Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Dimension: px
Commencer à balayer dès la page:

Download "Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007"

Transcription

1 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre

2 Table des matières 1 Le projet Objectif Les choix techniques Rappel sur les ellipses Définition Propriétés géométriques Transformée de Hough Approche théorique Représentation Les cas des droites Les cas des cercles Le cas des ellipses Problèmes 13 5 Conclusion 14 2

3 1 Le projet 1.1 Objectif Ce projet s inscrit dans le cadre du Master 2 SIS option imagerie numérique. Le but de ce projet est de détecter des ellipses grâce à la transformée de Hough dans une image. Dans un premier temps je parlerai des choix techniques puis, je ferai un rappel sur les ellipses, leurs propriétés géométriques, une présentation de la transformée de Hough, et enfin les problèmes que j ai rencontrés. 1.2 Les choix techniques Tout d abord, il fallait faire un choix au niveau de l interface que j allais utiliser pour créer le logiciel. J ai choisi WxWidget pour deux raisons. La première est que c est une API portable sur toutes les architectures systèmes, ce qui va permettre à l utilisateur de pouvoir utiliser le programme sous Linux, Mac OS ou encore Windows. La seconde raison est que l on utilise cette API dans un autre projet, il est donc plus facile d utiliser la même API plutôt que d en apprendre une nouvelle. Ensuite, j ai décidé d utiliser OpenCV dans mon projet. Après mettre renseigné sur OpenCV j ai vu qu il pouvait m apporter des fonctions dont j avais besoin sans avoir à les reprogrammer. Comme transformer une image en niveau de gris ou encore le filtre de Canny. 3

4 2 Rappel sur les ellipses 2.1 Définition Une ellipse est, en mathématiques, une courbe plane fermée obtenue par la projection d un cercle sur un plan sécant, ou par l intersection d un cône droit avec un plan non perpendiculaire à son axe. Le cercle est considéré comme un cas particulier d ellipse. C est donc la forme qu on perçoit en regardant un cercle en perspective, ou la figure formée par l ombre d un disque sur une surface plane. En géométrie, elle est le lieu dont chacun des points est tel que la somme des distances à deux points fixes, dits foyers, est constante. 2.2 Propriétés géométriques Toute ellipse de foyers distincts F et F admet deux axes de symétries et un centre de symétrie. Le premier axe de symétrie est la droite (FF ), appelée axe focal de l ellipse. Le second axe de symétrie est la médiatrice du segment [FF ], appelée axe non focal de l ellipse. Le centre de symétrie est le milieu du segment [FF ]. C est le centre de l ellipse. A, A, B, B sont les sommets. Position du centre : Le calcul de la position du centre de l ellipse utilise la propriété geométrique suivante : étant donné deux tangentes à l ellipse aux points x1 et x2 se coupant au point L, le centre de l ellipse se trouve sur la droite qui passe par le milieu de x1x2 et L. En considérant trois points on peut donc calculer la position du centre O de l ellipse. 4

5 3 Transformée de Hough La transformée de Hough est une technique de reconnaissance de formes inventée en 1962 par Paul Hough, utilisée dans le traitement d images numériques. L application la plus simple permet de reconnaitre les lignes d une image, mais des modifications peuvent être apportées pour reconnaitre n importe quelle forme : c est la transformée généralisée de Hough développée par Richard Duda et Peter Hart en Approche théorique Le principe de la transformée de Hough est qu il existe un nombre infini de lignes qui passent par un point, dont la seule différence est l orientation. Le but de la transformée est de déterminer lesquelles de ces lignes passent au plus près du schéma attendu. Afin de déterminer que deux points se trouvent sur une même ligne potentielle, on doit créer une représentation de la ligne qui permet une comparaison dans ce contexte. Elle permet la detection de droites, de cercles ou d ellipses de façon traditionnelle. Elle peut aussi être étendue a des cas de description d objets plus complexes. La transformée de Hough permet d avoir une bonne robustesse contre les discontinuités et les éléments manquants d une structure. Le principe général de la transformée de Hough est d établir une projection entre l espace de l image et un espace de paramètres représentatif de la forme recherchée. 5

6 3.2 Représentation Dans la transformée de Hough chaque ligne est un vecteur de coordonnées paramétriques : ρ : la norme du vecteur θ : l angle En transformant toutes lignes possibles qui relient un point à un autre, c està-dire en calculant la valeur de ρ pour chaque θ, on obtient une sinusoïde unique appelée espace de Hough. Si les courbes associées à deux points se coupent, l endroit où elles se coupent dans l espace de Hough correspond aux paramètres d une droite qui relie ces deux points. 3.3 Les cas des droites Une droite est caracterisée par deux paramètres a et b tels que y = ax + b. La transformée de Hough va nous permettre d établir une relation entre les coordonées d un pixel de notre image et l espace des paramètres (a,b). Il y a deux approches ici : l approche cartésienne : qui nous indique que l équation d une droite est y = ax + b. Cela signifie que tous les points (x, y) vérifiant l équation seront associés au couple (a, b) dans l espace des paramètres. l approche paramétrique : l équation de la droite se lit cette fois b = - ax + y, alors le couple (x,y) de l image sera une droite de l espace des paramètres (a,b). L approche paramétrique est celle qui est utilisée. Donc pour détecter une éventuelle droite, il faut étudier l espace des paramètres. Il représente des regroupements traduisants l existence de droite. Il faut savoir à partir de quel moment un regroupement de points est significatif. Il peut y avoir des difficultés avec cette étape, le bruit causé par les autres éléments de l image peuvent perturber la détection des objets recherchés. D autre part, si les objets sont trop nombreux on peut aussi avoir du mal à les repérer. 6

7 3.4 Les cas des cercles Principe : Le principe de la transformée de Hough sur les cercles est très simple: il suffit de tracer les droites perpendiculaires aux contours des objets afin de trouver les cercles. En effet pour les cercles toutes les droites vont converger vers le centre. Les points de l image ayant un grand nombre d intersections de droites sont donc les centres des cercles. L unicité de ce résultat se prouve très simplement: seule la forme géométrique cercle possède un centre de symétrie qui laisse la forme inchangée. Les autres formes ne répondant pas à ce critère, seul les cercles seront détectés. Ensuite il suffit de retrouver les cercles à partir des centres. Prétraitement : Pour trouver cela, les images nécessitent un prétraitement. Tout d abord, pour une détection, nous n avons pas besoin de travailler avec de la couleur. On transforme donc notre image en niveaux de gris. 7

8 Ensuite on utilise le filtre de Canny pour détecter les contours. Une fois les contours obtenus, on va tracer les droites perpendiculaires aux contours. On va utiliser deux matrices : la transformée de l image de départ par une convolution avec la matrice de Sobel X qui nous donne les contours suivant l horizontale. la transformée de l image de départ par une convolution avec la matrice de Sobel Y qui nous donne les contours suivant la verticale. 8

9 Traitement : Ensuite pour avoir la direction, il faut calculer l arc tangente de sobel Y / sobel X. On va calculer l intersection de deux perpendiculaires et on va incrémenter ce point. Au final c est au pixel où il y aura eu le plus d accumulation que l on va trouver nos centres. Finalement, il ne reste plus qu à rechercher les cercles. Pour chaque point représentant un centre potentiel, on essaye de retracer des cercles de rayons variables. On trace en comparant avec l image de Canny: on regarde si on a un point de contour sur l image de Canny correspondant au point qu on est en train de tracer (moyennant un voisinage). On évalue ainsi le pourcentage de points que l on arrive à trouver sur Canny, pour le cercle que l on essaye de tracer. Si ce pourcentage est supérieur à un certain seuil, on estime qu il y a bien un cercle à l image. 9

10 3.5 Le cas des ellipses Le cas des ellipses est plus compliqués que précédemment. En effet il y a 5 paramètres à prendre en compte pour pouvoir tracer une ellipse. centre de l ellipse (2 inconnues) petit axe (1 inconnue) grand axe (1 inconnue) orientation (1 inconnue) Pour ma part je pense que seuls les quatre premiers sont nécessaires à l obtention de l ellipse. X0 et Y0 : les coordonnées du centre de l ellipse. A : la moitié de la longueur de l axe horizontal de l ellipse B : la moitié de la longueur de l axe vertical de l ellipse Tout les points de l ellipse ont pour coordonnées : X = X0 + (A * Cos(t)) Y = Y0 + (B * Sin(t)) Ainsi pour dessiner une ellipse, il suffit de connaitre X0, Y0, A et B. Ensuite, dans une boucle on fait varier t de 0 à 2*PI (PI = ), on utilise les formules précédentes pour calculer les coordonnées de chaque point et on les affiche. Remarque : L intervalle [0 ; 2*PI] permet de tracer l ellipse entière. Mais utiliser l intervalle [PI/2 ; 3*PI/2] ne permet de tracer que la partie gauche de l ellipse. Qu il y ait quatre ou cinq paramètres, la transformée de Hough pour les ellipses demanderait d établir une projection entre l espace de l image et un espace de paramètres à quatre ou cinq dimensions. On ne peut pas utiliser cette technique pour deux raisons principales: une projection comme celle-ci disperserait les repésentants dans un espace de paramètres beaucoup trop grand et les accumulations ne seraient plus pertinantes. le temps de calcul et la mémoire demandés seraient beaucoup trop importants pour ce type d application. On va donc découper le problème en deux parties. On cherchera dans un premier temps les centres possibles d ellipses avec une transformation de Hough dans un espace à deux dimensiona. Puis, nous trouverons les trois autres paramètres par la résolution d un problème linéaire. 10

11 Centre des ellipses Considérons deux points A et B sur une ellipse, et on récupère les tangentes en ces points. Alors, le point T, intersection des deux tangentes et le point M, milieu du segment [AB]. Pour une ellipse, son centre sera situé sur la demie-droite [TM) hormis le segment [TM]. Les rayons issus des differentes paires se couperont donc en O, centre de l ellipse. C est par l etude des differentes accumulations que le choix se fera. Après avoir déterminer la transfomation de Hough que l on allait utiliser, on va maintenant choisir entre deux possibilités pour le tirage des points : Transformation de Hough standard : On prend toutes les paires de pixels de l image appartenant aux contours. On construit donc un histogramme de deux dimensions qui va contenir les droites pour chaque parire de pixel tirée. Ce que l on recherche est alors représenté pas les maximums mocaux de notre histogramme. Mais le nombre de ligne dans notre histogramme croit avec le carré du nombre de pixels dans l image. Transformation de Hought probabiliste : elle s applique à une proportion des pixels de l image. Après certaines publications, on peut utiliser 10 à 20% des points pour que l histogramme soit comparable à celui obtenu par la transformée standard. 11

12 Trouver les paramètres : Lorsque l on a obtenu la position du centre de l ellipse, on se positionne dans le repère lié au centre de l ellipse. L équation de cette dernière est donc : ax 2 + 2bxy + cy 2. Maintenant on va considérer trois points sous forme matricielle : X 1 = (x 1, x 2 ), X 2 = (x 2, y 2 ), X 3 = (x 3, y 3 ). x 2 1 2x 1 y 1 y1 2 a 1 x 2 2 2x 2 y 2 y2 2 b = 1 x 2 2 2x 3 y 3 y3 2 c 1 Les paramètres a,b,c s obtiennent par inversion du système. Il est plus simple de décrire l ellipse par le jeu de paramètres ctre, grand axe, petit axe, inclinaison et degré. Pour obtenir ces paramètres à partir de a, b, c, il faut écrire la forme quadratique associée à l ellipse : [ ] a b Q = = Pt b c [ ] alpha(1) 0 P 0 alpha(2) Le vecteur propre associé à la plus grande valeur propre de cette matrice donne la direction du grand axe de l ellipse, la longueur du grand axe et du petit axe sont reliés aux valeurs propres par la relation suivante : Trouver les ellipses : Deux solutions s offrent à nous : ri = 1/alpha(i) La première qui consiste à utiliser deux accumulateurs à deux dimensions, un pour le centre des ellipses et l autre pour les axes et un dernier acculumateur à une dimension pour l orientation de l ellipse. Pour chaque triplet de points on incrémente un compteur pour trouver les centres et les axes. On peut en déduire les centres et les axes comme des maxima locaux, mais une fois le centre identifié il faut faire la correspondance avec les trois accumulateurs. Il faut donc retirer un triplet de pixels. Ceci devient rapidement long et couteux en mémoire. On remplace donc les histogramme par une liste qui contiendra les cinq paramètres ainsi qu un compteur. On tire trois points de l image, on calcule les cinq paramètres, puis on parcours notre liste pour voir si le jeu de paramètre ne s y trouve pas déjà avec une certaine tolérance. Si le jeu de paramètre est trouvé alors on incrémente le compteur sinon on l ajoute à notre liste. Ilsuffit finalement de prendre les jeux de paramètres où les compteur auront dépasser un certain seuil. 12

13 4 Problèmes J ai rencontré plusieurs problèmes durant le développement. D abord le fait de faire le projet seul a été pénalisant, car l approche d un autre oeil sur le problème m aurait sûrement permis d avancer plus vite et de comprendre certaines choses autrement. L utilisation d OpenCV avec WxWidget n a pas été triviale, notamment dans le fait d afficher des images, transformer des IplImage et wximage. Un autre problème mais celui là matériel. Mon disque dur a laché entraînant la perte de toutes mes données il y a trois semaines. Donc j ai dû reprendre tout mon travail à zéro et je n ai pas eu le temps de revenir au point où j en étais avant la perte des données. Ceci est très pénalisant et très frustrant car je n ai pas pû mener la fin de mon projet à bien. 13

14 5 Conclusion Malgré la fin malheureuse de mon projet, j ai pu voir que la Transformée de Hough est largement utilisée en reconnaissance de formes tels que les droites, des cercles, les ellipses et d autres formes. On peut citer encore la reconnaissance d objet en trois dimensions, la détermination de l orientation des corps rigides, le calcul des paramètres de mouvement d un objet mobile, etc. Les avantages de la Transformée de Hough sont sa robustesse vis avis du bruit, mais aussi on peut aisément l étendre à d autres domaines que l imagerie. Cependant on lui reproche sa lenteur, sa complexité et la taille mémoire importante qu elle nécessite. Mais également problème de l homogénéité de l espace, de sa quantification. Ce n en reste pas moins une très bonne méthode de détection. 14

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Orbites et coniques : Constructions à la ficelle

Orbites et coniques : Constructions à la ficelle Orbites et coniques : Constructions à la ficelle Yves A. Delhaye 10 mai 2015 15 :21 Résumé Le lien entre les orbites des astres dans le système solaire et les coniques est établi. La définition des coniques

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo. PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.fr I.A.M. de Grenoble et I.R.E.M. de Toulouse 1. UN ACCÈS RAPIDE

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

A1-1 TP3 Gmsh et partitionnement de maillage

A1-1 TP3 Gmsh et partitionnement de maillage A1-1 TP3 Gmsh et partitionnement de maillage Nicolas Kielbasiewicz 23 septembre 2013 1 Introduction à Gmsh Sous Windows et Mac OS, Gmsh est une application native. Sous Linux, il se lance en ligne de commande,

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Office - Le menu Dessin La barre d'outil Dessin

Office - Le menu Dessin La barre d'outil Dessin Office - Le menu Dessin La barre d'outil Dessin Le module de dessin d'office est un logiciel de dessin vectoriel*. Il crée des figures géométriques en les transformant en équation dites courbes de Béziers*

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

3.5.1 Introduction: image bitmap versus image vectorielle

3.5.1 Introduction: image bitmap versus image vectorielle 3.5.1 Introduction 3.5.2 Principe 3.5.3 Avantages et Inconvénients 3.5.4 Applications 3.5.5 Logiciels sur Internet PLAN 3.5.1 Introduction: image bitmap versus image vectorielle Lorsque l'on affiche une

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Mathématiques pour l Informatique Relations binaires Jérôme Gensel Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers

Plus en détail

NOTIONS ÉLÉMENTAIRES DE GÉOMÉTRIE

NOTIONS ÉLÉMENTAIRES DE GÉOMÉTRIE NOTIONS ÉLÉMENTIRES I) Les points : Un point est souvent représenté par une croix et noté avec des lettres majuscules. II) Les Droites : 1) La droite Une droite est illimitée des deux cotés, on ne peut

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

5.3 Comment déplacer le repère?...27 5.4 Comment décaler le repère?...28 5.5 Comment centrer le repère?...28 5.6 Comment masquer ou afficher le

5.3 Comment déplacer le repère?...27 5.4 Comment décaler le repère?...28 5.5 Comment centrer le repère?...28 5.6 Comment masquer ou afficher le Table des matières 1 Présentation...6 1.1 À qui s'adresse le logiciel?...6 1.2 Quelle est la configuration requise?...6 2 Mes premiers pas...7 2.1 Comment se procurer la documentation et le logiciel?...7

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Rhino CivilEngineering v.1.0

Rhino CivilEngineering v.1.0 Rhino CivilEngineering v.1.0 Rhino Civil Engineering à était développé par RhinoForYou et validé au sein d une grande société d ingénierie. Cette première version est adressée aux utilisateurs de Grasshopper,

Plus en détail

Manuel pour l utilisation de Gimp

Manuel pour l utilisation de Gimp Philippe Morlot Manuel pour l utilisation de Gimp notamment dans le cadre de l enseignement des arts plastiques Petite introduction Gimp est un puissant logiciel qui permet de retoucher, de manipuler ou

Plus en détail

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie? Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Cours IV Mise en orbite

Cours IV Mise en orbite Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

Géométrie en trois dimensions

Géométrie en trois dimensions 1 Géométrie en trois dimensions Il s agit de visualiser des objets en trois dimensions sur un plan, pour nous l écran de l ordinateur. Pour ce faire, nous allons simplifier les choses au maximum. Nous

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

RELATIONS DES CONTACTS HERTZIENS

RELATIONS DES CONTACTS HERTZIENS RELATIONS DES CONTACTS HERTZIENS 2004-203 Frédy Oberson et Fred Lang LES RELATIONS DES CONTACTS HERTZIENS Lorsque deux solides non conformes sont mis en contact 2, ils se touchent initialement en un point

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Ce document a été réalisé avec la version 3.02 de la calculatrice TI-Nspire CX CAS. Il peut être traité en une ou plusieurs séances (la procédure

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

Projet Télédétection. Vidéo Surveillance. Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd. Master 2 Pro SIS - 2005 / 2006

Projet Télédétection. Vidéo Surveillance. Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd. Master 2 Pro SIS - 2005 / 2006 Projet Télédétection Vidéo Surveillance Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd Master 2 Pro SIS - 2005 / 2006 Plan Introduction Lecture des images Détection des objets mouvants Détection des anomalies

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail