Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Dimension: px
Commencer à balayer dès la page:

Download "Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007"

Transcription

1 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre

2 Table des matières 1 Le projet Objectif Les choix techniques Rappel sur les ellipses Définition Propriétés géométriques Transformée de Hough Approche théorique Représentation Les cas des droites Les cas des cercles Le cas des ellipses Problèmes 13 5 Conclusion 14 2

3 1 Le projet 1.1 Objectif Ce projet s inscrit dans le cadre du Master 2 SIS option imagerie numérique. Le but de ce projet est de détecter des ellipses grâce à la transformée de Hough dans une image. Dans un premier temps je parlerai des choix techniques puis, je ferai un rappel sur les ellipses, leurs propriétés géométriques, une présentation de la transformée de Hough, et enfin les problèmes que j ai rencontrés. 1.2 Les choix techniques Tout d abord, il fallait faire un choix au niveau de l interface que j allais utiliser pour créer le logiciel. J ai choisi WxWidget pour deux raisons. La première est que c est une API portable sur toutes les architectures systèmes, ce qui va permettre à l utilisateur de pouvoir utiliser le programme sous Linux, Mac OS ou encore Windows. La seconde raison est que l on utilise cette API dans un autre projet, il est donc plus facile d utiliser la même API plutôt que d en apprendre une nouvelle. Ensuite, j ai décidé d utiliser OpenCV dans mon projet. Après mettre renseigné sur OpenCV j ai vu qu il pouvait m apporter des fonctions dont j avais besoin sans avoir à les reprogrammer. Comme transformer une image en niveau de gris ou encore le filtre de Canny. 3

4 2 Rappel sur les ellipses 2.1 Définition Une ellipse est, en mathématiques, une courbe plane fermée obtenue par la projection d un cercle sur un plan sécant, ou par l intersection d un cône droit avec un plan non perpendiculaire à son axe. Le cercle est considéré comme un cas particulier d ellipse. C est donc la forme qu on perçoit en regardant un cercle en perspective, ou la figure formée par l ombre d un disque sur une surface plane. En géométrie, elle est le lieu dont chacun des points est tel que la somme des distances à deux points fixes, dits foyers, est constante. 2.2 Propriétés géométriques Toute ellipse de foyers distincts F et F admet deux axes de symétries et un centre de symétrie. Le premier axe de symétrie est la droite (FF ), appelée axe focal de l ellipse. Le second axe de symétrie est la médiatrice du segment [FF ], appelée axe non focal de l ellipse. Le centre de symétrie est le milieu du segment [FF ]. C est le centre de l ellipse. A, A, B, B sont les sommets. Position du centre : Le calcul de la position du centre de l ellipse utilise la propriété geométrique suivante : étant donné deux tangentes à l ellipse aux points x1 et x2 se coupant au point L, le centre de l ellipse se trouve sur la droite qui passe par le milieu de x1x2 et L. En considérant trois points on peut donc calculer la position du centre O de l ellipse. 4

5 3 Transformée de Hough La transformée de Hough est une technique de reconnaissance de formes inventée en 1962 par Paul Hough, utilisée dans le traitement d images numériques. L application la plus simple permet de reconnaitre les lignes d une image, mais des modifications peuvent être apportées pour reconnaitre n importe quelle forme : c est la transformée généralisée de Hough développée par Richard Duda et Peter Hart en Approche théorique Le principe de la transformée de Hough est qu il existe un nombre infini de lignes qui passent par un point, dont la seule différence est l orientation. Le but de la transformée est de déterminer lesquelles de ces lignes passent au plus près du schéma attendu. Afin de déterminer que deux points se trouvent sur une même ligne potentielle, on doit créer une représentation de la ligne qui permet une comparaison dans ce contexte. Elle permet la detection de droites, de cercles ou d ellipses de façon traditionnelle. Elle peut aussi être étendue a des cas de description d objets plus complexes. La transformée de Hough permet d avoir une bonne robustesse contre les discontinuités et les éléments manquants d une structure. Le principe général de la transformée de Hough est d établir une projection entre l espace de l image et un espace de paramètres représentatif de la forme recherchée. 5

6 3.2 Représentation Dans la transformée de Hough chaque ligne est un vecteur de coordonnées paramétriques : ρ : la norme du vecteur θ : l angle En transformant toutes lignes possibles qui relient un point à un autre, c està-dire en calculant la valeur de ρ pour chaque θ, on obtient une sinusoïde unique appelée espace de Hough. Si les courbes associées à deux points se coupent, l endroit où elles se coupent dans l espace de Hough correspond aux paramètres d une droite qui relie ces deux points. 3.3 Les cas des droites Une droite est caracterisée par deux paramètres a et b tels que y = ax + b. La transformée de Hough va nous permettre d établir une relation entre les coordonées d un pixel de notre image et l espace des paramètres (a,b). Il y a deux approches ici : l approche cartésienne : qui nous indique que l équation d une droite est y = ax + b. Cela signifie que tous les points (x, y) vérifiant l équation seront associés au couple (a, b) dans l espace des paramètres. l approche paramétrique : l équation de la droite se lit cette fois b = - ax + y, alors le couple (x,y) de l image sera une droite de l espace des paramètres (a,b). L approche paramétrique est celle qui est utilisée. Donc pour détecter une éventuelle droite, il faut étudier l espace des paramètres. Il représente des regroupements traduisants l existence de droite. Il faut savoir à partir de quel moment un regroupement de points est significatif. Il peut y avoir des difficultés avec cette étape, le bruit causé par les autres éléments de l image peuvent perturber la détection des objets recherchés. D autre part, si les objets sont trop nombreux on peut aussi avoir du mal à les repérer. 6

7 3.4 Les cas des cercles Principe : Le principe de la transformée de Hough sur les cercles est très simple: il suffit de tracer les droites perpendiculaires aux contours des objets afin de trouver les cercles. En effet pour les cercles toutes les droites vont converger vers le centre. Les points de l image ayant un grand nombre d intersections de droites sont donc les centres des cercles. L unicité de ce résultat se prouve très simplement: seule la forme géométrique cercle possède un centre de symétrie qui laisse la forme inchangée. Les autres formes ne répondant pas à ce critère, seul les cercles seront détectés. Ensuite il suffit de retrouver les cercles à partir des centres. Prétraitement : Pour trouver cela, les images nécessitent un prétraitement. Tout d abord, pour une détection, nous n avons pas besoin de travailler avec de la couleur. On transforme donc notre image en niveaux de gris. 7

8 Ensuite on utilise le filtre de Canny pour détecter les contours. Une fois les contours obtenus, on va tracer les droites perpendiculaires aux contours. On va utiliser deux matrices : la transformée de l image de départ par une convolution avec la matrice de Sobel X qui nous donne les contours suivant l horizontale. la transformée de l image de départ par une convolution avec la matrice de Sobel Y qui nous donne les contours suivant la verticale. 8

9 Traitement : Ensuite pour avoir la direction, il faut calculer l arc tangente de sobel Y / sobel X. On va calculer l intersection de deux perpendiculaires et on va incrémenter ce point. Au final c est au pixel où il y aura eu le plus d accumulation que l on va trouver nos centres. Finalement, il ne reste plus qu à rechercher les cercles. Pour chaque point représentant un centre potentiel, on essaye de retracer des cercles de rayons variables. On trace en comparant avec l image de Canny: on regarde si on a un point de contour sur l image de Canny correspondant au point qu on est en train de tracer (moyennant un voisinage). On évalue ainsi le pourcentage de points que l on arrive à trouver sur Canny, pour le cercle que l on essaye de tracer. Si ce pourcentage est supérieur à un certain seuil, on estime qu il y a bien un cercle à l image. 9

