Vers l'ordinateur quantique

Dimension: px
Commencer à balayer dès la page:

Download "Vers l'ordinateur quantique"

Transcription

1 Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate A a un nombre ni d'états alors que le langage qu'il reconnaît L (A) est le plus souvent inni. Le miracle vient du fait que l'automate ne représente pas directement les données mais un calcul à eectuer pour obtenir les données. On a donc échangé de l'espace mémoire (celui des données) contre du temps (le temps nécessaire pour les calculer). Le même principe de représentation des données sous forme de calcul permet de représenter l'innité des décimales du nombre π par un programmme (d'un millier de ligne) qui calcule la n e décimale de π pour tout n N. Innités d'opérations Maintenant qu'on sait représenter des données innies, on aimerait eectuer des calculs sur ces données sans avoir à les énumérer sinon on sera à nouveau confronter à l'inni. C'est possible dans une certaine mesure et les automates en orent un bon exemple. Construction d'additionneurs L'objectif de ce chapître est de faire un pas vers l'informatique quantique capable de réaliser une innité d'opérations en un temps ni. Considérons des automates A n et A p qui reconnaissent des mots sur Σ = {, }. Les mots de L (A n ) et L (A p ) peuvent être vus comme des nombres binaires. L'automate A n est le codage de l'ensemble des nombres binaires (éventuellement une innité) qu'il reconnaît L (A n ) = {n, n 2,...}. De même L (A p ) = {p, p 2,...} On va voir qu'il est possible de constuire un automate, noté A n A p, qui reconnaît exactement l'ensemble des sommes formées de nombres n L (A n ) et p L (A p ). Autrement dit, L (A n A p ) = {n + p n L (A n ), p L (A p )}. Pour calculer et acher explicitement cet ensemble, il faudrait faire une innité d'opérations. L'utilisation d'automates permet de contourner cet obstacle et d'obtenir une représentation compacte de cet ensemble sous la forme d'un automate A n A p par un algortihme ecace en O((N P ) 2 ) où N est la taille A n et P celle de A p. Transducteur Un transducteur T est un automate qui consomme des symboles dans un ux d'entrée et produit des symboles sur un ux de sortie (un automate est un cas particulier de transducteur qui ne produit rien). Les transitions d'un transducteur sont de la forme q i/o q où i est le symbole consommé sur le ux d'entrée par la transition et o est le symbole produit sur le ux de sortie. La transition consomme i et produit o : on dit donc que o est la traduction du symbole i ; d'où le nom de transducteur. Ainsi, lorsqu'on exécute un transducteur T sur un mot ω, il se comporte comme un automate et s'il reconnaît le mot il produit une traduction du mot sur le ux de sortie. Langage d'entrée, langage de sortie Le langage d'entrée d'un transducteur T est le langage de l'automate obtenu en considérant les transitions de T comme des transitions d'automate classique ; c'est-à-dire en considérant uniquement la partie q i q des transitions q i/o q. L i (T ) = L (Input(T )) avec Input(q i/o q ) = q i q Le langage de sortie d'un transducteur T est le langage de l'automate obtenu en considérant uniquement la partie q o q des transitions q i/o q.

2 L o (T ) = L (Output(T )) avec Output(q i/o q ) = q o q Exécution d'un transducteur (à rédiger) Donnez un transducteur T qui reconnaît les mots sur Σ = {, } commençant et qui inverse les et les.. Donnez un transducteur T qui reconnaît tous les mots sur Σ = {, } et qui supprime les Donnez un transducteur T qui reconnaît tous les mots sur Σ = {, } et qui supprime les situés après un. Produit d'un automate A et d'un transducteur T Le principe est le même que pour les automates (à nombre) d'états ni : on exécute simultanément A et T ; pour avancer de concert il faut que A et T soient d'accord sur le symbole d'entrée, et on garde la partie production des transitions de T. (q a, q t ) (q i/o a, q t) i A T si et seulement si q a q a i/o A et q t q t T Image d'un automate A par un transducteur T La traduction (ou l'image) des mots de A par un transducteur correspond au langage de sortie de l'automate produit A T, c'est donc Image de A par T = Output(A T ) Q. Donnez un automate A qui reconnaît les nombres binaires pairs écrits avec les unités à gauche. Exemples : - ()N () 2 (...) 2 (. ) 2 / L (A) - (2)N (.) 2 (.. ) 2 L (A) - (3)N (.) 2 (.. ) 2 / L (A) = a A a Q2. Faîtes le produit de A par le transducteur T qui reconnaît tous les mots et inverse les et les. A T = a a / q (a,q) / / (a,q) / / 2

