PROBABILITÉS CONDITIONNELLES

Dimension: px
Commencer à balayer dès la page:

Download "PROBABILITÉS CONDITIONNELLES"

Transcription

1 PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais pour trouver les couples qui s accordent le mieux, en appelant d abord le garçon puis la fille. Voici l ensemble des garçons G = { Alain ; Bernard ; Pierre } Voici l ensemble des filles F = { Lise ; Renée ; Catherine ; Denise } En mathématiques, nous aurons souvent à écrire des couples, appelés aussi 2-listes. Pour cela, nous utiliserons toujours la même écriture; par exemple, le couple formé du garçon «Alain» et de la fille «Renée» sera écrit : ( Alain, Renée ). Dans ce couple, «Alain» est le premier terme et «Renée» le deuxième terme. L ordre des termes est important. Citons le plus possible de couples. Nous en avons trouvé beaucoup; le travail devient difficile : il faut vérifier pour chaque couple nouveau qu il n a pas été cité; sommes-nous sûr(e)s de ne pas en avoir oublié? Il existe un moyen très facile qui nous permettra d écrire tous les couples : un arbre. Les trois premières branches représentent chacune un garçon. De l extrémité de chacune de ces branches partent quatre branches représentant chacune une fille. À chaque extrémité de ces dernières branches nous pouvons écrire un couple. Il y a donc 3 4 couples distincts : 3 possibilités pour le garçon 4 possibilités pour la fille. B.FORMONS DES COUPLES DANS UN MÊME ENSEMBLE Nous voulons créer un drapeau à deux cases. Pour cela nous disposons de quatre couleurs : bleu, jaune, rouge et vert. Les cases doivent être coloriées de deux couleurs différentes.

2 2 PROBABILITÉS CONDITIONNELLES Avec les éléments de l ensemble {B,J} nous pouvons former les deux drapeaux ou plutôt les deux couples (B,J) et (J,B). Comme nous voulons deux couleurs différentes, la couleur de la case de gauche ne peut pas être réutilisée pour la case de droite. L arbre nous confirme qu il y a 4 3 couples (drapeaux) possibles. (D après «mathématique contemporaine CM1» ) À partir de cette dernière situation, nous pouvons répondre aux questions suivantes : On choisit un drapeau au hasard. Quelle est la probabilité p 1 qu il soit jaune et vert, dans cet ordre? On choisit un drapeau au hasard. Quelle est la probabilité p 2 qu il soit jaune et vert, l ordre étant sans importance? Sachant que la case de droite est verte, quelle est la probabilité p 3 que la case de gauche soit bleue? On choisit un drapeau au hasard. Quelle est la probabilité p 4 que la case de gauche soit jaune? On choisit un drapeau au hasard. Quelle est la probabilité p 5 que la case de droite soit jaune? C.ARBRE PONDÉRÉ On peut répondre aux mêmes questions à l aide d un arbre pondéré, c est à dire un arbre dont chaque branche est marquée de la probabilité (du poids) correspondant. On vérifie que la somme des probabilités de chaque «ramification» est égale à 1. D.QUELQUES EXERCICES D-1 : Pour s amuser... Exercice I Des études morphologiques de la Vénus de Milo montrent qu il y a cinq chances sur sept pour qu elle soit droitière et deux chances sur sept pour qu elle soit gauchère. Si elle est droitière, il y a trois chances sur cinq pour qu elle épluche des carottes et deux chances sur cinq pour qu elle dénoyaute des olives. Si elle est gauchère, il y a une chance sur deux pour qu elle épluche des carottes et une chance sur deux pour qu elle dénoyaute des olives.

3 LES AVENTURES DE TÉHESSIX 3 1) Calculez la probabilité pour qu elle dénoyaute des olives. Réponse : 3/7 2) Les noyaux trouvés sur le site archéologique de la statue permettent d affirmer sans hésiter qu elle dénoyaute des olives. Calculez la probabilité pour qu elle soit gauchère. Réponse : 1/3 Exercice II Rastatopoulos, célèbre poète grec du XX e siècle avant GC, nous rapporte l anecdote suivante. La Vénus de Milo rangeait ses olives dans trois amphores. Dans la première, il y avait 30 olives vertes et 20 olives noires. Les deux autres amphores contenaient, l une quatre olives vertes (Rastatopoulos ne sait plus laquelle), l autre quatre olives noires (Rastatopoulos ignore évidemment de quelle amphore il s agit). Un jour d éclipse totale du soleil, la Vénus de Milo prend, au hasard, une olive de la première amphore, puis la place dans une des deux autres amphores. Elle prend ensuite dans celle-ci une olive au hasard et le soleil réapparait : l olive est verte. Calculez la probabilité pour que la dernière amphore visitée contienne plusieurs olives vertes. On pourra considérer les événements suivants V 1 : «la première olive est verte» A : «la deuxième amphore contenait les quatre olives vertes» V 2 : «la deuxième olive est verte» Réponse : 23/26 Exercice III Périclès est goutteur d olives dans une usine grecque. Un matin, il goutte cent olives au hasard et les replace dans le réservoir. L après-midi, l ouzo de l apéritif lui a fait perdre la mémoire. Il goutte à nouveau cent olives dans le même réservoir. Douze d entre elles avaient déjà été machées. On note A l événement «il y a douze olives machées parmi les cent choisies» et B n l événement «il y a n olives dans le réservoir». On considère la fonction f définie pour les entiers supérieurs à cent par f(n) = p(a/b n ) et la suite (u n ) définie pour les entiers supérieurs à 100 par u n = f(n + 1)/f(n) 1) Comparez u n à 1. 2) Montrez que la fonction f atteint un maximum sur [[100, + [[. 3) On appelle maximum de vraissemblance m la valeur de n correspondant à ce maximum. Déterminez m. Réponse : m = 833 Exercice IV Le poker Une main au poker est constituée de 5 cartes tirées d un jeu de 52 cartes. Combien y a-t-il de carrés (XXXXY)? de fulls (XXXYY)? de brelans (XXXYZ)? de doubles paires (XXYYZ)? de paires (XXYZA)? Deux lettres identiques (par exemple XX) correspondent à deux cartes de même hauteur (par exemple deux dames). Réponse : 624 carrés, 3744 fulls, brelans, doubles paires, paires.

4 4 PROBABILITÉS CONDITIONNELLES Exercice V L âge du capitaine Le capitaine des pompiers de New-York réside à l angle de la 7 ème rue et de la 33 ème avenue. La caserne se trouve à l angle de la 15 ème rue et de la 40 ème avenue. Il s y rend tous les jours à pied et sans perdre de temps (i.e. dans le sens des numéros croissants aussi bien pour les rues que pour les avenues). Sachant qu il a commencé à travailler le jour de ses 18 ans, et sachant qu il n est jamais passé deux fois par le même chemin, quel est l âge maximum du capitaine? Réponse : maximum 35 ans. D-2 : Passons aux choses sérieuses : les probas au Bac Exercice VI 1) Une urne contient quatre jetons numérotés de 1 à 4. On tire au hasard un jeton de l urne, on lit le numéro, noté a, porté sur le jeton, puis on remet le jeton tiré dans l urne. On tire ensuite un deuxième jeton de l urne et on note b le numéro du jeton tiré. On note P (a,b) = a(1 + b) 5 + b(1 a) Montez que la probabilité que P (a,b) soit nul est égale à 1/4. 2) Deux personnes A et B jouent au jeu suivant, constitué d un certain nombre de parties identiques décrites ci-après : au cours d une partie, chaque joueur effectue le tirage de deux jetons décrit dans la première question. Si A obtient un P (a,b) nul et B un P (a,b) non nul, A est déclaré vainqueur et le jeu s arrête. Si A obtient un P (a,b) non nul et B un P (a,b) nul, B est déclaré vainqueur et le jeu s arrête. Dans les autres cas, les joueurs entreprennent une nouvelle partie; le jeu continue. Pour tout entier n, on désigne par : A n l événement : «A gagne la n ème partie» B n l événement : «B gagne la n ème partie» C n l événement : «le jeu continue après la n ème partie» a) Calculez les probabilités p(a 1 ), p(b 1 ) et p(c 1 ). b) Exprimez p(c n+1 ) en fonction de p(c n ) et montrez que ( 5 p(c n ) = 8 c) Exprimez p(a n+1 ) en fonction de p(c n ) et montrez que p(a n ) = 3 ( ) n ) a) Déterminez la limite de p(a n ) quand n tend vers +. b) Déterminez le plus petit entier n tel que p(a n ) soit inférieur ou égal à 0,01. ) n Exercice VII Une variante de l exercice précedent utilisant le calcul intégral 1) Le but de cette question est de déterminer la probabilité que la somme de deux nombres choisis au hasard dans l intervalle [0,1] ne dépasse pas 1 et que le produit fasse au plus 2/9. a) Dans un repère orthonormé d unité 10cm, construisez la droite (D) d équation y = x + 1 et la courbe (C) d équation y = 2 9x.

5 LES AVENTURES DE TÉHESSIX 5 b) Hachurez la partie du plan E = {x [0,1], y [0,1] x + y 1 et xy 2/9}. c) Déterminez les coordonnées des points d intersection de (D) et (C). d) Montrez que l aire A de E vaut ln 2 u.a. 9 e) En remarquant que la probabilité p cherchée vaut dépend-elle de l unité choisie? A, calculez p. Cette probabilité aire du carré unité 2) Jouons : on choisit au hasard et successivement trois couples de nombres compris entre 0 et 1. On gagne lorsque deux au moins des couples satisfont la condition de la question 1). Calculez la probabilité π de gagner une partie en fonction de p. 3) Deux personnes A et B jouent à ce jeu. Si A gagne une partie et B perd, A est déclaré vainqueur. Si A perd une partie et B gagne, B est déclaré vainqueur. Dans les autres cas, ils recommencent à jouer. On note A n l événement : «A est déclaré vainqueur après la n ème partie». B n l événement : «B est déclaré vainqueur après la n ème partie». C n l événement : «le jeu continue après la n ème partie». a) Calculez p(a 1 ), p(b 1 ) et p(c 1 ). b) Exprimez p(c n+1 ) en fonction de p(c n ). c) Déduisez-en que (C n ) n IN est une suite géométrique et exprimez p(c n ) en fonction de n et p(c 1 ). Donnez une valeur approchée à 10 1 près de p puis de π. Calculez alors lim C n. n + d) Exprimez p(a n+1 ) en fonction de p(c n ) et déduisez-en p(a n ) en fonction de n. Exercice VIII Amélie est en vacances dans une très grande métropole. Elle doit traverser cette ville en suivant l avenue principale, qui est jalonnée de nombreux feux tricolores. Pour tout entier naturel n 1, on note E n l événement : «Amélie est arrêtée par le n ème feu rouge ou orange» et E n l événement contraire (le feu orange est considéré comme un feu rouge). Soit p n la probabilité de E n et q n celle de E n. La probabilité que le premier feu tricolore soit rouge ou orange vaut 1/8. On suppose que les deux conditions suivantes sont réalisées la probabilité que le (n + 1) ème feu tricolore soit rouge ou orange, si le n ème feu est rouge ou orange, vaut 1/20. la probabilité que le (n + 1) ème feu tricolore soit rouge ou orange, si le n ème feu est vert, vaut 9/20. 1) On s intéresse tout d abord aux deux premiers feux tricolores. Complétez un arbre pondéré rendant compte de la situation. 2) On se place maintenant dans le cas général. a) Donnez les probabilités conditionnelles p En (E n+1 ) et p En (E n+1 ). b) En remarquant que E n+1 = (E n+1 E n ) (E n+1 E n ), montrez que, pour tout n IN p n+1 = 1 20 p n q n c) Déduisez-en l expression de p n+1 en fonction de p n. 3) Soit (u n ) la suite de nombres réels définie pour tout n IN par u n = 28p n 9. a) Montrez que (u n ) est géométrique et déterminez sa raison. b) Exprimez u n puis p n en fonction de n. c) Déterminez la limite, si elle existe, de p n lorsque n tend vers +. Interprétez ce résultat.

6 6 PROBABILITÉS CONDITIONNELLES Exercice IX On considère l ensemble E = {0,1,2,3,4,5,6,7}. Avec deux chiffres distincts x et y de E on crée un unique domino simple noté indifféremment [x,y] ou [y,x]. Avec un chiffre z de E, on forme un unique domino double noté [z,z]. 1) Combien de dominos peut-on ainsi créer? 2) On tire au hasard un domino. a) Quelle est la probabilité d obtenir un domino constitué de chiffres pairs? b) Quelle est la probabilité d obtenir un domino dont la somme des chiffres est paire? 3) On tire au hasard et simultanément deux dominos. Un élève affirme : «la probabilité d obtenir un domino double et un simple dont l un des chiffres est celui du domino double est égale à 4/45». Son affirmation est-elle vraie ou fausse? Exercice X On dispose de deux urnes a et b contenant des boules blanches ou rouges indiscernables au toucher. L épreuve consiste à choisir une urne parmi les urnes a et b proposées (le choix de l urne est effectué au hasard, les deux choix sont équiprobables), puis à effectuer lle tirage d une boule dans l urne choisie. On note A l événement «l urne a est choisie», B l événement «l urne b est choisie» et R l événement «une boule rouge est obtenue au tirage». On note p A (R) la probabilité conditionnelle de l événement R par rapport à l événement A. 1) Dans cette question, l urne a contient une boule rouge et quatre boules blanches, l urne b contient quatre boules rouges et deux boules blanches. a) Déterminez les probabilités p(a), p A (R), p(a R). b) Montrez que p(r) = 13/30. c) Sachant que la boule obtenue est rouge, quelle est la probabilité que l urne choisie soit l urne a? 2) Dans cette question, l urne a contient quatre boules blanches, l urne b contient deux boules blanches. L urne a contient en outre n boules rouges et l urne b en contient (5 n), où n désigne un entier naturel inférieur ou égal à 5. a) Exprimez p A (R) et p B (R) en fonction de n. b) Montrez que p(r) = n2 + 4n + 10 (4 + n)(7 n) c) On sait que n ne prend que six valeurs entières. Déterminez la répartition des cinq boules rouges entre les urnes a et b donnant la plus grande valeur de p(r).

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Calculer la probabilité d un événement

Calculer la probabilité d un événement THEME : CORRIGE DES EXERCICES PROBABILITES Calculer la probabilité d un événement Exercice n : Un sachet contient bonbons à la menthe, à l orange et au citron. On tire, au hasard, un bonbon du sachet et

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375 OILITES Un arbre permet de modéliser une situation et de déterminer une probabilité dans le cas où on étudie plusieurs événements. Il est particulièrement bien adapté à la répétition d expériences, aux

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

Exercices supplémentaires : Loi binomiale

Exercices supplémentaires : Loi binomiale Exercices supplémentaires : Loi binomiale Partie A : Loi binomiale Dans une région pétrolifère, la probabilité qu un forage conduise à une nappe de pétrole est 0,1. 1) Justifier que la réalisation d un

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

CHAPITRES 5 et 6 PROBABILITÉS ET DÉNOMBREMENTS

CHAPITRES 5 et 6 PROBABILITÉS ET DÉNOMBREMENTS 1 re EFG hapitres et Probabilités et dénombrements HAPITRES et PROBABILITÉS ET DÉNOMBREMENTS Exercice 1 Dans un magasin les modes de paiement et les montants des achats sont répartis de la façon suivante

Plus en détail

Feuille TD 1 : Probabilités discrètes, dénombrement

Feuille TD 1 : Probabilités discrètes, dénombrement Université de Nice-Sophia Antipolis -L2 MASS - Probabilités Feuille TD 1 : Probabilités discrètes, dénombrement Exercice 1 : 1. On doit choisir 2 représentants dans une classe de 40 élèves. Quel est le

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2009

DIPLÔME NATIONAL DU BREVET SESSION 2009 DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Prétest A QUESTIONNAIRE

Prétest A QUESTIONNAIRE MATHÉMATIQUES MAT5103 Probabilités II Prétest A QUESTIONNAIRE NE PAS ÉCRIRE SUR CE DOCUMENT Version du 16 décembre 2004 Rédigé par Denise Martin (martindenise@csdgsqcca) Centre L Envol 1 Un jeu consiste

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date P. condi- Variable Loi bino- Loi uni- Loi expo- Suite tionelle aléatoire

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Chapitre Ce que dit le programme : Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Objectifs visés par l enseignement des statistiques et probabilités à l occasion de résolutions de problèmes dans

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES ANNALES DE MATHEMATIQUES TERMINALE S LYCEE LOUIS ARMAND Année scolaire 1999/2000 Annales du baccalauréat S 2000 2 Lycée Louis Armand Annales du baccalauréat S 2000 TABLE DES MATIÈRES Table des matières

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements...

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements... PROBABILITÉS Table des matières I Vocabulaire des événements 2 I.1 Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................ 2

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat technique de la musique et de la danse Métropole septembre 2008 Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque

Plus en détail

1.1 Probabilité, événements

1.1 Probabilité, événements T le ES - programme 0 mathématiques ch.4 cahier élève Page sur 3 Ch.4 Probabilités conditionnelles. Probabilité, événements Probabilité d'un événement On note a,a,, a n les événements élémentaires d'une

Plus en détail

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Ministère de l éducation nationale Session 2013 PE2-13-PG2 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Vendredi 28 septembre 2012 - de 9h 00 à 13h 00 Deuxième épreuve

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Combien existe-t-il de dominos dans un jeu complet? On pourra donner jusqu à cinq démonstrations diffétentes. Exercice 2 [ Indication

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Chapitre 8 : Probabilités-Indépendance

Chapitre 8 : Probabilités-Indépendance Cours de mathématiques Terminale S Chapitre 8 : Probabilités-Indépendance Année scolaire 008-009 mise à jour 6 janvier 009 Fig. Andreï Kolmogorov Un précurseur de la formalisation de la théorie des probabilités

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

les probabilités en Terminale Bac Pro

les probabilités en Terminale Bac Pro les probabilités en Terminale Bac Pro stéphane GARNUNG Domaine Public : http://creativecommons.org/licenses/publicdomain/2.0/fr/ juin 2012 1.0 Table des matières I - Langage probabiliste 3 1. Expérience

Plus en détail

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité Table des matières PROBABILITÉS Résumé de cours I) Introduction, aperçu historique 1 II) Loi de probabilité 1 III)Probabilité d évènement 2 1. Le vocabulaire des probabilités................................

Plus en détail

MATHÉMATIQUES APPLIQUÉES S4 Exercices

MATHÉMATIQUES APPLIQUÉES S4 Exercices Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la

Plus en détail

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut Probabilité conditionnelle et indépendance Télécom Saint-Étienne 2014 Sommaire 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou

Plus en détail

SYSTEMES EXERCICES CORRIGES

SYSTEMES EXERCICES CORRIGES Exercice n. SYSTEMES EXERCICES CRRIGES Parmi les couples (8,), (,-,5), (,), (5,), lequel est solution du système Exercice n. x+ y = 7x y= 8 Résoudre par substitution : ) ) x 5y = x+ y= 6 x+ y = 6 5x y=

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités.

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités. LEÇON N 5 : Probabilité conditionnelle, indépendance de deux événements (on se limitera au cas où l ensemble d épreuves des fini). Applications à des calculs de probabilité. Pré-requis : Opérations sur

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement CHAPITRE Probabilités Les notions étudiées dans ce chapitre Le mot hasard vient de l'arabe al zhar qui désigne un dé à jouer. Les jeux de hasard sont connus depuis la plus haute Antiquité. Déjà les romains

Plus en détail

TD d exercices de calculs numériques.

TD d exercices de calculs numériques. TD d exercices de calculs numériques. Exercice 1. (Brevet 2008) On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3 b) Ajouter le carré du nombre choisi. c) Multiplier

Plus en détail

1 On rappelle qu'on note p B (A) la probabilité que l évènement A se réalise, sachant que l évènement B est déja p(a B) réalisé et que : p B (A) =.

1 On rappelle qu'on note p B (A) la probabilité que l évènement A se réalise, sachant que l évènement B est déja p(a B) réalisé et que : p B (A) =. 1 On rappelle qu'on note p B (A) la probabilité que l évènement A se réalise, sachant que l évènement B est déja p(a B) réalisé et que : p B (A) =. p(b) Une boîte contient 3 boules blanches (en chocolat

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Sommaire de la séquence 1

Sommaire de la séquence 1 Sommaire de la séquence 1 t t t t t t t t t Séance 1...................................................................................................... 7 Je découvre la notion de probabilité.....................................................................

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Correction des exemples. Mathieu EMILY

Correction des exemples. Mathieu EMILY Correction des exemples Mathieu EMILY Novembre 2005 Table des Matières Exemple_Exercice 1 Page 2 Exemple_Exercice 2 Page 3 Exemple_Exercice 3 Page 5 Exemple_Exercice 4 Page 6 Exemple_Exercice 5 Page 7

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

On choisit au hasard une personne parmi les clients interrogés. a) Calcule : 1) P(A) 2) P(B) 3) 5) 4) 6)

On choisit au hasard une personne parmi les clients interrogés. a) Calcule : 1) P(A) 2) P(B) 3) 5) 4) 6) 1. Pendant une journée d été, on a demandé aux clients d un magasin Piscine Plus d indiquer s ils possédaient une piscine ou un spa à l extérieur de leur maison. Le diagramme de Venn ci-contre présente

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Plus petit, plus grand, ranger et comparer

Plus petit, plus grand, ranger et comparer Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail