Session 2014. Épreuve : Mathématiques - Sciences Physiques. Durée : 2 heures Coefficient : 2

C.A.P. Groupement B : Hygiène Santé Chimie et procédés. Session 2014. Épreuve : Mathématiques - Sciences Physiques. Durée : 2 heures Coefficient : 2 C.A.P. Groupement B : Hygiène Santé Chimie et procédés Session 2014 Épreuve : Mathématiques - Sciences Physiques Durée : 2 heures Coefficient : 2 Spécialités concernées : Agent d assainissement et de collecte

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

Procap Accessibilité et intégration. Adresses web. www.goswim.ch Accès sans obstacles aux piscines

Procap Accessibilité et intégration. Adresses web. www.goswim.ch Accès sans obstacles aux piscines Adresses web Le Guide des piscines pour personnes avec handicap www.goswim.ch Bureau fédéral de l égalité pour les personnes handicapées BFEH www.edi.admin.ch/ebgb Procap Accessibilité et intégration www.procap.ch

Plus en détail

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) LIGNES DIRECTRICES POUR LE PARCOURS À OBSTACLES VERSION 4.1 CANADIENNE-FRANÇAISE Les activités d entraînement et d évaluation du WSP-F 4.1 peuvent se dérouler

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Guide de calcul de la superficie habitable

Guide de calcul de la superficie habitable Guide de calcul de la superficie habitable Centris publie le présent guide à l intention des membres des chambres immobilières. Ce guide vous est recommandé pour calculer de façon adéquate la superficie

Plus en détail

Muret Laurentien MC. Classique et Versatile

Muret Laurentien MC. Classique et Versatile Muret Laurentien MC Classique et Versatile Le muret Laurentien par son look classique s agence à toutes nos gammes de pavé. Qualités et caractéristiques Intégration particulièrement harmonieuse du muret

Plus en détail

LES MENUISERIES INTÉRIEURES

LES MENUISERIES INTÉRIEURES Les portes intérieures Seuls les ouvrages relatifs aux portes intérieures sont décrits ci-après. Pour la description des pièces de bois (montant, traverse ) et des accessoires de quincaillerie (paumelle,

Plus en détail

INSTRUCTIONS DE POSE

INSTRUCTIONS DE POSE 5/2013 FR INSTRUCTIONS DE POSE Etant donné la plus longue durée de vie de la porte en bois composite Duofuse par rapport à une porte en bois classique, il est important de la placer correctement afin de

Plus en détail

accessibilité des maisons individuelles neuves

accessibilité des maisons individuelles neuves accessibilité des maisons individuelles neuves Conseil d Architecture, d urbanisme et de l environnement du Gard 2012 Depuis la loi de Février 2005, toutes les constructions neuves de type logement individuel

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Ce document a été réalisé avec la version 3.02 de la calculatrice TI-Nspire CX CAS. Il peut être traité en une ou plusieurs séances (la procédure

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

CLEANassist Emballage

CLEANassist Emballage Emballage Dans la zone d emballage, il est important de vérifier exactement l état et la fonctionnalité des instruments, car ce sont les conditions fondamentales pour la réussite d une opération. Il est

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

PROVINCE DE QUEBEC M.R.C. DE L'ISLET MUNICIPALITE DE SAINT-AUBERT

PROVINCE DE QUEBEC M.R.C. DE L'ISLET MUNICIPALITE DE SAINT-AUBERT PROVINCE DE QUEBEC M.R.C. DE L'ISLET MUNICIPALITE DE SAINT-AUBERT REGLEMENT # 343-2001 RÈGLEMENT MODIFIANT LE REGLEMENT # 223-90 ET SES AMENDEMENTS AFIN DE CRÉER LES ZONES 1 Rd ET 5 P ATTENDU QUE la municipalité

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

GRANDEURS ET MESURES (Partie 1)

GRANDEURS ET MESURES (Partie 1) 1 GRANDEURS ET MESURES (Partie 1) I. Les unités Tableaux interactifs : http://instrumenpoche.sesamath.net/img/tableaux.html 1) Masse a) Exemple La masse d une tablette de chocolat est 100g. La masse est

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Le «pousse au cul» L appât utilisé varie en fonction de la saison et de la nourriture environnante : cerises, baies diverses, maïs, noix

Le «pousse au cul» L appât utilisé varie en fonction de la saison et de la nourriture environnante : cerises, baies diverses, maïs, noix Le «pousse au cul» Piège de 1 ère catégorie essentiellement destiné aux geais, très efficace et très facile à fabriquer. Les armatures sont en fer à béton de Ø 6 mm. Les parois sont réalisées avec du «grillage

Plus en détail

PLANIFICATION D ÉTABLE LAITIÈRE

PLANIFICATION D ÉTABLE LAITIÈRE PLANIFICATION D ÉTABLE LAITIÈRE Les petits détails qui font toute la différence Par Christian Lemay, ing. Consultants Lemay & Choinière inc. Mars 2015 Contenu de la conférence 1. Planification à la ferme

Plus en détail

FONTANOT CREE UNE LIGNE D ESCALIERS IMAGINÉE POUR CEUX QUI AIMENT LE BRICOLAGE.

FONTANOT CREE UNE LIGNE D ESCALIERS IMAGINÉE POUR CEUX QUI AIMENT LE BRICOLAGE. STILE FONTANOT CREE UNE LIGNE D ESCALIERS IMAGINÉE POUR CEUX QUI AIMENT LE BRICOLAGE. 2 3 Magia. Une gamme de produits qui facilitera le choix de votre escalier idéal. 4 06 Guide pour la sélection. 16

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

Exemple découpe laser.

Exemple découpe laser. ATELIER DES MAQUETTES GUIDE POUR LA CRÉATION DES FICHIERS DE DÉCOUPE Exemple découpe laser. façade sud Pour de très petites pièces tel que piliers ou escaliers dessiner une gravure en vert clair et libérer

Plus en détail

PRÉGYMÉTALTM. Mise en œuvre CONTRE-CLOISONS PRINCIPES DE POSE POINTS SINGULIERS ACCROCHAGES & FIXATIONS LOCAUX HUMIDES LOCAUX TRÈS HUMIDES

PRÉGYMÉTALTM. Mise en œuvre CONTRE-CLOISONS PRINCIPES DE POSE POINTS SINGULIERS ACCROCHAGES & FIXATIONS LOCAUX HUMIDES LOCAUX TRÈS HUMIDES PRÉGYMÉTALTM Mise en œuvre Caractéristiques techniques pages 90 à 9 PRINCIPES DE POSE A POINTS SINGULIERS 7 A 0 ACCROCHAGES & FIXATIONS LOCAUX HUMIDES LOCAUX TRÈS HUMIDES TRAÇAGE ET POSE DES RAILS CONTRE-CLOISONS

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Ressources pour la classe de seconde

Ressources pour la classe de seconde Mathématiques Lycée Ressources pour la classe de seconde - Fonctions - Ce document peut être utilisé librement dans le cadre des enseignements et de la formation des enseignants. Toute reproduction, même

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

Manuel pour l utilisation de Gimp

Manuel pour l utilisation de Gimp Philippe Morlot Manuel pour l utilisation de Gimp notamment dans le cadre de l enseignement des arts plastiques Petite introduction Gimp est un puissant logiciel qui permet de retoucher, de manipuler ou

Plus en détail

Rayonnage Reflet. Tablette chapeau éclairante

Rayonnage Reflet. Tablette chapeau éclairante Tablette chapeau éclairante Système de rayonnage qui se caractérise par sa flexibilité et sa fonctionnalité. D esthétique épurée, il autorise différents types d habillages d extrémité de travée. LES ECHELLES

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

9.2 entreposage saisonnier de véhicules ou équipements récréatifs

9.2 entreposage saisonnier de véhicules ou équipements récréatifs Usages, constructions et équipements temporaires Table des matières 9.1 abris d auto temporaire 9.2 entreposage saisonnier de véhicules ou équipements récréatifs 9.3 événement sportif ou récréatif 9.4

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Agrandissement et réduction de figures

Agrandissement et réduction de figures Agrandissement et réduction de figures Tracer une figure sur papier quadrillé ou pointé à partir d un dessin (avec des indications relatives aux dimensions). 29 Unité Activité 1 Je découvre Dessine la

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2011 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie au surveillant à la fin de l épreuve Nature de

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

Ques%on #1. Distances: Masses:

Ques%on #1. Distances: Masses: Ques%on #1 Le Comité Interna%onal Olympique a mandaté le comité organisateur des jeux d été de Tokyo 00 d ajouter une nouvelle épreuve de force. Dans le cadre de cege épreuve, l athlète doit soutenir une

Plus en détail

Municipalité de Saint-Marc-sur- Richelieu

Municipalité de Saint-Marc-sur- Richelieu Plania Municipalité de Saint-Marc-sur- Richelieu Chapitre 11 Dispositions particulières applicables à certaines zones P031607 303-P031607-0932-000-UM-0023-0A Municipalité de Saint-Marc-sur-Richelieu 102

Plus en détail

Guide des autorisations d urbanisme

Guide des autorisations d urbanisme Guide des autorisations d urbanisme de Service Urbanisme Villenoy 2014 TABLE DES MATIERES QUEL DOSSIER DEPOSER POUR MON PROJET?... 2 QUELQUES NOTIONS POUR BIEN DEMARRER.... 2 MON PROJET EST-IL SOUMIS A

Plus en détail

INTRO. Comment poser des meubles de cuisine? NIVEAU DE DIFFICULTÉ MATÉRIAUX NÉCESSAIRES CAISSE À OUTILS

INTRO. Comment poser des meubles de cuisine? NIVEAU DE DIFFICULTÉ MATÉRIAUX NÉCESSAIRES CAISSE À OUTILS Comment poser des meubles de cuisine? NIVEAU DE DIFFICULTÉ DÉBUTANT CONFIRMÉ EXPERT CAISSE À OUTILS MATÉRIAUX NÉCESSAIRES Un niveau à bulle Un maillet en caoutchouc Une visseuse Un tournevis Une perceuse

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet ( P P B P C bjectifs distinguer le poids et la masse d un objet utiliser la relation de proportionnalité entre le poids et la masse énoncer et utiliser la condition d équilibre d un solide soumis à deux

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

LES ESCALIERS. Les mots de l escalier

LES ESCALIERS. Les mots de l escalier Les mots de l escalier L escalier :ouvrage constitué d une suite régulière de plans horizontaux (marches et paliers) permettant, dans une construction, de passer à pied d un étage à un autre. L emmarchement

Plus en détail

Chapitre N2 : Calcul littéral et équations

Chapitre N2 : Calcul littéral et équations hapitre N : alcul littéral et équations Sujet 1 : Le problème des deux tours Deux tours, hautes de 0 m et de 0 m, sont distantes de 0 m. Un puits est situé entre les deux tours. Deux oiseaux s'envolent

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

Bien concevoir son projet de SALLE DE BAINS

Bien concevoir son projet de SALLE DE BAINS Bien concevoir son projet de SALLE DE BAINS Une salle de bains bien pensée...... Lapeyre vous aide à la réaliser Un projet bien préparé, c est la clé de la réussite. Avant de rencontrer un conseiller LAPEYRE,

Plus en détail