3 Q3. Donnez l'automate qui correspond aux mots de A traduit par le transducteur T. et décrire en une phrase le langage reconnu par cet automate. Output(A T ) = (a,q) (a,q) nombres binaires impairs Addition numérique des langages de deux automates Pour constuire l'automate A n A p, on transforme l'un d'eux (le plus simple), disons A p en transducteur-additionneur T p, on prend l'image des mots de A n par le transducteur-additionneur T p A n A p = Output(A n T p ) 2 Algorithme de construction d'un transducteur additionneur 2. Remarque préliminaire Lorsqu'on veut additionner deux nombres n et p, on complète le plus court des deux par des an d'obtenir des nombres de même taille ou on leur ajoute même un pour prévoir le cas d'une retenue en n d'addition. Exemple : on considére des nombres binaires écrits avec les unités à gauche et donc on fait l'addition de gauche à droite : = n + = p détail des calculs : sens du calcul retenue = n complété + = p complété Tout nombre binaire p est équivalent à p. : le nombre p auquel on a ajouté des non signicatifs. 2.2 Étapes de constructions du transducteur-additionneur associé à A p Étant donné un automate A p sur l'alphabet Σ = {, }, l'algorithme suivant produit un transducteur qui implante l'addition numérique avec retenue d'un nombre p du langage L (A p ). Exemple : On commence par un exemple simple en considérant l'automate A = a a étape : extension de A p avec des non-signicatifs À chaque état accepteur de A p on ajoute l'extension suivante qui reconnaît les non-signicatifs : ɛ Puis on renomme les transitions et de A p en + et +. Exemple : Pour A p, on obtient a ɛ a a 2 qui se simplie en a a 2 on obtient alors une chose qui n'est ni un automate ni un transducteur A p = a + a 2 + 3

4 Transformation des transitions +? en transitions de transducteur Chaque transition q + q doit incrémenter le digit lu en entrée ; elle donne donc naissance à deux transitions /.. /.. et en fonction de l'entrée et en tenant compte de la retenue. On indique la valeur de la retenue dans les états du transducteur qui sont donc de la forme (q, r = ), (q, r = ). Une transition q + q génère donc les transitions suivantes dans le transducteur : (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = Une transition q + q génère donc les transitions suivantes dans le transducteur : (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = (q, r = ) / + (q, r = ) car r = + + le '' lu donne et r = L'état initial de T est l'état initial de A avec la retenue égale à. Les états accepteurs du transducteur sont les états de la forme (q, r = ) avec q accepteur et une retenue égale à. Exemple : À partir de A p = a + a 2 + on obtient le transducteur : T p = (a,r=) +: /,/ / a 2,r= + + / + / (a 2,r=) +: / qu'on écrit plus simplement / /,/ T p = / / / 2.3 Généralition et algorithme Le Transducteur-additionneur T associé à un automate A sur l'alphabet Σ = {, } est déni de la manière suivante : 4

5 q + q A p = q + q A p = /, / (q, r = ) (q, r = ) (q, r = ) (q /, r = ) T p (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) (q, r = ) / (q, r = ) q Init(A p ) = (q, r = ) Init(T p ) q Acc(A p ) = (q, r = ) Acc(T p ) T p Tout état avec une retenue (..., r = ) ne peut-être ni initial, ni accepteur. Q. Donnez l'automate A n qui reconnaît les nombres binaires pairs écrits avec les unités à gauche et donnez une expression régulière équivalente. A n = a a.( ) Q2. Construire le transducteur-additionneur T p associé à l'automate A p = a a a 2 Q3. À partir de l'automate A n et du transducteur-additionneur T p, constuire l'automate qui reconnait le langage {n + p n L (A n ), p L (A p )}. 5

IUT de Colmar - Département RT 1ière année. Numération

IUT de Colmar - Département RT 1ière année. Numération IUT de Colmar - Département RT 1ière année. Numération 1 Laurent MURA. SOMMAIRE 1. Les différents systèmes 2. Les différentes conversions 3. Quelques systèmes de codage 4. L arithmétique binaire 2 IUT

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Cours sur la numération La numération Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Le système décimal Les nombres que nous utilisons

Plus en détail

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net Article rédigé avec epsilonwriter puis copié dans Word La théorie des mouvements

Plus en détail

L addition et la multiplication en binaire

L addition et la multiplication en binaire Objectifs : Leçon A1-1 : L addition et la multiplication en binaire OS 1 - Exécuter en binaire une opération arithmétique de base. OS 2 - Représenter un nombre entier relatif. OS 3 - Mettre en œuvre un

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

Les opérations binaires

Les opérations binaires Les opérations binaires Compétences associées A2 : Analyser et interpréter une information numérique Objectifs Etre capable: - De coder les nombres entiers en code complément à 2. - De résoudre les opérations

Plus en détail

CODE DETECTEUR D'ERREUR (voir Schaum) Un des avantages des systèmes numériques (l'ordinateur, par exemple) réside dans leur grande précision. Cependant, bien que ces systèmes soient précis, des erreurs

Plus en détail

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé Jusqu'à présent Nous avons déjà abordé Vers l'inni David Teller 23/01/2007 Les ensembles Le regroupement de valeurs caractérisées par des critères. Informatique Types. Physique Unités. Logique Domaines.

Plus en détail

Systèmes Binaires. V. Langlet

Systèmes Binaires. V. Langlet Systèmes Binaires V. Langlet Niveau : De la Terminale aux Maths du supérieur Diculté : De plus en plus dur au l des exercices. Durée : Environ deux heures, suivant la compréhension du sujet. Rubrique(s)

Plus en détail

4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS LOGIQUE COMBINATOIRE

4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS LOGIQUE COMBINATOIRE 4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS Leçon 2 - OPÉRATIONS ARITHMÉTIQUES DANS LE SYSTÈME BINAIRE Avec les connaissances que nous venons d'acquérir, nous sommes en mesure maintenant d'écrire la suite

Plus en détail

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

CODES (SUITE) Le code binaire étudié précédemment est nommé code binaire naturel (BN), il existe deux autres codes binaires:

CODES (SUITE) Le code binaire étudié précédemment est nommé code binaire naturel (BN), il existe deux autres codes binaires: LES CODES (SUITE) I. LES CODES BINAIRES Le code binaire étudié précédemment est nommé code binaire naturel (BN), il existe deux autres codes binaires: Le code binaire DCB (Décimal Codé Binaire) Le code

Plus en détail

Calculateur quantique: factorisation des entiers

Calculateur quantique: factorisation des entiers Calculateur quantique: factorisation des entiers Plan Introduction Difficulté de la factorisation des entiers Cryptographie et la factorisation Exemple RSA L'informatique quantique L'algorithme quantique

Plus en détail

CHAPITRE 2 LA REPRÉSENTATION DES DONNÉES

CHAPITRE 2 LA REPRÉSENTATION DES DONNÉES CHAPITRE 2 LA REPRÉSENTATION DES DONNÉES. LES SYSTEMES DE NUMÉRATION Dans la vie de tous jours, nous avons pris l'habitude de représenter les nombres en utilisant dix symboles différents, à savoir les

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

2012/2013 Le codage en informatique

2012/2013 Le codage en informatique 2012/2013 Le codage en informatique Stéphane Fossé/ Marc Gyr Lycée Felix Faure Beauvais 2012/2013 INTRODUCTION Les appareils numériques que nous utilisons tous les jours ont tous un point commun : 2 chiffres

Plus en détail

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr Codage des nombres Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Eric.Cariou@univ-pau.fr 1 Représentation de l'information Un ordinateur manipule des données Besoin de coder

Plus en détail

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons Chapitre II DÉFINITION DES SYSTÈMES LOGIQUES 2.1 LES NOMBRES DANS LES SYSTÈMES LOGIQUES Les humains comptent en DÉCIMAL 2.1.1 DÉCIMAL: o Base 10 o 10 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 o M C D U o

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1.

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1. Cours de Numération A). Introduction : I ). Généralités : Le système binaire (Base 2) a été conçu au 17 ème siècle par le mathématicien LEIBNITZ. Il présente l'avantage de ne comporter que deux symboles

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Codage des informations le système binaire

Codage des informations le système binaire Module ASR - Architecture Codage des informations le système binaire Associer à toute information une représentation par une succession de et de : Exemples d information à coder Entiers naturels : 5, 54,

Plus en détail

Conception de circuits numériques et architecture des ordinateurs

Conception de circuits numériques et architecture des ordinateurs Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot Année universitaire 2014-2015 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Codage des nombres en base 2, logique

Plus en détail

Chapitre 1. Une porte doit être ouverte et fermée. 1.1 Les enjeux de l'informatique quantique

Chapitre 1. Une porte doit être ouverte et fermée. 1.1 Les enjeux de l'informatique quantique Chapitre Une porte doit être ouverte et fermée Crois et tu comprendras ; la foi précède, l'intelligence suit. Saint Augustin. Les enjeux de l'informatique quantique La puissance de calcul des ordinateurs

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

CH.6 Propriétés des langages non contextuels

CH.6 Propriétés des langages non contextuels CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le

Plus en détail

Traitement numérique de l'image. Raphaël Isdant - 2009

Traitement numérique de l'image. Raphaël Isdant - 2009 Traitement numérique de l'image 1/ L'IMAGE NUMÉRIQUE : COMPOSITION ET CARACTÉRISTIQUES 1.1 - Le pixel: Une image numérique est constituée d'un ensemble de points appelés pixels (abréviation de PICture

Plus en détail

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT Les portes logiques Nous avons jusqu ici utilisé des boutons poussoirs et une lampe pour illustrer le fonctionnement des opérateurs logiques. En électronique digitale, les opérations logiques sont effectuées

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

@ Numéro de publication: DEMANDE DE BREVET EUROPEEN. int. ci.*: G 06 F 7/52 G 06 F 7/50

@ Numéro de publication: DEMANDE DE BREVET EUROPEEN. int. ci.*: G 06 F 7/52 G 06 F 7/50 Patentamt JEuropâisches European Patent Office Office européen des brevets @ Numéro de publication: 0 329 572 A1 DEMANDE DE BREVET EUROPEEN Numéro de dépôt: 89420043.5 @ Date de dépôt: 13.02.89 int. ci.*:

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

Introduction à l'informatique. Vincent Boyer et Jean Méhat

Introduction à l'informatique. Vincent Boyer et Jean Méhat Introduction à l'informatique Vincent Boyer et Jean Méhat 19 février 2010 Copyright (C) 2009 Jean Méhat Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

Plus en détail

SYSTEMES DE NUMERATIONS ET CODAGES

SYSTEMES DE NUMERATIONS ET CODAGES SYSTEMES DE NUMERATIONS ET CODAGES - Introduction En binaire, on distingue trois principaux systèmes de codage : Binaire pur, Binaire DCB (Décimal Codé Binaire), Binaire réfléchi (code Gray). En informatique

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Analyse et programmation 1

Analyse et programmation 1 Analyse et programmation Aperçu du fonctionnement de l ordinateur Fonctionnement de l ordinateur Codage de l information Bus d échange d information CPU Exécution d un programme par la CPU Gestion des

Plus en détail

Conception de circuits numériques et architecture des ordinateurs

Conception de circuits numériques et architecture des ordinateurs Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot Année universitaire 2014-2015 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Codage des nombres en base 2, logique

Plus en détail

Compte-rendu du TP d'architecture : Addition Soustraction BCD

Compte-rendu du TP d'architecture : Addition Soustraction BCD Yann Le Brech Camille Maupetit Université de Nantes Compte-rendu du TP d'architecture : Addition Soustraction BCD 1 Présentation 1.1 Fonctionnement Le principe de fonctionnement du circuit est le suivant

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

Traitement de texte : Quelques rappels de quelques notions de base

Traitement de texte : Quelques rappels de quelques notions de base Traitement de texte : Quelques rappels de quelques notions de base 1 Quelques rappels sur le fonctionnement du clavier Voici quelques rappels, ou quelques appels (selon un de mes profs, quelque chose qui

Plus en détail

LibreOffice Calc : introduction aux tableaux croisés dynamiques

LibreOffice Calc : introduction aux tableaux croisés dynamiques Fiche logiciel LibreOffice Calc 3.x Tableur Niveau LibreOffice Calc : introduction aux tableaux croisés dynamiques Un tableau croisé dynamique (appelé Pilote de données dans LibreOffice) est un tableau

Plus en détail

OPÉRATIONS SUR LES FRACTIONS

OPÉRATIONS SUR LES FRACTIONS OPÉRATIONS SUR LES FRACTIONS Sommaire 1. Composantes d'une fraction... 1. Fractions équivalentes... 1. Simplification d'une fraction... 4. Règle d'addition et soustraction de fractions... 5. Règle de multiplication

Plus en détail

Méthodes de développement. Analyse des exigences (spécification)

Méthodes de développement. Analyse des exigences (spécification) 1 / 16 Méthodes de développement Analyse des exigences (spécification) 1 -Objectifs de l'analyse des exigences... 2 2 - Approfondissement et formalisation du besoin... 2 2.1 Séparation des besoins, contraintes

Plus en détail

Initiation à la programmation en Python

Initiation à la programmation en Python I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Informatique / Programmation

Informatique / Programmation Informatique / Programmation Programmation orientée objet avec Java 02 : Expressions et opérateurs Jacques Bapst jacques.bapst@hefr.ch Expressions [1] Les expressions sont des entités composées de littéraux,

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Par combien de zéros se termine N!?

Par combien de zéros se termine N!? La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16.

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16. 1. Systèmes de numération 11. Système décimal : Base 10 C est le système utilisé dans la vie courante, il est basé sur le nombre 10. Pour représenter les nombres décimaux, on utilise les chiffres de 0

Plus en détail

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Algorithmique P2 HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation

Plus en détail

NUMERATION ET CODAGE DE L INFORMATION

NUMERATION ET CODAGE DE L INFORMATION NUMERATION ET CODAGE DE L INFORMATION La nécessité de quantifier, notamment les échanges commerciaux, s'est faite dés la structuration de la vie sociale. Les tentatives de représentation symbolique de

Plus en détail

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond

Plus en détail

MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN

MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN 1. Introduction Le règlement (UE) n 610/2013 du 26 juin 2013 a modifié la convention d'application de l'accord de Schengen,

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Patentamt JEuropaisches. European Patent Office Numéro de publication: 0 1 1 0 7 6 7 Office européen des brevets DEMANDE DE BREVET EUROPEEN

Patentamt JEuropaisches. European Patent Office Numéro de publication: 0 1 1 0 7 6 7 Office européen des brevets DEMANDE DE BREVET EUROPEEN Patentamt JEuropaisches European Patent Office Numéro de publication: 0 1 1 0 7 6 7 Office européen des brevets ^ DEMANDE DE BREVET EUROPEEN Numéro de dépôt: 83402232.9 @ Int. Cl.3: G 06 F 7/52 Date de

Plus en détail

La correction des erreurs d'enregistrement et de traitement comptables

La correction des erreurs d'enregistrement et de traitement comptables La correction des erreurs d'enregistrement et de traitement comptables Après l'étude des différents types d'erreurs en comptabilité (Section 1) nous étudierons la cause des erreurs (Section 2) et les techniques

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

1.1 L EXPLORATEUR WINDOWS

1.1 L EXPLORATEUR WINDOWS Gérer les fichiers et les dossiers Cette partie du T.P. a pour objectifs de vous familiariser avec les méthodes pour copier, déplacer, effacer, renommer des dossiers et des fichiers. 1.1 L EXPLORATEUR

Plus en détail

III - PROGRAMMATION EN ASSEMBLEUR

III - PROGRAMMATION EN ASSEMBLEUR III - PROGRAMMATION EN ASSEMBLEUR 3.1 Introduction à la programmation en assembleur Pour programmer un ordinateur on utilise généralement des langages dits évolués ou de haut niveau : C, C++, Java, Basic,

Plus en détail

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique Objectifs : Exploiter les codes numériques & Convertir une information d un code à un autre. I- Mise en situation Réaliser l activité de découverte page 6 ; Manuel d activités II- Systèmes de numération

Plus en détail

Régime de retraite patronal-syndical (Québec) de l'association internationale des machinistes (A.I.M.)

Régime de retraite patronal-syndical (Québec) de l'association internationale des machinistes (A.I.M.) Régime de retraite patronal-syndical (Québec) de l'association internationale des machinistes (A.I.M.) 2002 Pourquoi la planification de la retraite est-elle importante? Peu importe vos projets pour la

Plus en détail

QUESTION 1 {2 points}

QUESTION 1 {2 points} ELE4301 Systèmes logiques II Page 1 de 8 QUESTION 1 {2 points} En se servant de paramètres électriques donnés dans le Tableau 1 ci-dessous, on désire déterminer la fréquence d opération du compteur présenté

Plus en détail

GPA770 Microélectronique appliquée Exercices série A

GPA770 Microélectronique appliquée Exercices série A GPA770 Microélectronique appliquée Exercices série A 1. Effectuez les calculs suivants sur des nombres binaires en complément à avec une représentation de 8 bits. Est-ce qu il y a débordement en complément

Plus en détail

Google Drive, le cloud de Google

Google Drive, le cloud de Google Google met à disposition des utilisateurs ayant un compte Google un espace de 15 Go. Il est possible d'en obtenir plus en payant. // Google Drive sur le web Se connecter au site Google Drive A partir de

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

RAPPORT DE STAGE GENERATION DE TESTS POUR AMELIORER DES OUTILS DE CALCUL DE TEMPS D'EXECUTION PIRE CAS

RAPPORT DE STAGE GENERATION DE TESTS POUR AMELIORER DES OUTILS DE CALCUL DE TEMPS D'EXECUTION PIRE CAS Université Joseph Fourier Département Licence Sciences & Technologie RAPPORT DE STAGE GENERATION DE TESTS POUR AMELIORER DES OUTILS DE CALCUL DE TEMPS D'EXECUTION PIRE CAS Laboratoire d'accueil : Verimag

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

PAR Jean PIAGET (Genève).

PAR Jean PIAGET (Genève). EXTRAIT DE L' Enseignement mathématique, N os 1-2, 36e ANNÉE 1937. Version électronique réalisée par les soins de la Fondation Jean Piaget pour recherches psychologiques et épistémologiques. La pagination

Plus en détail

Guide d'utilisation. OpenOffice Calc. AUTEUR INITIAL : VINCENT MEUNIER Publié sous licence Creative Commons

Guide d'utilisation. OpenOffice Calc. AUTEUR INITIAL : VINCENT MEUNIER Publié sous licence Creative Commons Guide d'utilisation OpenOffice Calc AUTEUR INITIAL : VINCENT MEUNIER Publié sous licence Creative Commons 1 Table des matières Fiche 1 : Présentation de l'interface...3 Fiche 2 : Créer un nouveau classeur...4

Plus en détail

L'instruction if permet d'exécuter des instructions différentes selon qu'une condition est vraie ou fausse. Sa forme de base est la suivante:

L'instruction if permet d'exécuter des instructions différentes selon qu'une condition est vraie ou fausse. Sa forme de base est la suivante: 420-183 Programmation 1 8. Les structures conditionnelles Dans l'écriture de tout programme informatique, une des premières nécessités que nous rencontrons est de pouvoir faire des choix. Dans une application

Plus en détail

Contrat d'hébergement

Contrat d'hébergement Contrat d'hébergement Le contrat suivant est conclu entre Atmédia Communication, (SIRET : 398 453 407 00031, RCS Orléans 398 453 407 (95 B 690)), dont le siège social est situé au 69 rue du colombier,

Plus en détail

Diagrammes de décisions binaires

Diagrammes de décisions binaires Diagrammes de décisions binaires Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juillet 2009 ATTENTION! N oubliez

Plus en détail

Protocole TCP/IP. On classe généralement les protocoles en deux catégories selon le niveau de contrôle des données que l'on désire :

Protocole TCP/IP. On classe généralement les protocoles en deux catégories selon le niveau de contrôle des données que l'on désire : Nom.. Prénom.. Protocole TCP/IP Qu'est-ce qu'un protocole? Un protocole est une méthode de codage standard qui permet la communication entre des processus s'exécutant éventuellement sur différentes machines,

Plus en détail

Logiciel de Base. I. Représentation des nombres

Logiciel de Base. I. Représentation des nombres Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) mugwaneza@univmed.fr I. Représentation des nombres Codage et représentation de l'information Information externe formats

Plus en détail

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2 Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101 Danny Dubé Hiver 2014 Version : 11 avril Questions Travail pratique #2 Traduction orientée-syntaxe

Plus en détail

V- Manipulations de nombres en binaire

V- Manipulations de nombres en binaire 1 V- Manipulations de nombres en binaire L ordinateur est constitué de milliards de transistors qui travaillent comme des interrupteurs électriques, soit ouverts soit fermés. Soit la ligne est activée,

Plus en détail

modélisation solide et dessin technique

modélisation solide et dessin technique CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir

Plus en détail

Julien Rosener (julien.rosener@digital-scratch.org) Le contrôle CRC. 17/05/2004 : Rajout des références

Julien Rosener (julien.rosener@digital-scratch.org) Le contrôle CRC. 17/05/2004 : Rajout des références Historique des versions Le contrôle CRC 03/05/2004 : Création du document 17/05/2004 : Rajout des références Sommaire 1 Introduction... 1 2 Rappel sur l'arithmétique sur les nombres binaire...2 2.1 L'opérateur

Plus en détail

Gé nié Logiciél Livré Blanc

Gé nié Logiciél Livré Blanc Gé nié Logiciél Livré Blanc Version 0.2 26 Octobre 2011 Xavier Blanc Xavier.Blanc@labri.fr Partie I : Les Bases Sans donner des définitions trop rigoureuses, il faut bien commencer ce livre par énoncer

Plus en détail

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x Développer et réduire 3 Chasse aux bulles 1 Vrai ou faux? x 2 3x 2x 2 4 7x Justifie tes réponses. x 2 est toujours égal à 2x. Faux, par exemple, si x = 3, alors x² = 9, mais 2x = 6 (5x) 2 est toujours

Plus en détail

Licence Sciences, Technologies, Santé Mention Informatique Codage de l'information

Licence Sciences, Technologies, Santé Mention Informatique Codage de l'information 1 Licence Sciences, Technologies, Santé Mention Informatique Codage de l'information année universitaire 2013-2014 Licence Creative Commons cbea 2 Introduction Objectifs du cours Le cours de Codage de

Plus en détail

Codage de l'information

Codage de l'information Organisation des ordinateurs et assembleur Codage de l information Chapitre 3 Codage de l'information Les cellules de mémoire ne contiennent pas vraiment des valeurs décimales : elles contiennent en fait

Plus en détail

L'EXPLORATEUR WINDOWS ou L'OUTIL FONDAMENTAL

L'EXPLORATEUR WINDOWS ou L'OUTIL FONDAMENTAL L'EXPLORATEUR WINDOWS ou L'OUTIL FONDAMENTAL 1-Organisation L'ordinateur range les données selon une logique dite d'arbre. Cela se compare à l'organisation d'une armoire de rangement dans laquelle se trouvent

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Calculons avec Albert!

Calculons avec Albert! Calculons avec Albert! Par : Guy Lefebvre, 1257 rue Principale, St-Prime, G8J 1V2, 418-251-2170 Guillaume Rainville, 610 8 e rue, St-Prime, G8J 1P6, 418-251-8290 Résumé : Lefebvre G. et Rainville G., 2001,

Plus en détail

Dossier Logique câblée pneumatique

Dossier Logique câblée pneumatique Dossier Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette logique détermine le fonctionnement de la commande. Dans ce dossier nous traiterons les différents

Plus en détail

Informatique? Numérique? L informatique est la science du traitement de l information.

Informatique? Numérique? L informatique est la science du traitement de l information. Informatique? Numérique? L informatique est la science du traitement de l information. L information est traitée par un ordinateur sous forme numérique : ce sont des valeurs discrètes. Cela signifie que,

Plus en détail

Dossier Logique câblée pneumatique

Dossier Logique câblée pneumatique Dossier Logique câblée pneumatique Festo Belgium SA Rue Colonel Bourg 11 BE-13 Bruxelles www.festo.com Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Rendu de travaux I, Algo - langage C

Rendu de travaux I, Algo - langage C IFIP 33 avenue de la République 75011 PARIS Rendu de travaux I, Valérie Amiot RP 50 2001-2002 SOMMAIRE I. Pourquoi sous C? II. Présentation du jeu 1) But du jeu III. Analyse fonctionnelle IV. Fonctionnalités

Plus en détail

Architectures Logicielles et Matérielles Travaux Dirigés Circuits

Architectures Logicielles et Matérielles Travaux Dirigés Circuits UNIVERSITE Joseph FOURIER, Grenoble U.F.R. d Informatique et Maths. Appliquées Architectures Logicielles et Matérielles Travaux Dirigés Circuits Rappel : dessins des portes logiques. Déroulement envisagé

Plus en détail

Introduction à NetCDF

Introduction à NetCDF Introduction à NetCDF École normale supérieure L3 géosciences 2014/2015 Lionel GUEZ guez@lmd.ens.fr Laboratoire de météorologie dynamique Explications préliminaires Deux distinctions générales sur les

Plus en détail