10 3.5 Le cas des ellipses Le cas des ellipses est plus compliqués que précédemment. En effet il y a 5 paramètres à prendre en compte pour pouvoir tracer une ellipse. centre de l ellipse (2 inconnues) petit axe (1 inconnue) grand axe (1 inconnue) orientation (1 inconnue) Pour ma part je pense que seuls les quatre premiers sont nécessaires à l obtention de l ellipse. X0 et Y0 : les coordonnées du centre de l ellipse. A : la moitié de la longueur de l axe horizontal de l ellipse B : la moitié de la longueur de l axe vertical de l ellipse Tout les points de l ellipse ont pour coordonnées : X = X0 + (A * Cos(t)) Y = Y0 + (B * Sin(t)) Ainsi pour dessiner une ellipse, il suffit de connaitre X0, Y0, A et B. Ensuite, dans une boucle on fait varier t de 0 à 2*PI (PI = ), on utilise les formules précédentes pour calculer les coordonnées de chaque point et on les affiche. Remarque : L intervalle [0 ; 2*PI] permet de tracer l ellipse entière. Mais utiliser l intervalle [PI/2 ; 3*PI/2] ne permet de tracer que la partie gauche de l ellipse. Qu il y ait quatre ou cinq paramètres, la transformée de Hough pour les ellipses demanderait d établir une projection entre l espace de l image et un espace de paramètres à quatre ou cinq dimensions. On ne peut pas utiliser cette technique pour deux raisons principales: une projection comme celle-ci disperserait les repésentants dans un espace de paramètres beaucoup trop grand et les accumulations ne seraient plus pertinantes. le temps de calcul et la mémoire demandés seraient beaucoup trop importants pour ce type d application. On va donc découper le problème en deux parties. On cherchera dans un premier temps les centres possibles d ellipses avec une transformation de Hough dans un espace à deux dimensiona. Puis, nous trouverons les trois autres paramètres par la résolution d un problème linéaire. 10

11 Centre des ellipses Considérons deux points A et B sur une ellipse, et on récupère les tangentes en ces points. Alors, le point T, intersection des deux tangentes et le point M, milieu du segment [AB]. Pour une ellipse, son centre sera situé sur la demie-droite [TM) hormis le segment [TM]. Les rayons issus des differentes paires se couperont donc en O, centre de l ellipse. C est par l etude des differentes accumulations que le choix se fera. Après avoir déterminer la transfomation de Hough que l on allait utiliser, on va maintenant choisir entre deux possibilités pour le tirage des points : Transformation de Hough standard : On prend toutes les paires de pixels de l image appartenant aux contours. On construit donc un histogramme de deux dimensions qui va contenir les droites pour chaque parire de pixel tirée. Ce que l on recherche est alors représenté pas les maximums mocaux de notre histogramme. Mais le nombre de ligne dans notre histogramme croit avec le carré du nombre de pixels dans l image. Transformation de Hought probabiliste : elle s applique à une proportion des pixels de l image. Après certaines publications, on peut utiliser 10 à 20% des points pour que l histogramme soit comparable à celui obtenu par la transformée standard. 11

12 Trouver les paramètres : Lorsque l on a obtenu la position du centre de l ellipse, on se positionne dans le repère lié au centre de l ellipse. L équation de cette dernière est donc : ax 2 + 2bxy + cy 2. Maintenant on va considérer trois points sous forme matricielle : X 1 = (x 1, x 2 ), X 2 = (x 2, y 2 ), X 3 = (x 3, y 3 ). x 2 1 2x 1 y 1 y1 2 a 1 x 2 2 2x 2 y 2 y2 2 b = 1 x 2 2 2x 3 y 3 y3 2 c 1 Les paramètres a,b,c s obtiennent par inversion du système. Il est plus simple de décrire l ellipse par le jeu de paramètres ctre, grand axe, petit axe, inclinaison et degré. Pour obtenir ces paramètres à partir de a, b, c, il faut écrire la forme quadratique associée à l ellipse : [ ] a b Q = = Pt b c [ ] alpha(1) 0 P 0 alpha(2) Le vecteur propre associé à la plus grande valeur propre de cette matrice donne la direction du grand axe de l ellipse, la longueur du grand axe et du petit axe sont reliés aux valeurs propres par la relation suivante : Trouver les ellipses : Deux solutions s offrent à nous : ri = 1/alpha(i) La première qui consiste à utiliser deux accumulateurs à deux dimensions, un pour le centre des ellipses et l autre pour les axes et un dernier acculumateur à une dimension pour l orientation de l ellipse. Pour chaque triplet de points on incrémente un compteur pour trouver les centres et les axes. On peut en déduire les centres et les axes comme des maxima locaux, mais une fois le centre identifié il faut faire la correspondance avec les trois accumulateurs. Il faut donc retirer un triplet de pixels. Ceci devient rapidement long et couteux en mémoire. On remplace donc les histogramme par une liste qui contiendra les cinq paramètres ainsi qu un compteur. On tire trois points de l image, on calcule les cinq paramètres, puis on parcours notre liste pour voir si le jeu de paramètre ne s y trouve pas déjà avec une certaine tolérance. Si le jeu de paramètre est trouvé alors on incrémente le compteur sinon on l ajoute à notre liste. Ilsuffit finalement de prendre les jeux de paramètres où les compteur auront dépasser un certain seuil. 12

13 4 Problèmes J ai rencontré plusieurs problèmes durant le développement. D abord le fait de faire le projet seul a été pénalisant, car l approche d un autre oeil sur le problème m aurait sûrement permis d avancer plus vite et de comprendre certaines choses autrement. L utilisation d OpenCV avec WxWidget n a pas été triviale, notamment dans le fait d afficher des images, transformer des IplImage et wximage. Un autre problème mais celui là matériel. Mon disque dur a laché entraînant la perte de toutes mes données il y a trois semaines. Donc j ai dû reprendre tout mon travail à zéro et je n ai pas eu le temps de revenir au point où j en étais avant la perte des données. Ceci est très pénalisant et très frustrant car je n ai pas pû mener la fin de mon projet à bien. 13

14 5 Conclusion Malgré la fin malheureuse de mon projet, j ai pu voir que la Transformée de Hough est largement utilisée en reconnaissance de formes tels que les droites, des cercles, les ellipses et d autres formes. On peut citer encore la reconnaissance d objet en trois dimensions, la détermination de l orientation des corps rigides, le calcul des paramètres de mouvement d un objet mobile, etc. Les avantages de la Transformée de Hough sont sa robustesse vis avis du bruit, mais aussi on peut aisément l étendre à d autres domaines que l imagerie. Cependant on lui reproche sa lenteur, sa complexité et la taille mémoire importante qu elle nécessite. Mais également problème de l homogénéité de l espace, de sa quantification. Ce n en reste pas moins une très bonne méthode de détection. 14

La Rivière Situations Connexes. Arc de cercle. Voir. Courbe. Voir. Sur la sphère. Voir. Retour au Menu La Rivière

La Rivière Situations Connexes. Arc de cercle. Voir. Courbe. Voir. Sur la sphère. Voir. Retour au Menu La Rivière Arc de cercle Voir Courbe Voir Sur la sphère Voir Retour au Menu La Rivière Rivière en arc de cercle La rivière est un arc de cercle : Retour au Menu des Rivière en arc de cercle Expérience : Expérimenter

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

Dessins géométriques avec L A TEX

Dessins géométriques avec L A TEX Dessins géométriques avec L A TEX J. Parizet 13 mai 2014 Montrons sur des exemples que L A TEX permet de dessiner correctement droites et coniques approximées par des arcs de paraboles se raccordant (Bezier.

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Responsables. Etude analytique : Renard Julien (3A) Partie graphique : Campion Bernard (3A) Maquette : Scottini Jonathan (3A)

Responsables. Etude analytique : Renard Julien (3A) Partie graphique : Campion Bernard (3A) Maquette : Scottini Jonathan (3A) Responsables Etude analytique : Renard Julien (3A) Partie graphique : Campion Bernard (3A) Maquette : Scottini Jonathan (3A) 1 Introduction Dans le cadre de ce projet de géométrie BAC 1, il nous était

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php 3LESLENTILLESMINCES Cette fiche de cours porte sur les lentilles minces. L approche est essentiellement descriptive et repose sur la maîtrise de la construction des rayons lumineux. Ce chapitre est accessible

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

13. Géométrie analytique

13. Géométrie analytique 13. Géométrie analytique La géométrie analytique permet de résoudre par le calcul des problèmes de géométrie. Il convient toutefois de ne pas perdre de vue que la géométrie analytique est d abord de la

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Introduction au traitement d images Détection de contours et segmentation

Introduction au traitement d images Détection de contours et segmentation Introduction au traitement d images Détection de contours et segmentation Résumé : Ce document est une introduction au traitement d images s intéressant notamment à la détection de contours et à la segmentation.

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Orbites et coniques : Constructions à la ficelle

Orbites et coniques : Constructions à la ficelle Orbites et coniques : Constructions à la ficelle Yves A. Delhaye 10 mai 2015 15 :21 Résumé Le lien entre les orbites des astres dans le système solaire et les coniques est établi. La définition des coniques

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles

Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles 1 Inspection d une spécification portée sur un dessin Les étapes : Définir selon la norme (ISO) la

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Mathématiques. Classe de seconde. Introduction. Objectif général. Raisonnement et langage mathématiques

Mathématiques. Classe de seconde. Introduction. Objectif général. Raisonnement et langage mathématiques Mathématiques Classe de seconde Introduction La seconde est une classe de détermination. Le programme de mathématiques y a pour fonction : de conforter l acquisition par chaque élève de la culture mathématique

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

FORMATION D IMAGE. On souhaite former l image d un objet, i.e une représentation homothétique de cet objet, à l aide de divers systèmes optiques.

FORMATION D IMAGE. On souhaite former l image d un objet, i.e une représentation homothétique de cet objet, à l aide de divers systèmes optiques. FORMATION D IMAGE On souhaite former l image d un objet, i.e une représentation homothétique de cet objet, à l aide de divers systèmes optiques. I. Définitions I.1. Système optique Un système optique (S)

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Travaux pratiques de Génie Informatique TP 2 & 3. séances, mais vous pouvez en faire plus. Essayer d aller le plus loin possible.

Travaux pratiques de Génie Informatique TP 2 & 3. séances, mais vous pouvez en faire plus. Essayer d aller le plus loin possible. 1 BUT DE LA SÉANCE. TRAVAUX PRATIQUES DE GÉNIE INFORMATIQUE Ces deuxième et troisième séances ont pour but de vous faire avancer dans la programmation sous Matlab. Vous y découvrez les fonctions, les sous-programmes

Plus en détail

PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille

PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille Résumé de PFE PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille Introduction Dans le domaine de la robotique, la robotique

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

INF-130 Travail Pratique #2

INF-130 Travail Pratique #2 École de technologie supérieure INF-30 Travail Pratique #2 Travail individuel Tracé d un métro Francis Bourdeau, Frédérick Henri et Patrick Salois Remise à la 0 e semaine. Objectifs - Amener l étudiant

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

PARTIE CONCEPTION REALISATION DU DESSIN

PARTIE CONCEPTION REALISATION DU DESSIN PARTIE CONCEPTION REALISATION DU DESSIN 1.01. LANCER LE PROGRAMME GRAAL CAO 3D Pour créer un nouveau document Pour ouvrir un document existant OU Puis rechercher votre fichier dans votre répertoire 1.02.

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2014

Baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

CHAPITRE 2 CALCULS ALGEBRIQUES

CHAPITRE 2 CALCULS ALGEBRIQUES Classe de Troisième CHAPITRE CALCULS ALGEBRIQUES UTILISER DES LETTRES... 34 EXPRESSIONS EQUIVALENTES... 36 VOCABULAIRE DU CALCUL LITTERAL... 37 REDUCTIONS D'ECRITURES... 39 DEVELOPPER UN PRODUIT... 40

Plus en détail

Les Cadrans Solaires

Les Cadrans Solaires Les Cadrans Solaires Travail de Maturité Michel Di Salvo 3M7 Gymnase Auguste Piccard Lundi 13 Novembre 006 Florentin Acker Table des matières Travail de maturité Michel Di Salvo Résumé - page Liste des

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

1 Lentilles sphériques minces

1 Lentilles sphériques minces Lentilles sphériques minces et miroirs Lentilles sphériques minces. Définition Définition : Une lentille sphérique est une portion de MHT I limitée par deux dioptres sphériques ou une dioptre sphérique

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Liste des résultats d apprentissage et indicateurs de rendement

Liste des résultats d apprentissage et indicateurs de rendement ANNEXE Mathématiques appliquées 3232 Liste des résultats d apprentissage et indicateurs de rendement (incluant les pages de au programme d études) PROGRAMME D ÉTUDES - MATHÉMATIQUES APPLIQUÉES 3232 (2013)

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

RECONNAISSANCE DE TRAJECTOIRES PAR VISION ARTIFICIELLE POUR LE SUIVI PAR UN ROBOT.

RECONNAISSANCE DE TRAJECTOIRES PAR VISION ARTIFICIELLE POUR LE SUIVI PAR UN ROBOT. RECONNAISSANCE DE TRAJECTOIRES PAR VISION ARTIFICIELLE POUR LE SUIVI PAR UN ROBOT Z Hammoudi, H Hamdi, M Laouar, A Chaaboub Département d Electronique, Faculté des sciences de l ingénieur Université de

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Mathématiques. Classe de seconde. Introduction. Raisonnement et langage mathématiques

Mathématiques. Classe de seconde. Introduction. Raisonnement et langage mathématiques Mathématiques L objectif de l enseignement des mathématiques dans la série sciences et technologies de l hôtellerie restauration (STHR) est double. Il s agit d une part de former les élèves à la démarche

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Affichage rapide de scènes 3D

Affichage rapide de scènes 3D ÉPREUVE COMMUNE DE TIPE 2010 - Partie D TITRE : Affichage rapide de scènes 3D Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Entretien avec les examinateurs

Plus en détail

SOMMAIRE CAO FAO 1.COMMENCER UN NOUVEAU PROJET. Page 1/16 2. DESSINER UN OBJET. Page 2/16 3. SUPPRIMER OU MODIFIER UN OBJET.

SOMMAIRE CAO FAO 1.COMMENCER UN NOUVEAU PROJET. Page 1/16 2. DESSINER UN OBJET. Page 2/16 3. SUPPRIMER OU MODIFIER UN OBJET. SOMMAIRE CAO.COMMENCER UN NOUVEAU PROJET. DESSINER UN OBJET. SUPPRIMER OU MODIFIER UN OBJET 4. DESSINER UN CERCLE 5. COUPER DES OBJETS 6. ARRONDIR DES ANGLES D UN OBJET 7.DUPLIQUER UN OBJET 8. ZOOM ET

Plus en détail

Sujet E3A 2012 Physique (Seulement) Option MP

Sujet E3A 2012 Physique (Seulement) Option MP Sujet E3A 2012 Physique (Seulement) ption MP Première partie : Caméra de contrôle des plaques d immatriculation A / Propagation de la lumière A1. Question de cours : position de Bessel La position de Bessel

Plus en détail

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Ministère de l éducation nationale Session 2013 PE2-13-PG2 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Vendredi 28 septembre 2012 - de 9h 00 à 13h 00 Deuxième épreuve

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail