Vers l'ordinateur quantique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Vers l'ordinateur quantique"

Transcription

1 Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate A a un nombre ni d'états alors que le langage qu'il reconnaît L (A) est le plus souvent inni. Le miracle vient du fait que l'automate ne représente pas directement les données mais un calcul à eectuer pour obtenir les données. On a donc échangé de l'espace mémoire (celui des données) contre du temps (le temps nécessaire pour les calculer). Le même principe de représentation des données sous forme de calcul permet de représenter l'innité des décimales du nombre π par un programmme (d'un millier de ligne) qui calcule la n e décimale de π pour tout n N. Innités d'opérations Maintenant qu'on sait représenter des données innies, on aimerait eectuer des calculs sur ces données sans avoir à les énumérer sinon on sera à nouveau confronter à l'inni. C'est possible dans une certaine mesure et les automates en orent un bon exemple. Construction d'additionneurs L'objectif de ce chapître est de faire un pas vers l'informatique quantique capable de réaliser une innité d'opérations en un temps ni. Considérons des automates A n et A p qui reconnaissent des mots sur Σ = {, }. Les mots de L (A n ) et L (A p ) peuvent être vus comme des nombres binaires. L'automate A n est le codage de l'ensemble des nombres binaires (éventuellement une innité) qu'il reconnaît L (A n ) = {n, n 2,...}. De même L (A p ) = {p, p 2,...} On va voir qu'il est possible de constuire un automate, noté A n A p, qui reconnaît exactement l'ensemble des sommes formées de nombres n L (A n ) et p L (A p ). Autrement dit, L (A n A p ) = {n + p n L (A n ), p L (A p )}. Pour calculer et acher explicitement cet ensemble, il faudrait faire une innité d'opérations. L'utilisation d'automates permet de contourner cet obstacle et d'obtenir une représentation compacte de cet ensemble sous la forme d'un automate A n A p par un algortihme ecace en O((N P ) 2 ) où N est la taille A n et P celle de A p. Transducteur Un transducteur T est un automate qui consomme des symboles dans un ux d'entrée et produit des symboles sur un ux de sortie (un automate est un cas particulier de transducteur qui ne produit rien). Les transitions d'un transducteur sont de la forme q i/o q où i est le symbole consommé sur le ux d'entrée par la transition et o est le symbole produit sur le ux de sortie. La transition consomme i et produit o : on dit donc que o est la traduction du symbole i ; d'où le nom de transducteur. Ainsi, lorsqu'on exécute un transducteur T sur un mot ω, il se comporte comme un automate et s'il reconnaît le mot il produit une traduction du mot sur le ux de sortie. Langage d'entrée, langage de sortie Le langage d'entrée d'un transducteur T est le langage de l'automate obtenu en considérant les transitions de T comme des transitions d'automate classique ; c'est-à-dire en considérant uniquement la partie q i q des transitions q i/o q. L i (T ) = L (Input(T )) avec Input(q i/o q ) = q i q Le langage de sortie d'un transducteur T est le langage de l'automate obtenu en considérant uniquement la partie q o q des transitions q i/o q.

2 L o (T ) = L (Output(T )) avec Output(q i/o q ) = q o q Exécution d'un transducteur (à rédiger) Donnez un transducteur T qui reconnaît les mots sur Σ = {, } commençant et qui inverse les et les.. Donnez un transducteur T qui reconnaît tous les mots sur Σ = {, } et qui supprime les Donnez un transducteur T qui reconnaît tous les mots sur Σ = {, } et qui supprime les situés après un. Produit d'un automate A et d'un transducteur T Le principe est le même que pour les automates (à nombre) d'états ni : on exécute simultanément A et T ; pour avancer de concert il faut que A et T soient d'accord sur le symbole d'entrée, et on garde la partie production des transitions de T. (q a, q t ) (q i/o a, q t) i A T si et seulement si q a q a i/o A et q t q t T Image d'un automate A par un transducteur T La traduction (ou l'image) des mots de A par un transducteur correspond au langage de sortie de l'automate produit A T, c'est donc Image de A par T = Output(A T ) Q. Donnez un automate A qui reconnaît les nombres binaires pairs écrits avec les unités à gauche. Exemples : - ()N () 2 (...) 2 (. ) 2 / L (A) - (2)N (.) 2 (.. ) 2 L (A) - (3)N (.) 2 (.. ) 2 / L (A) = a A a Q2. Faîtes le produit de A par le transducteur T qui reconnaît tous les mots et inverse les et les. A T = a a / q (a,q) / / (a,q) / / 2

3 Q3. Donnez l'automate qui correspond aux mots de A traduit par le transducteur T. et décrire en une phrase le langage reconnu par cet automate. Output(A T ) = (a,q) (a,q) nombres binaires impairs Addition numérique des langages de deux automates Pour constuire l'automate A n A p, on transforme l'un d'eux (le plus simple), disons A p en transducteur-additionneur T p, on prend l'image des mots de A n par le transducteur-additionneur T p A n A p = Output(A n T p ) 2 Algorithme de construction d'un transducteur additionneur 2. Remarque préliminaire Lorsqu'on veut additionner deux nombres n et p, on complète le plus court des deux par des an d'obtenir des nombres de même taille ou on leur ajoute même un pour prévoir le cas d'une retenue en n d'addition. Exemple : on considére des nombres binaires écrits avec les unités à gauche et donc on fait l'addition de gauche à droite : = n + = p détail des calculs : sens du calcul retenue = n complété + = p complété Tout nombre binaire p est équivalent à p. : le nombre p auquel on a ajouté des non signicatifs. 2.2 Étapes de constructions du transducteur-additionneur associé à A p Étant donné un automate A p sur l'alphabet Σ = {, }, l'algorithme suivant produit un transducteur qui implante l'addition numérique avec retenue d'un nombre p du langage L (A p ). Exemple : On commence par un exemple simple en considérant l'automate A = a a étape : extension de A p avec des non-signicatifs À chaque état accepteur de A p on ajoute l'extension suivante qui reconnaît les non-signicatifs : ɛ Puis on renomme les transitions et de A p en + et +. Exemple : Pour A p, on obtient a ɛ a a 2 qui se simplie en a a 2 on obtient alors une chose qui n'est ni un automate ni un transducteur A p = a + a 2 + 3

4 Transformation des transitions +? en transitions de transducteur Chaque transition q + q doit incrémenter le digit lu en entrée ; elle donne donc naissance à deux transitions /.. /.. et en fonction de l'entrée et en tenant compte de la retenue. On indique la valeur de la retenue dans les états du transducteur qui sont donc de la forme (q, r = ), (q, r = ). Une transition q + q génère donc les transitions suivantes dans le transducteur : (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = Une transition q + q génère donc les transitions suivantes dans le transducteur : (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = L'état initial de T est l'état initial de A avec la retenue égale à. Les états accepteurs du transducteur sont les états de la forme (q, r = ) avec q accepteur et une retenue égale à. Exemple : À partir de A p = a + a 2 + on obtient le transducteur : T p = (a,r=) +: /,/ / a 2,r= + + / + / (a 2,r=) +: / qu'on écrit plus simplement / /,/ T p = / / / 2.3 Généralition et algorithme Le Transducteur-additionneur T associé à un automate A sur l'alphabet Σ = {, } est déni de la manière suivante : 4

5 q + q A p = q + q A p = /, / (q, r = ) (q, r = ) (q, r = ) (q /, r = ) T p (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) q Init(A p ) = (q, r = ) Init(T p ) q Acc(A p ) = (q, r = ) Acc(T p ) T p Tout état avec une retenue (..., r = ) ne peut-être ni initial, ni accepteur. Q. Donnez l'automate A n qui reconnaît les nombres binaires pairs écrits avec les unités à gauche et donnez une expression régulière équivalente. A n = a a.( ) Q2. Construire le transducteur-additionneur T p associé à l'automate A p = a a a 2 Q3. À partir de l'automate A n et du transducteur-additionneur T p, constuire l'automate qui reconnait le langage {n + p n L (A n ), p L (A p )}. 5

L addition et la multiplication en binaire

L addition et la multiplication en binaire Objectifs : Leçon A1-1 : L addition et la multiplication en binaire OS 1 - Exécuter en binaire une opération arithmétique de base. OS 2 - Représenter un nombre entier relatif. OS 3 - Mettre en œuvre un

Plus en détail

REPRÉSENTATION DES NOMBRES EN MACHINE

REPRÉSENTATION DES NOMBRES EN MACHINE Info 2 REPRÉSENTATION DES NOMBRES EN MACHINE Problématique Dans la mémoire d'un ordinateur, les données sont représentées sous forme de séquences de 0 et de 1. Par conséquent, toute information mémorisée

Plus en détail

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Cours sur la numération La numération Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Le système décimal Les nombres que nous utilisons

Plus en détail

Présentation du binaire

Présentation du binaire Présentation du binaire Vers la fin des années 30, Claude Shannon démontra qu'à l'aide de "contacteurs" (interrupteurs) fermés pour "vrai" et ouverts pour "faux" on pouvait effectuer des opérations logiques

Plus en détail

1 Grad Info Soir Langage C - Juin 2006

1 Grad Info Soir Langage C - Juin 2006 1 Grad Info Soir Langage C - Juin 2006 1. Explications L'examen comprend 3 parties - un programme à réaliser à domicile - une partie écrite qui comprend un certain nombre de petits paragraphes de code

Plus en détail

L'informatique, c'est logique!

L'informatique, c'est logique! L'informatique, c'est logique! Sylvain Conchon Universite Paris-Sud 11 INRIA Saclay { ^Ile-de-France Olympiades Academiques de Mathematiques 2010 16 juin 2010 Sylvain Conchon (LRI, INRIA) L'informatique,

Plus en détail

1 Description du projet

1 Description du projet Implantation d'un OS multi-processus pour téléphone cellulaire à l'aide d'automates À travers ce projet vous découvrirez les bases du fonctionnement d'un OS (Operating System = système d'exploitation)

Plus en détail

Les opérations binaires

Les opérations binaires Les opérations binaires Compétences associées A2 : Analyser et interpréter une information numérique Objectifs Etre capable: - De coder les nombres entiers en code complément à 2. - De résoudre les opérations

Plus en détail

Codage des données en machine.

Codage des données en machine. Codage des données en machine. 1 Entiers naturels Changements de base Codage en machine 2 Entiers relatifs : codage en complément à 2 Dénition Addition et calcul de l'opposé en complément à 2 3 Représentation

Plus en détail

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net Article rédigé avec epsilonwriter puis copié dans Word La théorie des mouvements

Plus en détail

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Un alphabet Un ensemble fini non vide s'appelle un alphabet. Langages réguliers et automates. Un mot. Un langage. {a,b} non. A.

Un alphabet Un ensemble fini non vide s'appelle un alphabet. Langages réguliers et automates. Un mot. Un langage. {a,b} non. A. Langages réguliers et automates finis A. Maurer Mars 09 Un alphabet Un ensemble fini non vide s'appelle un alphabet Ensemble Σ {a,b} {a,b,a,b} L'ensembledes nombres naturels pairs Alphabet? oui non oui

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

CODE DETECTEUR D'ERREUR (voir Schaum) Un des avantages des systèmes numériques (l'ordinateur, par exemple) réside dans leur grande précision. Cependant, bien que ces systèmes soient précis, des erreurs

Plus en détail

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé Jusqu'à présent Nous avons déjà abordé Vers l'inni David Teller 23/01/2007 Les ensembles Le regroupement de valeurs caractérisées par des critères. Informatique Types. Physique Unités. Logique Domaines.

Plus en détail

CODES (SUITE) Le code binaire étudié précédemment est nommé code binaire naturel (BN), il existe deux autres codes binaires:

CODES (SUITE) Le code binaire étudié précédemment est nommé code binaire naturel (BN), il existe deux autres codes binaires: LES CODES (SUITE) I. LES CODES BINAIRES Le code binaire étudié précédemment est nommé code binaire naturel (BN), il existe deux autres codes binaires: Le code binaire DCB (Décimal Codé Binaire) Le code

Plus en détail

L enseignement de l algorithmique au Lycée

L enseignement de l algorithmique au Lycée L enseignement de l algorithmique au Lycée Sisteron 12 novembre 2009 Fernand Didier didier@irem.univ-mrs.fr Approche naïve C est une méthode, une façon systématique de procéder, pour faire quelque chose

Plus en détail

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT Chapitre 4 Machines de Turing Dans ce chapitre on présente un modèle de calcul introduit dans les années 3 par Turing, les machines de Turing. Ces machines formalisent la notion de calculabilité. La thèse

Plus en détail

L ADDITION BINAIRE. Quand vous faites une addition en décimal, vous faites la somme des chiffres se trouvant dans une même colonne.

L ADDITION BINAIRE. Quand vous faites une addition en décimal, vous faites la somme des chiffres se trouvant dans une même colonne. L ADDITION BINAIRE 1. Le principe Quand vous faites une addition en décimal, vous faites la somme des chiffres se trouvant dans une même colonne. Si la somme est inférieure à 10, alors vous posez le résultat

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

MVA004 Automates, codes, graphes et matrices Cours n 6

MVA004 Automates, codes, graphes et matrices Cours n 6 MVA004 Automates, codes, graphes et matrices Cours n 6 cours n 5 1 Mots-clés Automate fini déterministe AFD Automate fini non déterministe AFN Déterminisation mots-clés 2 MVA004 Chapitre 22 Construction

Plus en détail

TD 2 - Modèles de calcul

TD 2 - Modèles de calcul TD 2 - Modèles de calcul Remarques préliminaires Si ou désigne une relation binaire (de dérivation/transition suivant le contexte), on notera ou sa clôture transitive, comprendre la relation obenue en

Plus en détail

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels I) Codage des entiers naturels I) Codage des entiers naturels Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ cliquer

Plus en détail

IUT de Colmar - Département RT 1ière année. Numération

IUT de Colmar - Département RT 1ière année. Numération IUT de Colmar - Département RT 1ière année. Numération 1 Laurent MURA. SOMMAIRE 1. Les différents systèmes 2. Les différentes conversions 3. Quelques systèmes de codage 4. L arithmétique binaire 2 IUT

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi :

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi : Numération Numération. 1 Les systèmes de numération 1.1 Le système décimal. 1.1.1 Les chiffres. Le système décimal est le système d écriture des nombres que nous utilisons habituellement dans la vie courante.

Plus en détail

Construction d un site WEB

Construction d un site WEB Construction d un site WEB 1 Logique binaire 1: Les systèmes de numération Un ordinateur est un appareil électronique. Deux tensions sont majoritairement présentes dans ses circuits électroniques : 0V

Plus en détail

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes. Automates à pile Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 62 Automates à pile Introduction Rappels sur les piles Automates à pile : définition Automates

Plus en détail

4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS LOGIQUE COMBINATOIRE

4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS LOGIQUE COMBINATOIRE 4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS Leçon 2 - OPÉRATIONS ARITHMÉTIQUES DANS LE SYSTÈME BINAIRE Avec les connaissances que nous venons d'acquérir, nous sommes en mesure maintenant d'écrire la suite

Plus en détail

Microprocesseurs. et Microcontrôleurs

Microprocesseurs. et Microcontrôleurs Ministère de l Enseignement Supérieur, de la Recherche Scientifique et de la Technologie Université Virtuelle de Tunis Microprocesseurs et Microcontrôleurs Représentation de l information en numérique

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Systèmes de numérations et codages. Présenté par A.Khalid

Systèmes de numérations et codages. Présenté par A.Khalid Systèmes de numérations et codages Présenté par A.Khalid 2 Plan de la présentation 1. Introduction 2. Nombres binaires Conversion Binaire Décimal Conversion Entier Décimal Binaire Arithmétique Binaire

Plus en détail

2012/2013 Le codage en informatique

2012/2013 Le codage en informatique 2012/2013 Le codage en informatique Stéphane Fossé/ Marc Gyr Lycée Felix Faure Beauvais 2012/2013 INTRODUCTION Les appareils numériques que nous utilisons tous les jours ont tous un point commun : 2 chiffres

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

LES AUTOMATES. Automate

LES AUTOMATES. Automate 1.1 Généralités 1 AUTOMATES SYNCHRONES LES AUTOMATES On appelle automate un opérateur séquentiel dont l'état et les sorties futurs sont fonction des entrées et de l'état présent de l'automate (Figure 1).

Plus en détail

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux Théorie des Langages Formels Chapitre 5 : Automates minimaux Florence Levé Florence.Leve@u-picardie.fr Année 2015-2016 1/29 Introduction Les algorithmes vus précédemment peuvent mener à des automates relativement

Plus en détail

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Algorithmique P2 HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16.

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16. 1. Systèmes de numération 11. Système décimal : Base 10 C est le système utilisé dans la vie courante, il est basé sur le nombre 10. Pour représenter les nombres décimaux, on utilise les chiffres de 0

Plus en détail

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons Chapitre II DÉFINITION DES SYSTÈMES LOGIQUES 2.1 LES NOMBRES DANS LES SYSTÈMES LOGIQUES Les humains comptent en DÉCIMAL 2.1.1 DÉCIMAL: o Base 10 o 10 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 o M C D U o

Plus en détail

Automates Programmables Industriels

Automates Programmables Industriels Automates Programmables Industriels 1) Structure d un API...2 1.1 Structure matérielle...2 1.2 Mémoire programme utilisateur...2 1.3 Mémoire bit...3 1.4 Mémoire mot...4 2) Structure logicielle...4 2.1.

Plus en détail

LibreOffice Calc : introduction aux tableaux croisés dynamiques

LibreOffice Calc : introduction aux tableaux croisés dynamiques Fiche logiciel LibreOffice Calc 3.x Tableur Niveau LibreOffice Calc : introduction aux tableaux croisés dynamiques Un tableau croisé dynamique (appelé Pilote de données dans LibreOffice) est un tableau

Plus en détail

Systèmes de Numération & Codage

Systèmes de Numération & Codage Systèmes de Numération & Codage Objectif : L électronicien est amené à manipuler des valeurs exprimées dans différentes bases (notamment avec les systèmes informatiques). Il est essentiel de posséder quelques

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

Module 1 - Arithmétique Chapitre 1 - Numération

Module 1 - Arithmétique Chapitre 1 - Numération Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Module 1 - Arithmétique Chapitre 1 - Numération 1 Introduction : que signifie 2014? Dans de nombreuses situations, il est nécessaire de pouvoir exprimer

Plus en détail

Chap. 2. Langages et automates

Chap. 2. Langages et automates Chapitre 2. Langages et automates 1. Quelques définitions et description d un langage. 2. Les expressions régulières. 3. Les automates fini déterministes et non-déterministes. 4. Construction automatique

Plus en détail

Compte-rendu du TP d'architecture : Addition Soustraction BCD

Compte-rendu du TP d'architecture : Addition Soustraction BCD Yann Le Brech Camille Maupetit Université de Nantes Compte-rendu du TP d'architecture : Addition Soustraction BCD 1 Présentation 1.1 Fonctionnement Le principe de fonctionnement du circuit est le suivant

Plus en détail

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr Codage des nombres Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Eric.Cariou@univ-pau.fr 1 Représentation de l'information Un ordinateur manipule des données Besoin de coder

Plus en détail

CH VI) Fractions. - Le cercle ci dessous est partagé en 4, hachurer 1 des 4 parties. - Le cercle suivant est partagé en 8, hachurer 2 des 8 parties.

CH VI) Fractions. - Le cercle ci dessous est partagé en 4, hachurer 1 des 4 parties. - Le cercle suivant est partagé en 8, hachurer 2 des 8 parties. CH VI) Fractions I) Représentation dune fraction : Le cercle ci dessous est partagé en, hachurer 1 des parties. On écrit 1 du cercle est hachuré. Le cercle suivant est partagé en, hachurer des parties.

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Introduction au codage de l information:

Introduction au codage de l information: Introduction au codage de l information: Quelques éléments d architecture de l ordinateur Comparaison de la carte perforée au DVD Pourquoi est-il nécessaire de coder l information? Numérisation Formats

Plus en détail

Conjecture de Syracuse

Conjecture de Syracuse Conjecture de Syracuse Énoncé du problème [1] : Soit (U)n la suite définie par : (U)0=N, avec N N* [(U)n]/2 si (U)n est pair. et (U)n+1 = 3(U)n +1 si (U)n est impair. La Conjecture de Syracuse affirme

Plus en détail

Devoir surveillé d'informatique UE INF121 durée : 2h00

Devoir surveillé d'informatique UE INF121 durée : 2h00 Devoir surveillé d'informatique UE INF121 durée : 2h00 Répondez sur le sujet. Ne vous ez pas à la taille des pointillés : la taille des pointillés ne correspond pas forcément à la taille de la réponse.

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique Objectifs : Exploiter les codes numériques & Convertir une information d un code à un autre. I- Mise en situation Réaliser l activité de découverte page 6 ; Manuel d activités II- Systèmes de numération

Plus en détail

TD 5 LES POINTEURS. Définition: Pointeur

TD 5 LES POINTEURS. Définition: Pointeur TD 5 LES POINTEURS d'après le site de F. Faber http://www.ltam.lu/tutoriel_ansi_c Définition: Pointeur Un pointeur est une variable spéciale qui peut contenir l'adresse d'une autre variable. En C, chaque

Plus en détail

III - PROGRAMMATION EN ASSEMBLEUR

III - PROGRAMMATION EN ASSEMBLEUR III - PROGRAMMATION EN ASSEMBLEUR 3.1 Introduction à la programmation en assembleur Pour programmer un ordinateur on utilise généralement des langages dits évolués ou de haut niveau : C, C++, Java, Basic,

Plus en détail

Informatique? Numérique? L informatique est la science du traitement de l information.

Informatique? Numérique? L informatique est la science du traitement de l information. Informatique? Numérique? L informatique est la science du traitement de l information. L information est traitée par un ordinateur sous forme numérique : ce sont des valeurs discrètes. Cela signifie que,

Plus en détail

Calculabilité Cours 2 : Machines de Turing

Calculabilité Cours 2 : Machines de Turing Calculabilité Cours 2 : Machines de Turing Introduction Un autre type de modèle de calcul Les fonctions récursives et les fonctions λ représentables définissent des modèles de calculs dans k N Nk N Nous

Plus en détail

Codage des informations le système binaire

Codage des informations le système binaire Module ASR - Architecture Codage des informations le système binaire Associer à toute information une représentation par une succession de et de : Exemples d information à coder Entiers naturels : 5, 54,

Plus en détail

Problème : débordement de la représentation ou dépassement

Problème : débordement de la représentation ou dépassement Arithmétique entière des ordinateurs (représentation) Écriture décimale : écriture positionnelle. Ex : 128 = 1 10 2 + 2 10 1 + 8 10 0 Circuit en logique binaire Écriture binaire (base 2) Ex : (101) 2 =

Plus en détail

CANTONS, SIGNAUX ET DETECTEURS en MODELISME FERROVIAIRE UNE APPROCHE SIMPLIFIÉE

CANTONS, SIGNAUX ET DETECTEURS en MODELISME FERROVIAIRE UNE APPROCHE SIMPLIFIÉE CANTONS, SIGNAUX ET DETECTEURS en MODELISME FERROVIAIRE UNE APPROCHE SIMPLIFIÉE version 1.0 du 10 avril 2009 Jean-Pierre PILLOU 1 SOMMAIRE 1 CANTONS ET ZONES D'AIGUILLES... 3 1.1 CANTONS... 3 1.2 ZONES

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Introduction à l Informatique

Introduction à l Informatique Introduction à l Informatique. Généralités : Etymologiquement, le mot informatique veut dire «traitement d information». Ceci signifie que l ordinateur n est capable de fonctionner que s il y a apport

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Algorithmique Chapitre N o I : Introduction à Python

Algorithmique Chapitre N o I : Introduction à Python POIRET Aurélien Algorithmique MPSI Algorithmique Chapitre N o I : Introduction à Python Un algorithme est une suite nie d'opérations élémentaires constituant un schéma de calcul ou de résolution de problème.

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

Par combien de zéros se termine N!?

Par combien de zéros se termine N!? La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine

Plus en détail

SYSTEMES DE NUMERATIONS ET CODAGES

SYSTEMES DE NUMERATIONS ET CODAGES SYSTEMES DE NUMERATIONS ET CODAGES - Introduction En binaire, on distingue trois principaux systèmes de codage : Binaire pur, Binaire DCB (Décimal Codé Binaire), Binaire réfléchi (code Gray). En informatique

Plus en détail

CHAPITRE 2 LA REPRÉSENTATION DES DONNÉES

CHAPITRE 2 LA REPRÉSENTATION DES DONNÉES CHAPITRE 2 LA REPRÉSENTATION DES DONNÉES. LES SYSTEMES DE NUMÉRATION Dans la vie de tous jours, nous avons pris l'habitude de représenter les nombres en utilisant dix symboles différents, à savoir les

Plus en détail

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001)

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) F. Pellegrini Université Bordeaux 1 Ce document est copiable et distribuable librement et gratuitement

Plus en détail

Langages formels Corrigé Laboratoire 1

Langages formels Corrigé Laboratoire 1 Langages formels Corrigé Laboratoire 1 Exercice 1 a) b) ER : (a+b)*ba(a+b)* c) ER: a(a+b+c)*bc d) ER: a* + a*ba* + a*ba*ba*b(a+b)* ER: a*ba*ba* e) Lorsqu'il faut construire un automate pour un langage

Plus en détail

Le système binaire. Comment comptons nous en décimal? Le binaire. Présentation

Le système binaire. Comment comptons nous en décimal? Le binaire. Présentation Le système binaire Comment comptons nous en décimal? Depuis la fin du moyen-age, nous comptons en base 10. Certains diront que cette pratique est venue du fait que nous avons 10 doigts. Il en découle principalement

Plus en détail

Initiation à la programmation en Python

Initiation à la programmation en Python I-onventions Initiation à la programmation en Python Une commande Python sera écrite en caractère gras. Exemples : print("bonjour") max=input("nombre maximum autorisé :") Le résultat de l'exécution d'un

Plus en détail

Cours. La numération

Cours. La numération Cours La numération Cours sur la numération P V1.6 1/10 Lycée Jules Ferry Versailles - CRDEMA 2007-2008 TABLE DES MATIERES : 1 INTRODUCTION....3 1.1 LA BASE....3 2 LES SYSTEMES DE NUMERATION...3 2.1 LE

Plus en détail

Le codage de l'information

Le codage de l'information Le codage de l'information Compétences associées A2 : Analyser et interpréter une information numérique Objectifs Etre capable: - de définir le rang ou le poids d'un chiffre d'un système de numération,

Plus en détail

SBE 30 rue de Penthièvre 75008 PARIS Tel : 01.42.25.23.23 Mail : contact@sbedirect.com Web : www.sbedirect.com QUESTIONS REPONSES

SBE 30 rue de Penthièvre 75008 PARIS Tel : 01.42.25.23.23 Mail : contact@sbedirect.com Web : www.sbedirect.com QUESTIONS REPONSES QUESTIONS REPONSES Q: Comment imprimer avec des imprimantes utilisant des étiquettes en rouleau (par exemple les imprimantes de type 'CAB') R: En fait pour ces imprimantes, une étiquette est considérée

Plus en détail

Programmation C++ (débutant)/les tableaux statiques

Programmation C++ (débutant)/les tableaux statiques Programmation C++ (débutant)/les tableaux statiques 1 Programmation C++ (débutant)/les tableaux statiques Le cours du chapitre 6 : les tableaux statiques Les tableaux Une variable entière de type int ne

Plus en détail

LA FORMATION CONTINUE PAR LA PRATIQUE

LA FORMATION CONTINUE PAR LA PRATIQUE LE BINAIRE C'est vers la fin des années 1930 que Claude Shannon démontra qu'une machine exécutant des informations logiques pouvait manipuler de l'information. A l'aide de " contacteurs " fermés pour vrai

Plus en détail

Algorithmique et programmation. Cours d'algorithmique illustré par des exemples pour le picbasic

Algorithmique et programmation. Cours d'algorithmique illustré par des exemples pour le picbasic Algorithmique et programmation Cours d'algorithmique illustré par des exemples pour le picbasic Même s'il est possible d'écrire un programme petit à petit par touches successives, le résultat est souvent

Plus en détail

Formation tableur niveau 2 (LibreOffice Calc 4)

Formation tableur niveau 2 (LibreOffice Calc 4) Formation tableur niveau 2 (LibreOffice Calc 4) L objectif général de cette formation est de vous permettre d améliorer votre confort de travail et de découvrir quelques fonctions avancées de LibreOffice

Plus en détail

Avant de programmer en Java DOS Set Path=C:\JDK\bin Path=C:\JDK\bin C:\JDK\bin Set Path=%Path%;C:\JDK\bin C:\JDK\bin C:\JDK\

Avant de programmer en Java DOS Set Path=C:\JDK\bin Path=C:\JDK\bin C:\JDK\bin Set Path=%Path%;C:\JDK\bin C:\JDK\bin C:\JDK\ Exercices corrigés de programmation OO Java Préparés par : Mlle Imene Sghaier Année Académique : 2006-2007 Premiers Pas I. Avant de programmer en Java Le JDK de Sun (Java Development Kit) est l outil essentiel

Plus en détail

TP Sage. Yannick Renard.

TP Sage. Yannick Renard. TP Sage. Yannick Renard. 1. Introduction. Le logiciel Software for Algebra and Geometry Experimentation (Sage) est un logiciel de mathématiques qui rassemble de nombreux programmes et bibliothèques libres

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Cours 9: Automates finis

Cours 9: Automates finis Cours 9: Automates finis Olivier Bournez ournez@lix.polytechnique.fr LIX, Ecole Polytechnique INF421-a Bases de la programmation et de l algorithmique Aujourd hui Rappels Déterminisation Automates et expressions

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Compte-rendu de projet de Cryptographie

Compte-rendu de projet de Cryptographie Compte-rendu de projet de Cryptographie Chirement/Déchirement de texte, d'images de sons et de vidéos LAMBERT VELLER Sylvain M1 STIC Université de Bourgogne 2010-2011 Reponsable : Mr Pallo Table des matières

Plus en détail