Espaces probabilisés

Dimension: px
Commencer à balayer dès la page:

Download "9 5 2 5 Espaces probabilisés"

Transcription

1 BCPST Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire : B T, B T T est stable par union dénombrable, c'est-à-dire : + (B n ) n 0 (T ) N, On appelle les éléments de la tribu évènements. n=0 B n T Proposition : Soit Ω un ensemble et T une tribu sur Ω. Alors : T T est stable par intersection dénombrable. Une intersection nie est un cas particulier d'intersection dénombrable. Il en est de même pour l'union. B) Un espace probabilisable est un couple (Ω, T ) constitué d'un ensemble Ω et d'une tribu T sur Ω. Il permet une modélisation qualitative de l'expérience (aléatoire) étudiée. L'ensemble Ω est appelé l'univers lié à l'expérience et les éléments de T sont appelés les évènements liés à l'expérience. Ainsi, une union ou une intersection dénombrable d'évènements est encore un évènement C. Courant page 1

2 Si Ω est ni : Ω = {x 1, x 2,..., x n } alors T est l'ensemble des parties de Ω. Exemple : Résultat d'un tir de dé. Si Ω est dénombrable : on notera Ω = {ω i, i N} alors T est l'ensemble des parties de Ω. Exemple : Lancer une pièce de monnaie jusquà obtenir pile. Si Ω est inni et non dénombrable. Exemple : durée de vie d'une lampe. T est dicile à expliciter. On admettra que T contient Ω et et que T est stable par passage au complémentaire, à l'intersection et à l'union. Dans les faits, on ne se pose pas de question. Proposition : Vocubulaire Soit (Ω, T ) un espace probabilisable. On appelle évènement certain l'évènement Ω. On appelle évènement impossible l'évènement. Si A est un évènement, on note A l'évènement contraire à A. On dit que les évènements A et B sont incompatibles si A B =. On appelle système complet d'évènements une famille nie ou dénombrables (A i ) i I d'évènements, où I = 1, n (famille nie) ou I = N (ou N ) (famille dénombrable), vériant : (i, j) I 2, i j, A i A j =. i I A i = Ω C. Courant page 2

3 C) Probabililité 1) Dénition Soit (Ω, T ) un espace probabilisable. On appelle probabilité sur (Ω, T ) une application P : T R + vériant : P(Ω) = 1 Pour toute suite nie ou dénombrable (A i ) i I d'évènements deux à deux incompatibles, on a : ( ) P A i = P(A i ) i I Cette propriété est appelée σ-additivité. Pour tout évènement A T, P(A) est appelé probabilité de l'évènement A. Un espace probabilisable, muni d'une probabilité est appelé espace probabilisé. On note (Ω, T, P) la donnée d'un espace probabilisé. σ-additivité Pour A et B deux évènements incompatibles, on a P(A B) = P(A) + P(B) i I On a pour tout n N, et toute suite d'évènements deux à deux incompatible : ( n ) P A i = i=1 n P(A i ) i=1 Cela pourrait se démontrer par récurrence à partir de la seule propriété énoncée pour 2 évènements. Si I est dénombrable, i I P(A i ) est une série convergente : en eet, la série est à termes positifs et les sommes partielles sont majorées par 1. La propriété porte sur la somme de la série. Soit Ω = {ω i, i N}. Soit (p i ) i N. On suppose : i N, p i R + La série p i est convergente et de somme 1. Alors, il existe une unique probabilité P telle que : i N, P({ω i }) = p i. 2) Propriétés Proposition : On a alors : P( ) = 0. Pour A T, P(A) = 1 P(A) et 0 P(A) 1. Pour A, B T tels que A B, P(A) P(B). Pour tout couple (A, B) T 2, on a : Démonstration : P(A B) = P(A) + P(B) P(A B) C. Courant page 3

4 Soit A un évènement tel que P(A) = 1. On dit que A est presque certain ou presque sûr. Soit A un évènement tel que P(A) = 0. On dit que A est négligeable. Exemple : On joue à pile ou face et on s'arrête dès qu'on a tiré pile. Montrer que le jeu s'arrête presque sûrement. 3) Propriétés des sytèmes complets d'évènements Proposition : Soit (A i ) i I un système complet d'évènements, ni ou dénombrable. On a : Soit un évènement B T, P(A i ) = 1 i I P(B) = i I P(B A i ) Démonstration : II Probabilités conditionnelles A) Dénition Soit A un évènement vériant P(A) 0. L'application : P A : T R B P(B A) P(A) est une probabilité, appelée probabilité conditionnelle sachant A. P A (B) noté aussi P(B A) est appelée probabilité de B sachant A. B) Probabilités composées Soit n un entier naturel supérieur ou égal à 2. Soit (A i ) 1 i n une famille d'évènements telle que P(A 1 A n ) 0. On a : P(A 1 A n ) = P(A 1 )P(A 2 A 1 )P(A 3 A 1 A 2 )... P(A n A 1 A n 1 ) Il est souvent judicieux de représenter les probabilités conditionnelles à l'aide d'arbres C. Courant page 4

5 Exemple : On considère une urne contenant quatre boules blanches et trois boules noires. On tire successivement et sans remise trois boules. Calculer la probabilité de tirer 2 boules noires. Exemple : On eectue des tirages dans une urne contenant initialement a boules blanches et b boules noires. Après chaque tirage, la boule est remise dans l'urne avec c boules de la même couleur. Déterminer la probabilité p n pour que la première boule blanche soit obtenue au n-ième tirage. On pose a 0 = 1 et a n = Déterminer + n=1 n 1 k=0 p n. Conclure. b + kc a + b + kc. Montrer que p n = a n 1 a n. C) Probabilités totales Soit (A i ) i I un système complet d'évènements ni ou dénombrable. On suppose : i I, P(A i ) 0. Pour tout évènement B, on a : P(B) = i I P(B A i )P(A i ) Démonstration : On appelle système quasi-complet, une suite (A n ) d'évènements deux à deux incompatibles et tels que + i=0 P(A n ) = 1. On suppose de plus qu'on peut avoir P(A i ) = 0 pour certaines valeurs de i. Pour tout évènement B, on a : P(B) = P(B A i )P(A i ) i I en convenant que : si P(A i ) = 0 alors on pose P(B A i )P(A i ) = C. Courant page 5

6 D) Formule de Bayes Soit (A i ) i I un système complet d'évènements ni ou dénombrable. On suppose : i I, P(A i ) 0. Soit B un évènement de probabilité non nul. On a : P(A i B) = P(B A i)p(a i ) P(B A j )P(A j ) j I Démonstration : Il est peu utile d'aprendre cette formule par coeur, il vaut mieux savoir la retrouver. En voici un cas particulier très courant : Soit A, B deux évènements tels que 0 < P(A) < 1 et P(B) 0. On a : P(B A)P(A) P(A B) = P(B A)P(A) + P(B A)P(A) Exemple : Une maladie est présente dans la population, dans la proportion d'une personne malade sur Un test de dépistage donne les informations suivantes : Si la personne est malade, le test est positif à 99%. Si la personne n'est pas malade, le test est positif à 0.1%. Calculer la probablitié qu'une personne soit malade si le test est positif. Conclure? E) Indépendance Soit (Ω, T, P ) un espace probabilisé. Soit A et B deux évènements. On dit que A et B sont indépendants si et seulement si P(A B) = P(A)P(B) Soit A et B deux évènements. On suppose P(A) 0. A et B sont indépendants si et seulement si P(B A) = P(B) Soit (A i ) i I une famille nie ou dénombrable d'évènements. On dit que les évènements (A i ) sont mutuellement indépendants si et seulement si pour tout p-uples (i 1, i 2..., i p ) d'indices distincts, on a : P = P(A ik ) 1 k p A ik 1 k p C. Courant page 6

7 BCPST Exercices Exercice 1: /home/carine/bcpst/basexo/proba/espproba/espproba01.tex Deux joueurs lancent tour à tour un dé. Le premier qui tire un six a gagné. Quelle est la probabilité de gagner pour chacun des joueurs? Que personne ne gagne? Exercice 2: /home/carine/bcpst/basexo/proba/espproba/espproba02.tex On met une boule blanche dans une urne. On répète alors les opérations suivantes : on lance un dé. si le résultat est diérent de 6, on ajoute une boule rouge dans l'urne, puis on recommence. si le résultat est 6, on tire une boule dans l'urne et on s'arrête. Quelle est la probabilité de s'arrêter? Quelle est la probabilité, qu'à la n, on tire une boule blanche dans l'urne? Exercice 3: /home/carine/bcpst/basexo/proba/espproba/espproba03.tex La probabilité qu'un forage conduise à une nappe de pétrole est 1/10. Quelle est la probabilité pour que, sur dix forages, on ait au moins un succès? Combien de forages sont-il nécessaires pour avoir au moins une chance sur deux de succès? Exercice 4: /home/carine/bcpst/basexo/proba/espproba/espproba06.tex Une urne contient 4 boules blanches, 6 rouges et 10 noires. 1 ) On tire trois boules, successivement et avec remise. Calculer la probabilité que le tirage soit tricolore, bicolore ou unicolore. 2 ) Même question si le tirage des trois boules est simultané. Exercice 5: /home/carine/bcpst/basexo/proba/espproba/espproba08.tex Un étudiant doit répondre à une question à choix multiple où cinq réponses sont proposées, une seule étant correcte. Quand l'événement A : l'étudiant à bien travaillé est réalisé, la réponse fournie est la bonne réponse. Dans le cas contraire l'étudiant répond au hasard. Si l'événement B : la réponse fournie est correcte est réalisé, calculer la probabilité P (A B) en fonction de p = P (A). Exercice 6: /home/carine/bcpst/basexo/proba/espproba/espproba09.tex Il pleut en moyenne 3 jours sur 10. Deux radios A et B annoncent la météo, avec une abilité de 95% pour la première, et de 90% pour la seconde (c'est-à-dire que, par exemple, s'il doit pleuvoir, la probabilité que la première radio ait fait la bonne prédiction est de 0, 95.) Lundi matin, la radio A annonce beau temps, et la radio B annonce de la pluie. Quelle est la probabilité qu'il pleuve? Exercice 7: /home/carine/bcpst/basexo/proba/espproba/espproba12.tex Le gardien d'un phare doit ouvrir une porte avec un trousseau de n clefs dont une seule convient. Il essaye les clefs les unes après les autres. On cherche la probabilité p k que la porte s'ouvre au bout du k-ième essai. Notons A i l'événement la i-ième clef essayée ne convient pas. Lorsque le gardien est ivre (ce qui arrive en moyenne 3 jours par semaine), il oublie, après chaque tentative, quelle clef il a essayé. 1 ) Calculer p 1 et p 2 dans chacun des cas (ivre ou non) 2 ) Exprimer p k en fonction des A i, et en déduire p k dans chacun des cas. 3 ) Un jour, le gardien utilise 9 clefs ; quelle est la probabilité qu'il soit ivre? 4 ) Même question sachant que le gardien a utilisé au moins 9 clefs C. Courant page 7

8 BCPST 952 Exercices : Espaces probabilisés Lycée du Parc Exercice 8: /home/carine/bcpst/basexo/proba/espproba/espproba13.tex On signale m soucoupes volantes dans le ciel américain. L'armée envoie nm missiles, ayant chacun une probabilité p d'atteindre leur objectif. On dispose de deux stratégies : S1 : on vise chaque soucoupe avec n missiles ; S2 : on laisse chaque missile se choisir une cible au hasard. (On suppose qu'un missile ne peut atteindre, avec une probabilité p, que sa cible, mais en aucun cas une autre cible. On suppose de plus que les missiles agissent indépendamment les uns des autres.) 1 ) Quelle est la probabilité d'atteindre une soucoupe donnée avec chacune de deux stratégies? 2 ) Que se passe-t-il lorsque m tend vers l'inni, n étant xé? Quelle stratégie choisir? Exercice 9: /home/carine/bcpst/basexo/proba/espproba/espproba14.tex Deux joueurs A et B jouent. A lance deux fois une pièce équilibrée. B ne lance qu'une fois une pièce qui fait pile avec la probabilité p. Le gagnant est celui qui fait le plus de faces. Tant qu'il y a égalité, ils rejouent. 1 ) Quelle est la probabilité qu'il y ait égalité au premier tour? 2 ) Quelle est la probabilité que le jeu de n'arrête jamais? 3 ) Quelle est la probabilité que A gagne le jeu? 4 ) Existe-t-il un p tel que le jeu soit équitable? Qui a le plus de chance de gagner? Exercice 10: /home/carine/bcpst/basexo/proba/espproba/espproba05.tex 1 ) Quelle est la probabilité d'obtenir une quinte ush au premier coup sans tricher avec un jeu de 52 cartes? 2 ) Vous jouez au poker avec Pat Poker (tricheur célèbre dans Lucky Luke, probabilité qu'il triche 0, 9, probabilité qu'il réussisse son coup et sorte une quinte ush s'il triche : 0, 9). Il abat une quinte ush au premier coup. Quelle est la probabilité qu'il ait triché? 3 ) Vous avez eu le malheur de répondre à la question précédente et de conclure à voix haute. Comme vous êtes moins bon tireur que Pat Poker, vous vous retrouvez devant Saint-Pierre. Pour passer le temps, vous commencez à jouer au poker avec lui. Probabilité que Saint-Pierre soit tenté de tricher : Probabilité de réussir son coup et de sortir une quinte ush s'il triche : 0, 5. Il abat une quinte ush au premier coup. Quelle est la probabilité qu'il ait triché? 4 ) Vous l'accusez, il nie trois fois. Le jour se lève et un coq se met à chanter. (Au paradis, après les nuits où Saint-Pierre a menti trois fois, le coq chante avec une probabilité 0, 9 ; après les autres, avec une probabilité un demi) Muni de cette information supplémentaire, calculer la probabilité que Saint-Pierre ait triché. Exercice 11: /home/carine/bcpst/basexo/proba/espproba/espproba11.tex Vaut-il mieux PPF ou FPP? On considère une suite innie de lancers d'une pièce équilibrée. Igor et Willow s'arontent dans un jeu dont les règles sont les suivantes. Igor est gagnant si la conguration pile, pile, face apparaît dans la suite des lancers avant que la conguration face, pile, pile n'apparaisse. Willow est gagnant si la conguration face, pile, pile apparaît dans la suite des lancers avant que la conguration pile, pile, face n'apparaisse. On se propose de déterminer lequel des deux joueurs a plus de chances de gagner. 1 ) Pour tout n 3, on note G n l'événement : Igor est déclaré gagnant à l'issue du n-ième lancer, et l'on pose g n = P (G n ) C. Courant page 8

9 BCPST 952 Exercices : Espaces probabilisés Lycée du Parc 1 Calculer g 3 et g 4. Montrer que, pour tout n 3, on a g n = 1. pour tout n. 2n 2 En déduire la probabilité qu'igor soit déclaré gagnant. 2 ) On note d n la probabilité que, lors des n premiers lancers, n'apparaisse jamais deux pile consécutifs. 1 Calculer d 1 et d 2. 2 En considérant le résultat des deux premiers lancers, montrer, pour tout n, 3 En déduire d n. d n+2 = 1 2 d n d n 4 En déduire que la série d n converge et calculer sa somme. 5 Pour tout n 3, on note A n l'événement un joueur est déclaré gagnant à l'issue du n-ième lancer et, pour tout n 2, on note B n : aucun joueur n'est encore déclaré gagné gagnant à l'issue du n-ième lancer. 3 ) 1 Montrer, pour tout n 2 : P (B n ) = 1 2 n + d n. 2 En déduire, pour tout n 4 : P (A n ) = 1 2 n d n 3. 3 Montrer que la probabilité que l'un des joueurs soit déclaré gagnant vaut 1. 4 En déduire la probabilité que Willow soit déclaré gagnant. 5 Conclure C. Courant page 9

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Andrey Nikolaevich Kolmogorov

Andrey Nikolaevich Kolmogorov PROBABILITÉS La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D'ailleurs, le mot hasard provient du mot arabe «az-zahr» signifiant dé à jouer. On attribue au mathématicien

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Systèmes Binaires. V. Langlet

Systèmes Binaires. V. Langlet Systèmes Binaires V. Langlet Niveau : De la Terminale aux Maths du supérieur Diculté : De plus en plus dur au l des exercices. Durée : Environ deux heures, suivant la compréhension du sujet. Rubrique(s)

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

Mesure de probabilité, indépendance.

Mesure de probabilité, indépendance. MATHEMATIQUES TD N 2 : PROBABILITES ELEMENTAIRES. R&T Saint-Malo - 2nde année - 2011/2012 Mesure de probabilité, indépendance. I. Des boules et des cartes - encore - 1. On tire simultanément 5 cartes d

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

PROBABILITES et STATISTIQUES. Cours et exercices

PROBABILITES et STATISTIQUES. Cours et exercices PROBABILITES et STATISTIQUES Cours et exercices C. Reder IUP2-MIAGE Bordeaux I 2002-2003 1 I- Le modèle probabiliste 1- Evènements SOMMAIRE 2- Loi de probabilité, espace de probabilité 3- Le cas où les

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Thème 19: Probabilités

Thème 19: Probabilités PROBABILITÉS 79 Thème 19: Probabilités Introduction: Blaise Pascal Andrey Nikolaevich Kolmogorov La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D ailleurs, le

Plus en détail

MATHÉMATIQUES APPLIQUÉES S4 Exercices

MATHÉMATIQUES APPLIQUÉES S4 Exercices Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Notions de probabilités

Notions de probabilités 44 Notions de probabilités Capacités Expérimenter, d abord à l aide de pièces, de dés ou d urnes, puis à l aide d une simulation informatique prête à l emploi, la prise d échantillons aléatoires de taille

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Introduction aux Probabilités

Introduction aux Probabilités Université Rennes 2 Licence MASS 2 Introduction aux Probabilités Arnaud Guyader Table des matières 1 Espaces probabilisés 1 1.1 Qu est-ce qu une probabilité?.............................. 1 1.1.1 Tribu.......................................

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

COMBINATOIRES ET PROBABILITÉS

COMBINATOIRES ET PROBABILITÉS COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Séquence 3. Probabilité : conditionnement et indépendance

Séquence 3. Probabilité : conditionnement et indépendance Séquence 3 Probabilité : conditionnement et indépendance Sommaire. Pré-requis. Conditionnement par un événement de probabilité non nulle 3. Indépendance 4. Synthèse Dans cette première séquence sur les

Plus en détail

Statistiques II. Alexandre Caboussat alexandre.caboussat@hesge.ch. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge.

Statistiques II. Alexandre Caboussat alexandre.caboussat@hesge.ch. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge. Statistiques II Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mardi 11h15-13h00 Salle : C110 http://campus.hesge.ch/caboussata 1 mars 2011 A. Caboussat, HEG STAT II, 2011 1 / 23 Exercice 1.1

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as } . Définitions préliminaires Probabilité. Définitions préliminaires La théorie des probabilités utilise un langage emprunté à la théorie des ensembles. Il sera nécessaire de définir les éléments de ce langage

Plus en détail

Seconde et première Exercices de révision sur les probabilités Corrigé

Seconde et première Exercices de révision sur les probabilités Corrigé I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES

DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)

Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0) CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.

Plus en détail

Introduction aux modèles financiers

Introduction aux modèles financiers Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu

Plus en détail

Probabilités-énoncés et corrections

Probabilités-énoncés et corrections 2012-2013 Probabilités-énoncés et corrections Exercice 1. Une entreprise décide de classer 20 personnes susceptibles d'être embauchées ; leurs CV étant très proches, le patron décide de recourir au hasard

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail