(VM(t i ),Q(t i+j ),VM(t i+j ))

Dimension: px
Commencer à balayer dès la page:

Download "1.5 0.5 -0.5 -1.5 0 20 40 60 80 100 120. (VM(t i ),Q(t i+j ),VM(t i+j ))"

Transcription

1 La logique oue dans les PME/PMI Application au dosage de l'eau dans les bétons P.Y. Glorennec INSA de Rennes/IRISA C. Hérault Hydrostop V. Hulin Hydrostop T. Le Quézourec Jessica Ouest Résumé Le dosage automatique de l'eau pour la fabrication de béton est un problème assez dicile. Il faut en eet obtenir le plus rapidement possible un produit de plasticité donnée, alors que la plasticité réelle n'est connue qu'après un temps de malaxage et d'homogénéisation assez long. La société Hydrostop commercialise un procédé empirique assez able pour le dosage de l'eau, mais a souhaité l'améliorer pour réduire si possible le temps de malaxage et introduire des sécurités qui n'existent pas à l'heure actuelle. Un nouveau procédé, basé sur la logique oue, a été développé grâce au soutien de Jessica Ouest. Le principe consiste à prédire en temps réel la plasticité du béton. Pour cela, un apprentissage en ligne permet de constituer automatiquement une base de connaissances à partir de quelques points de mesure initiaux. Mots clés : intelligence articielle, logique oue, sonde virtuelle, diagnostic, prévision du volume d'eau, apprentissage automatique. 1 Introduction La société Hydrostop est une très petite entreprise de quatre personnes, qui contrôle environ 70% du marché français des systèmes de dosage automatique de l'eau dans le béton. Le béton produit est destiné à être versé dans des moules pour obtenir des produits assez variés : plaques, parpaings, tuyaux etc. Selon son utilisation, le béton qui sort du malaxeur doit avoir une plasticité donnée, fonction de sa teneur en eau : trop sec, le remplissage des moules serait mal eectué ; trop mouillé, le produit démoulé se déformerait. Hydrostop a mis au point un procédé empirique simple assez able, en utilisant une sonde résistive pour estimer la teneur en eau du mélange. La diculté du problème vient du fait que la plasticité réelle n'est connue que lorsque le mélange agrégat-ciment-eau est parfaitement homogénéisé : la résistivité achée n'est pas égale à la résistivité réelle 1. De ce fait, un manque ou un excès d'eau ne peuvent pas être détectés à temps : dans les deux cas la gâchée est perdue. Le procédé actuel consiste à apporter de l'eau en continu jusqu'à un 1. Elle ne le devient qu'après un temps de malaxage susamment long.

2 certain point, xé par l'utilisateur ou automatiquement, puis à compléter le dosage par des petites impulsions d'eau. Pour abiliser le procédé, Hydrostop a fait appel à Jessica Ouest, qui a nancé une expertise sur la faisabilité d'un procédé basé sur la logique oue, ainsi qu'une formation en entreprise. Le plan de l'exposé est le suivant. Le paragraphe 2 présente rapidement la logique loue. Le problème posé par Hydrostop est décrit au paragraphe 3 et la méthode utilisée au paragraphe 4. 2 La logique oue La logique oue possède de multiples facettes, mais, dans cet exposé, nous n'aborderons que son utilisation pour le traitement des connaissances dans des problèmes industriels. Le traitement des connaissances comprend trois aspects : la représentation des connaissances, sous une forme proche du langage naturel, l'extraction automatique de connaissances interprétables, à partir de données numériques, la réactualisation des connaissances en tenant compte des erreurs. Les connaissances humaines sont souvent exprimées en utilisant des termes ous, comme petit, lent, chaud, etc, termes qui n'ont aucune signication intrinsèque mais qui sont immédiatementinterprétés correctement dans un contexte donné. Cette représentation présente l'avantage d'être totalement compréhensible et de décrire simplement des situations types. Un système d'inférence oue (SIF) se présente alors comme un outil de traitement de l'information en utilisant les connaissances disponibles. Une démarche basée sur la logique oue comporte plusieurs étapes. 1. Pour chaque variable (par exemple, la température, la quantité d'eau...), on réalise une partition grossière du domaine de variation. Cette partition est caractérisée par des sous-ensembles ous auxquels on associe des termes linguistiques. Cette partition permet de résumer de façon qualitative les valeurs de la variable : x est petit est une caractérisation d'un ensemble de valeurs que peut prendre la variable x. petit moyen grand 0,6 0,4 x 0 Fig. 1Partition oue sur le domaine d'une variable

3 2. Il faut ensuite dénir, sur le domaine de chaque variable, des fonctions d'appartenance associées aux sous-ensembles ous. Ces fonctions d'appartenance permettront de quantier précisément à quel degré une observation donnée de la variable appartient à un sous-ensemble ou. Par exemple, dans la gure 1, l'observation notée x 0 sera considérée comme petite à 40% et moyenne à 60%. 3. Il faut enn écrire, manuellement ou automatiquement, la base de règles. Il existe des algorithmes permettant d'enchaîner ces étapes. L'utilisateur n'a juste qu'à xer le nombre de sous-ensembles ous qu'il veut utiliser pour caractériser qualitativement les variations d'une variable, voir [1]. Les Systèmes d'inférence oue (SIF) peuvent approximer avec une précision xée à l'avance toute fonction continue d'un espace à n dimensions dans R : on parle de propriété d'approximation universelle. Cette propriété est vériée par d'autres modèles numériques, comme les ondelettes, les séries de Fourier, les réseaux de neurones etc. Les avantages de la logique oue par rapport aux autres modèles sont les suivants : les réponses d'un SIF sont prévisibles et explicables ; le degré de abilité d'une réponse est quantiable : si la base de connaissance ne permet pas de traiter un cas précis, l'utilisateur peut en être averti ; les règles peuvent être validées individuellement, soit a priori en utilisant la connaissance d'un expert, soit a posteriori après extraction automatique des règles. L'inconvénient majeur est qu'il faut se limiter à des problèmes de petite dimension, de moins de cinq ou six variables explicatives. Pour aller au delà, et si on veut garder une base de connaissances lisible, on doit utiliser des arbres de régression ous. 3 Application au dosage de l'eau dans les bétons Chaque usage du béton nécessite une plasticité déterminée. Cette plasticité est mesurée par une sonde résistive et est ensuite traduite par un nombre, appelé valeur de mouillage (VM), variant entre 0 (mélange très sec) à 120 (mélange très mouillé). Les systèmes de dosage commandent l'arrivée d'eau pour obtenir une VM de consigne. De nombreux paramètres interviennent dans une gâchée : le volume de la gâchée, la teneur en eau initiale des agrégats, leur température, la granulométrie des composants, la quantité d'eau versée, la valeur de la consigne. Par ailleurs, la mesure de résistivité n'est pas linéaire : elle est innie pour un mélange très sec et tend vers zéro quand il devient très mouillé. Enn, les mesures intermédiaires de résistivité ne sont pas ables. Pour réduire la complexité, chaque usage du béton correspond à un ensemble de paramètres regroupés dans une recette. Une centrale à béton utilise généralement plusieurs dizaines de recettes qui sont utilisées dans un ordre quelconque, en fonction des besoins et de la disponibilité des moules. Lors de l'établissement d'une recette, l'exploitant ajuste à vue la quantité d'eau nécessaire pour obtenir la plasticité requise, attend l'homogénéisation complète et enregistre la VM mesurée : cette VM devient alors la consigne associée à la recette. Cependant, pour une même VM de consigne, les quantités d'eau nécessaires varient de manière trop importante d'une gâchée à une autre, si bien que cette valeur ne peut pas être associée à la recette.

4 En analysant 44 gâchées consécutives eectuées sur trois jours dans le même malaxeur, on constate que la VM réelle en n de cycle dépasse souvent la consigne de quelques unités. Dans le tableau 1, la colonne écart indique le dépassement en n de cycle, en unités de VM ; les colonnes suivantes donnent le nombre de cas où ce dépassement est observé ainsi que le pourcentage ; enn, la colonne VM donne la valeur moyenne des VM pour lesquelles le dépassement a été observé. Sur les 44 gâchées analysées, cette dernière colonne montre nettement que les consignes de mouillage faibles sont plus diciles que les autres à respecter. Le tableau montre aussi qu'il y a manifestement une certaine diculté à règler nement les diérents paramètres d'une gâchée. écart nombre % VM ,8 106, ,6 100, ,5 95, ,8 95, ,1 95, ,1 78,5 Tab. 1 Analyse de 44 gâchées consécutives portant sur 9 recettes et diérentes VM de consigne. Une première partie de l'étude a consisté à rechercher un modèle ou du procédé. Le problème principal provenant de l'inertie de la sonde, il a été décidé de chercher à modéliser la VM réelle instantanée, c'est-à-dire la VM qui serait mesurée si on arrétait l'arrivée d'eau et si on attendait l'homogénéisation. Cette valeur modélisée est par la suite appelée VM virtuelle et notée VM v (t). Les variables explicatives sont: la résistivité du mélange initial, avant tout apport d'eau et après un temps de malaxage susant, notée VM init, la quantité d'eau à l'instant t, Q(t), Le modèle est donc : VM v (t) =f(vm init,q(t)) (1) La fonction de régression, f, est un SIF pour lequel le domaine de variation des deux entrées a été découpé en quatre sous-ensembles ous, ce qui conduit à un système de 16 règles. Ces règles ont été extraites automatiquement à partir de données réelles provenant d'un même malaxeur et pour une même recette. Les données ont été divisées en deux : une partie pour l'apprentissage et l'autre pour tester les capacités de généralisation du SIF obtenu. La gure 2 montre que les erreurs de modélisation restent inférieures à deux unités, ce qui est très satisfaisant. Il est donc possible d'utiliser un tel modèle pour agir sur l'électro-vanne d'eau. 4 Le nouveau procédé de dosage Chaque centrale à béton et chaque recette constituent des cas particuliers. Il n'est donc pas possible d'écrire a priori un système de règles unique, valable dans tous les cas. Il n'est pas, non plus, envisageable d'exiger une campagne de mesure comme préalable à

5 Fig. 2Erreur de modélisation pour une recette. l'établissement d'une recette. Les contraintes à respecter sont très fortes et peuvent être résumées comme suit : le système doit être totalement auto-adaptatif, il ne doit nécessiter que une ou deux gâchées pour l'initialisation d'une recette 2 l'apprentissage doit se faire en ligne. Un nouveau protocole a donc été adopté. Il se divise en deux : un protocole pour l'établissement d'une recette et un second pour l'exploitation normale. 4.1 Etablissement d'une recette L'objectif est d'obtenir le plus de renseignements possible à partir de la gâchée d'initialisation. La seule diérence avec le protocole précédent, c'est qu'il sera demandé à l'exploitant d'eectuer des poses au cours de la gâchée d'initialisation, pour permettre des homogénéisations intermédiaires. Le but est d'obtenir des triplets : (VM(t i ),Q(t i+j ),VM(t i+j )) avec i 0 et j 1. VM(t i ) représente la VM mesurée à l'instant t i, Q(t i+j ) représente la quantité d'eau versée jusqu'à l'instant t i+j et VM(t i+j ) la VM résultante, VM init = VM(t 0 ). Ces triplets permettront seulement de n'initialiser que quelques règles du SIF. Les autres règles seront alors obtenues par diusion de la connaissance (voir [1]). Elles devront être conrmées ultérieurement par apprentissage en ligne. L'établissement d'une recette permet donc de remplir complètement la base de règles de valeurs réalistes, en partant d'une base de règles vide. 4.2 Exploitation du modèle Dès l'initialisation, le modèle précédent est exploitable mais demande à être ané : certaines règles, qui correspondent à des situations très diérentes de celles qui ont été rencontrées lors de l'initialisation, ne sont que des estimations. Le protocole standard peut 2. Actuellement, il faut nécessairement une gâchée d'initialisation pour chaque recette.

6 être décrit de la façon suivante. 1. Malaxage initial pour obtenir une valeur able de VM init. 2. Apport d'eau en continu tant que VM v (t) <VM cons ɛ (2) où VM cons représente la consigne et ɛ une marge de sécurité. 3. Malaxage nal pour obtenit la VM réelle. 4. Correction éventuelle des règles si l'erreur de modélisation dépasse un seuil. Comme le SIF peut acher le degré de abilité de sa réponse, il est aussi possible de modier automatiquement le protocole standard pour permettre l'introduction de points de mesures complémentaires. Cette fonctionnalité ne sera cependant pas implémentée dans l'immédiat. 5 Conclusion La nouvelle version du système de dosage de l'eau est en cours de codage sur les automates de Hydrostop. Parallèlement, une applet écrite en langage Java a été écrite et sera bientôt disponible sur le site Web de Hydrostop. Cet applet aura pour but : de servir de démonstrateur du nouveau système, mais aussi de permettre une prise en main plus aisée par les utilisateurs. En eet, un modèle de gâchée a été implémenté et l'utilisateur pourra s'entrainer dans des conditions proches des conditions réelles. Références [1] P.Y. Glorennec, Algorithmes d'apprentissage pour systèmes d'inférence oue, Editions Hermès, 1999.

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

REPRÉSENTATION DES NOMBRES EN MACHINE

REPRÉSENTATION DES NOMBRES EN MACHINE Info 2 REPRÉSENTATION DES NOMBRES EN MACHINE Problématique Dans la mémoire d'un ordinateur, les données sont représentées sous forme de séquences de 0 et de 1. Par conséquent, toute information mémorisée

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Compte-rendu de projet de Système de gestion de base de données

Compte-rendu de projet de Système de gestion de base de données Compte-rendu de projet de Système de gestion de base de données Création et utilisation d'un index de jointure LAMBERT VELLER Sylvain M1 STIC Université de Bourgogne 2010-2011 Reponsable : Mr Thierry Grison

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Environnement de programmation

Environnement de programmation Environnement de programmation 1.La programmation Les ordinateurs sont stupides! à un point dont on n'a pas idée. Ils ne réagissent ni ne répondent qu'à des situations ou à des données anticipées par le

Plus en détail

Diagrammes de décisions binaires

Diagrammes de décisions binaires Diagrammes de décisions binaires Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juillet 2009 ATTENTION! N oubliez

Plus en détail

Sujets des projets L2 Programmation Orientée Système II deadline : 10/05/2015

Sujets des projets L2 Programmation Orientée Système II deadline : 10/05/2015 Sujets des projets L2 Programmation Orientée Système II deadline : 10/05/2015 9 mars 2015 Introduction L'objectif de ces projets est de vous proposer une application des notions vues en cours, dans des

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

3.1 Espace vectoriel. La multiplication par un scalaire. L'addition et la multiplication par un scalaire obeissent aux regles suivantes :

3.1 Espace vectoriel. La multiplication par un scalaire. L'addition et la multiplication par un scalaire obeissent aux regles suivantes : .1 Espace vectoriel Un espace vectoriel de dimension p sur le corps des reels IR est une construction mathematique dont les elements sont des vecteurs. Il est deni par deux operations : L'addition. Soient

Plus en détail

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Stéphanie Combes et Pauline Givord (DMCSI) INSEE-DMSCI 02/04/2015 Plan Qu'est-ce que le Big Data? Les

Plus en détail

PG 110: Sujet de projet

PG 110: Sujet de projet PG 110: Sujet de projet 2012-2013 L'objectif de ce projet de programmation est la réalisation d'un jeu 2D en C. 1 Principes du jeu Nous voulons donner une dimension de jeu d'aventure à un jeu de type Bomberman

Plus en détail

0- Le langage C++ 1- Du langage C au langage C++ 2- Quelques éléments sur le langage. 3- Organisation du cours

0- Le langage C++ 1- Du langage C au langage C++ 2- Quelques éléments sur le langage. 3- Organisation du cours 0- Le langage C++ 1- Du langage C au langage C++ 2- Quelques éléments sur le langage 3- Organisation du cours Le présent cours constitue une introduction pour situer le langage C++, beaucoup des concepts

Plus en détail

TD 2 Exercice 1. Un bûcheron a 100 hectares de bois de feuillus. Couper un hectare de bois et laisser la zone se régénérer naturellement coûte 10 kf par hectares, et rapporte 50 kf. Alternativement, couper

Plus en détail

TP2 - Conguration réseau et commandes utiles. 1 Généralités. 2 Conguration de la machine. 2.1 Commande hostname

TP2 - Conguration réseau et commandes utiles. 1 Généralités. 2 Conguration de la machine. 2.1 Commande hostname Département d'informatique Architecture des réseaux TP2 - Conguration réseau et commandes utiles L'objectif de ce TP est d'une part de vous présenter la conguration réseau d'une machine dans l'environnement

Plus en détail

TP : Shell Scripts. 1 Remarque générale. 2 Mise en jambe. 3 Avec des si. Systèmes et scripts

TP : Shell Scripts. 1 Remarque générale. 2 Mise en jambe. 3 Avec des si. Systèmes et scripts E3FI ESIEE Paris Systèmes et scripts B. Perret TP : Shell Scripts 1 Remarque générale Lorsque vous cherchez des informations sur Internet, n'oubliez pas que langage de shell script que nous avons vu correspond

Plus en détail

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées : a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN

Plus en détail

IFT3150 - Projet d'informatique Partitionnement des emplacements possibles des joueurs sur une carte d'un jeu de type FPS

IFT3150 - Projet d'informatique Partitionnement des emplacements possibles des joueurs sur une carte d'un jeu de type FPS IFT3150 - Projet d'informatique Partitionnement des emplacements possibles des joueurs sur une carte d'un jeu de type FPS Xavier Frenette FREX04048305 3 mai 2011 Table des matières 1 Introduction 1 1.1

Plus en détail

Cours de Chimie - Informatique Titrage acide/base

Cours de Chimie - Informatique Titrage acide/base Cours de Chimie - Informatique Titrage acide/base M.-F. Couvreur - Y. Mairesse ISND - Anderlecht 17 avril 2013 Résumé Simulation d'un titrage acide / base à l'aide d'un tableur. Réalisation du graphique

Plus en détail

1 Élections du Bureau de la Fédération. 1.1 Composition du Bureau

1 Élections du Bureau de la Fédération. 1.1 Composition du Bureau Règlement Intérieur de la Fédération des associations de l'ens de Lyon adopté par l'ag constitutive du 25 mai 2011. Modié par le CA du 24 mai 2012. Modié par le CA du 28 février 2014. Modié par le CA du

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

Méthodes de développement

Méthodes de développement 1 / 15 Méthodes de développement Guide pour la rédaction d'une spécification générale de besoins (SGB) 1 - Objet... 2 2 - Rôle de la SGB dans une méthode agile... 2 3 - Plan type de SGB... 2 4 - Rédaction

Plus en détail

Programmation de robots

Programmation de robots Programmation de robots 1 Le robot Le but de ces séances d'initiation est de vous apprendre les bases de la programmation du robot en quelques heures. Pour arriver au plus vite au c ur du sujet, nous avons

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Vers l'ordinateur quantique

Vers l'ordinateur quantique Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Rapport de projet : Construction d'un simulateur pour la gestion de conteneurs sur une plateforme portuaire

Rapport de projet : Construction d'un simulateur pour la gestion de conteneurs sur une plateforme portuaire Rapport de projet : Construction d'un simulateur pour la gestion de conteneurs sur une plateforme portuaire Bouvier Matias - Chaouche Mohamed - Délye Serge - Mommers Alexandre 25 janvier 2011 Master 2

Plus en détail

J0MS7301 : Algorithmique et Programmation Objet. Feuille d'exercices 2. Structures

J0MS7301 : Algorithmique et Programmation Objet. Feuille d'exercices 2. Structures Master MIMSE - Spécialité 3-1ère Année J0MS7301 : Algorithmique et Programmation Objet Feuille d'exercices 2 Structures Exercice 1 : Ecrire un programme qui : dénit une structure horaire au format heures,

Plus en détail

Les Réseaux de Neurones à fonctions à base radiale Yann MORERE Le 10 mai 2001 2 c 98 Yann MORERE le 10 mai 2001 à 08h 44 Résumé Les réseaux de neurones à fonctions à base radiale on connu un essor considérable.

Plus en détail

Impressions formatées. Compilation.

Impressions formatées. Compilation. Univ. Lille1 - Licence STS 1ère année 2013-2014 Algorithmes et Programmation Impérative 1 Impressions formatées. Compilation. Objectifs du TP : 1. découvrir le moyen de produire des achages formatés 2.

Plus en détail

BETONS REFRACTAIRES ISOLANTS BETON REFRACTAIRES DENSES. Conseils de mise en œuvre

BETONS REFRACTAIRES ISOLANTS BETON REFRACTAIRES DENSES. Conseils de mise en œuvre BETONS REFRACTAIRES ISOLANTS BETON REFRACTAIRES DENSES Conseils de mise en œuvre Les bétons Manville sont livrés «prêt à l emploi». Ils sont élaborés à partir de matières premières sélectionnées dont les

Plus en détail

Faculté Polytechnique de Mons

Faculté Polytechnique de Mons Faculté Polytechnique de Mons Génération d'un site Web automatiquement à partir d'une base de données relationnelle : Utilisation de XML Projet de 3 e Informatique et Gestion Année académique 2007-2008

Plus en détail

L INFORMATION GEOGRAPHIQUE

L INFORMATION GEOGRAPHIQUE Champs sur Marne ENSG/CERSIG Le 19-nove.-02 L INFORMATION GEOGRAPHIQUE Archivage Le Système d information géographique rassemble de l information afin de permettre son utilisation dans des applications

Plus en détail

Sauvegardes sous Windows c 2003 serveur

Sauvegardes sous Windows c 2003 serveur Sauvegardes sous Windows c 2003 serveur Louis-Maurice De Sousa ~ Fabrice Lemoine ~ Jackie Daon 27 mars 2006 Table des matières 1 Introduction 3 2 NTbackup 3 2.1 La sauvegarde...........................

Plus en détail

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée sous réserve du respect des conditions de la licence Texte

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Les types somme. 1 Préparation du TP. 2 Interface du module Carte. Algorithmes et Programmation Impérative 2. 2.1 Les types de donnees

Les types somme. 1 Préparation du TP. 2 Interface du module Carte. Algorithmes et Programmation Impérative 2. 2.1 Les types de donnees Univ. Lille1 - Licence Informatique 2ème année 2014-15 Algorithmes et Programmation Impérative 2 Les types somme 1 Préparation du TP Dans le prochain TP, vous allez réaliser un programme de jeu de poker

Plus en détail

Projet Scientique Collectif Application d'un réseau de neurones à la prédiction d'un cours de bourse

Projet Scientique Collectif Application d'un réseau de neurones à la prédiction d'un cours de bourse Projet Scientique Collectif Application d'un réseau de neurones à la prédiction d'un cours de bourse DÉMIANS-BONAUD d'archimbaud, Édouard FOESSEL, Laure GRANBICHLER, Josef LE PAVEC, Jean MOUTERDE, Joël

Plus en détail

Raisonner le Web Sémantique avec des graphes : Application à un cas industriel

Raisonner le Web Sémantique avec des graphes : Application à un cas industriel Raisonner le Web Sémantique avec des graphes : Application à un cas industriel Olivier Carloni LIRMM, Université de Montpellier II, 161, rue Ada, F-34392 Montpellier cedex - France carloni@lirmm.fr Mondeca,

Plus en détail

Visualisation des lignes de crêtes apparentes de modèles 3D

Visualisation des lignes de crêtes apparentes de modèles 3D Visualisation des lignes de crêtes apparentes de modèles 3D HAEHNEL Jonathan Université de Strasbourg 17 mai 2013 Haehnel Jonathan Visualisation des lignes de crêtes apparentes de modèles 3D 17 mai 2013

Plus en détail

1 Représentation des nombres.

1 Représentation des nombres. 1 REPRÉSENTATION DES NOMBRES. Codage des données 1 Représentation des nombres. Exercice 1 : Expliquez ce que peut signier le signe '=' dans l'équation suivante 10 = 2 que l'on préfèrera écrire 0b10 = 2

Plus en détail

Outils et Méthodes - Réseau social professionnel

Outils et Méthodes - Réseau social professionnel Outils et Méthodes - Réseau social professionnel Franck Sajous - CLLE-ERSS Ce document est disponible à l'adresse : http://w3.erss.univ-tlse2.fr/membre/fsajous/sdl/sl02358x/5/ 1 Diagramme de classes 1.1

Plus en détail

Lot 7 : Document Recette

Lot 7 : Document Recette Lot 7 : Document Recette Référence Document_Recette.pdf Version 2.0 Date 18/06/2009 Auteur Chef de projet Equipe INOVECO Lionel Croix Le présent document reprend le cahier des charges que l on s était

Plus en détail

De la difficulté de récupérer la chaleur industrielle pour du chauffage urbain

De la difficulté de récupérer la chaleur industrielle pour du chauffage urbain De la difficulté de récupérer la chaleur industrielle pour du chauffage urbain Table des matières Introduction...2 Le réseau d'échange de chaleur basse température...3 Concept...3 Fourniture de chaud et

Plus en détail

ECOLE NATIONALE DES PONTS ET CHAUSSEES. Risque de crédit. Vente de protection d'une rme sur elle-même. Sébastien LEROUX Antony Mc BRIDE Rémi PARIS

ECOLE NATIONALE DES PONTS ET CHAUSSEES. Risque de crédit. Vente de protection d'une rme sur elle-même. Sébastien LEROUX Antony Mc BRIDE Rémi PARIS ECOLE NATIONALE DES PONTS ET CHAUSSEES Risque de crédit Vente de protection d'une rme sur elle-même Sébastien LEROUX Antony Mc BRIDE Rémi PARIS March 7, 2007 Introduction Généralement, la vente ou l'achat

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

GéoPeuple. Protocole de vectorisation manuelle sous QGis

GéoPeuple. Protocole de vectorisation manuelle sous QGis GéoPeuple Rapport numéro L2.0-1 Titre Rédigé par Benoit Costes (IGN / COGIT) État (nal / en cours) Final Relu par Christine Plumejeaud (IGN / COGIT) Date Juillet 2011 Protocole de vectorisation manuelle

Plus en détail

Les éléments essentiels d un plan de mesure et vérification (pmv) de la performance énergétique selon l ipmvp

Les éléments essentiels d un plan de mesure et vérification (pmv) de la performance énergétique selon l ipmvp SYPIM Syndicat du Pilotage et de la Mesure de la performance énergétique Les éléments essentiels d un plan de mesure et vérification (pmv) de la performance énergétique selon l ipmvp Fédération des Services

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Rapport de TP n 4 Compression Estimation de mouvement

Rapport de TP n 4 Compression Estimation de mouvement Rapport de TP n 4 Compression Estimation de mouvement Master 1 Audiovisuel et Multimédia (ISIS) François Soulier et Romain Laisne Clément Faure-Brac et Clément Follet Professeur : Mme Bacquet 1 mai 008

Plus en détail

FAQ: revo Monitoring System: rms

FAQ: revo Monitoring System: rms FAQ: revo Monitoring System: rms V161011fr 1.De quoi est composé le système rms?...1 2.Comment le rms prédit-il la durée de chaux restante?...3 3.Puis-je mettre à jour mon Shearwater actuel avec le rms?...3

Plus en détail

L artisan de sa maison maçonnerie

L artisan de sa maison maçonnerie L artisan de sa maison maçonnerie Michel & christophe Branchu Groupe Eyrolles, 2011 ISBN 978-2-212-13316-5 Sommaire 1 Béton 4 a. Gâcher du béton 4 b. Gâcher du mortier 9 Tableau de dosage du béton 8 Tableau

Plus en détail

Les principaux domaines de l informatique

Les principaux domaines de l informatique Les principaux domaines de l informatique... abordés dans le cadre de ce cours: La Programmation Les Systèmes d Exploitation Les Systèmes d Information La Conception d Interfaces Le Calcul Scientifique

Plus en détail

Reconnaissance de la marque d'une canette à partir d'une photo numérisée pour décients visuels Catherine Sauvaget et Bounkong Khamphousone

Reconnaissance de la marque d'une canette à partir d'une photo numérisée pour décients visuels Catherine Sauvaget et Bounkong Khamphousone Université Paris 8 Master 2 Technologie et Handicap Sous la direction de : Jaime Lopez Krahe et Pascale Pousset Reconnaissance de la marque d'une canette à partir d'une photo numérisée pour décients visuels

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

TPC#9 : Client & Serveur!

TPC#9 : Client & Serveur! TPC#9 : Client & Serveur! Table des matières 1 Structure du rendu 1 2 Introduction 2 3 Sockets et Threads 2 3.1 Les sockets............................................ 2 3.1.1 Cours et exemples....................................

Plus en détail

INTRODUCTION GENERALE

INTRODUCTION GENERALE INTRODUCTION GENERALE Chaque année, les entreprises ont de nombreux challenges à relever; adaptation à des contraintes légales nationales, européennes ou internationales, lancement de nouveaux services

Plus en détail

Laennext aspects techniques

Laennext aspects techniques Laennext aspects techniques 1 LAENNEXT : ASPECTS TECHNIQUES Résumé L'obstruction des voies respiratoires par des glaires provoque l'apparition de bruits spécifiques lors de la respiration, ces bruits sont

Plus en détail

Télécom Nancy Année 2013-2014

Télécom Nancy Année 2013-2014 Télécom Nancy Année 2013-2014 Rapport 1A Ajout du langage C dans la Programmer's Learning Machine GIANNINI Valentin Loria 615, rue du Jardin Botanique 54600, Villers-Lès-Nancy Maître de stage : QUINSON

Plus en détail

METHODOLOGIE : INGENIERIE DES SYSTEMES

METHODOLOGIE : INGENIERIE DES SYSTEMES METHODOLOGIE : INGENIERIE DES SYSTEMES L ingénierie de systèmes regroupe l ensemble des activités de pilotage des projets de construction effective d un système en s appuyant sur sa décomposition architecturale

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

P. VALLON - Retraitement en place à froid - Juillet 2009

P. VALLON - Retraitement en place à froid - Juillet 2009 à é Ministère de l'écologie, de l'énergie, du Développement durable et de l'aménagement du territoire P. VALLON - Retraitement en place à froid - Juillet 2009 WWW.developpement-durable.gouv.fr Constitution

Plus en détail

LA PROCEDURE D'EVALUATION A.NA.PSY.p.e. EST LE RESULTAT D'UNE RECHERCHE

LA PROCEDURE D'EVALUATION A.NA.PSY.p.e. EST LE RESULTAT D'UNE RECHERCHE LA PROCEDURE D'EVALUATION A.NA.PSY.p.e. EST LE RESULTAT D'UNE RECHERCHE CETTE RECHERCHE A ETE FINANCEE PAR Le Ministère des Affaires Sociales et de l'emploi, Direction Générale de la Santé,Sous- Direction

Plus en détail

Consultation publique sur la portabilité des numéros

Consultation publique sur la portabilité des numéros Consultation publique sur la portabilité des numéros Table des matières 1 Préambule 2 2 Cadre réglementaire 2 3 Dénitions 4 4 Système de portabilité des numéros 4 4.1 Modes de routage.................................

Plus en détail

PILOTAGE D'UNE ENTREPRISE INDUSTRIELLE EN TEMPS REEL

PILOTAGE D'UNE ENTREPRISE INDUSTRIELLE EN TEMPS REEL PILOTAGE D'UNE ENTREPRISE INDUSTRIELLE EN TEMPS REEL Postulat de base : Le rôle du dirigeant d'une entreprise est de diriger. Comme un pilote d'avion, pour éviter de piloter à vue, il doit pouvoir se fier

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

Algorithmique Distribuée Communication de groupes

Algorithmique Distribuée Communication de groupes Algorithmique Distribuée Communication de groupes Laurent PHILIPPE Master 2 Informatique UFR des Sciences et Techniques 2013/2014 Laurent PHILIPPE Communication de groupes 1 / 58 Les outils Les groupes

Plus en détail

Rapport OUTILEX. 1 Introduction. Laboratoire d'informatique de Paris 6 B. Piwowarski. September 18, 2006

Rapport OUTILEX. 1 Introduction. Laboratoire d'informatique de Paris 6 B. Piwowarski. September 18, 2006 Rapport OUTILEX Laboratoire d'informatique de Paris 6 B. Piwowarski September 18, 2006 1 Introduction Les systèmes de Recherche d'information (RI), permettent de rechercher dans de grand corpus électronique

Plus en détail

1.8 Exercices. Analyse d'erreurs 43

1.8 Exercices. Analyse d'erreurs 43 1.8 Exercices Analyse d'erreurs 43 1. Tous les chires des nombres suivants sont signicatifs. Donner une borne supérieure de l'erreur absolue et estimer l'erreur relative. a) 0,1234 b) 8,760 c) 3,14156

Plus en détail

MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN

MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN 1. Introduction Le règlement (UE) n 610/2013 du 26 juin 2013 a modifié la convention d'application de l'accord de Schengen,

Plus en détail

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour

Plus en détail

Un peu d'organisation. Conception et Programmation par Objets HLIN406. Sommaire. Pourquoi vous parler de conception par objets? Notion de modélisation

Un peu d'organisation. Conception et Programmation par Objets HLIN406. Sommaire. Pourquoi vous parler de conception par objets? Notion de modélisation Un peu d'organisation Conception et Programmation par Objets HLIN406 Marianne Huchard, Clémentine Nebut LIRMM / Université de Montpellier 2 Premières semaines Contrôle des connaissances Supports 2015 Sommaire

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

Machines virtuelles Cours 1 : Introduction

Machines virtuelles Cours 1 : Introduction Machines virtuelles Cours 1 : Introduction Pierre Letouzey 1 pierre.letouzey@inria.fr PPS - Université Denis Diderot Paris 7 janvier 2012 1. Merci à Y. Régis-Gianas pour les transparents Qu est-ce qu une

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

2B La résolution de modèles linéaires par Excel 2010

2B La résolution de modèles linéaires par Excel 2010 2B La résolution de modèles linéaires par Excel 2010 Nous reprenons ici, de façon plus détaillée, la section où est indiqué comment utiliser le solveur d'excel 2010 pour résoudre un modèle linéaire (voir

Plus en détail

Conduite et Gestion de Projet - Cahier des charges

Conduite et Gestion de Projet - Cahier des charges Conduite et Gestion de Projet - Cahier des charges 1 Introduction Sophie Toulouse LIPN - Université Paris 13 +33.1.49.40.40.73 99 av. Jean-Baptiste Clément toulouse@lipn.univ-paris13.fr 93430 Villetaneuse

Plus en détail

«Pièges», «erreurs» et pathologie des calculs numériques

«Pièges», «erreurs» et pathologie des calculs numériques Session de formation continue ENPC «Pièges», «erreurs» et pathologie des calculs numériques 6-8 octobre 2010 Philippe Mestat (LCPC) «Pièges» pour débutant?. Conditions limites en déplacements : il faut

Plus en détail

Cahier des charges - 42Capture

Cahier des charges - 42Capture Cahier des charges - 42Capture Etienne Folio - Antoine Leblanc Andrei Pastramagiu - Christophe Vignix (Document recompilé) 23 avril 2006 Bref aperçu du contenu Table des matières 1 Introduction 3 2 Le

Plus en détail

DUT RESEAUX ET TELECOMMUNICATIONS PAR APPRENTISSAGE SCIENCES TECHNOLOGIE SANTE. 120 h 224 h 406 h h 60 h 750 h. travaux pratiques

DUT RESEAUX ET TELECOMMUNICATIONS PAR APPRENTISSAGE SCIENCES TECHNOLOGIE SANTE. 120 h 224 h 406 h h 60 h 750 h. travaux pratiques Niveau : DUT RESEAUX ET TELECOMMUNICATIONS PAR APPRENTISSAGE année 1 Domaine : Mention : Volume horaire : SCIENCES TECHNOLOGIE SANTE DUT 60 ECTS 120 h 224 h 406 h h 60 h 750 h cours magistraux travaux

Plus en détail

Année Universitaire 2009/2010 Session 2 de Printemps

Année Universitaire 2009/2010 Session 2 de Printemps Année Universitaire 2009/2010 Session 2 de Printemps DISVE Licence PARCOURS : CSB4 & CSB6 UE : INF 159, Bases de données Épreuve : INF 159 EX Date : Mardi 22 juin 2010 Heure : 8 heures 30 Durée : 1 heure

Plus en détail

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2 Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101 Danny Dubé Hiver 2014 Version : 11 avril Questions Travail pratique #2 Traduction orientée-syntaxe

Plus en détail

Annexe. Méthodologie de mise en œuvre d un projet BusinessObjects

Annexe. Méthodologie de mise en œuvre d un projet BusinessObjects Annexe Méthodologie de mise en œuvre d un projet BusinessObjects Déroulement du cours 1 : Le rôle du Designer d Univers 2 : Créer un Univers avec l Assistant 3 : Créer un Univers étape par étape 4 : Enrichir

Plus en détail

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002 Séance de TP 4 Lentilles minces Romain BEL 3 janvier 2002 1 Table des matières 1 Lentilles minces, stigmatisme, relations de conjugaison 3 1.1 Lentilles minces............................. 3 1.2 L'approximation

Plus en détail

TER Master 1 (FMIN 200) Cahier des charges: Oracle Lexical

TER Master 1 (FMIN 200) Cahier des charges: Oracle Lexical TER Master 1 (FMIN 200) Cahier des charges: Oracle Lexical VEYSSIER Julien, BISQUERT Pierre PAIVA LIMA DA SILVA Bruno, BELMONTE Remy - Encadrant : Mathieu Lafourcade 6 février 2009 Université Montpellier

Plus en détail

TEXT MINING. 10.6.2003 1 von 7

TEXT MINING. 10.6.2003 1 von 7 TEXT MINING 10.6.2003 1 von 7 A LA RECHERCHE D'UNE AIGUILLE DANS UNE BOTTE DE FOIN Alors que le Data Mining recherche des modèles cachés dans de grandes quantités de données, le Text Mining se concentre

Plus en détail

TER Master 1 (FMIN200) Développement d'un Oracle Lexical Rapport Final

TER Master 1 (FMIN200) Développement d'un Oracle Lexical Rapport Final TER Master 1 (FMIN200) Développement d'un Oracle Lexical Rapport Final VEYSSIER Julien, BISQUERT Pierre, PAIVA LIMA DA SILVA Bruno, BELMONTE Rémy Encadrant : M. Lafourcade 2 juin 2009 1 2 TER 2009 groupe

Plus en détail

PRESENTOIR VERRES ET BOUTEILLE A WHISKY

PRESENTOIR VERRES ET BOUTEILLE A WHISKY Plan d'expériences TAGUCHI Nom Prénom Protocole d'expérimentation Date Indice PRESENTOIR VERRES ET BOUTEILLE A WHISKY GROUPE D'EXPERIMENTATION Nom Prénom Nom Prénom Nom Prénom Nom Prénom Fonction Fonction

Plus en détail

Etudes des nuages et de la convection autour des dépressions intenses des moyennes latitudes

Etudes des nuages et de la convection autour des dépressions intenses des moyennes latitudes Etudes des nuages et de la convection autour des dépressions intenses des moyennes latitudes Jérôme DREANO 28 Février 2014 1 Introduction Dans le modèle LMDZ, les paramétrisations physiques des nuages

Plus en détail

1 Exercice 1 Question de cours (4 points)

1 Exercice 1 Question de cours (4 points) Info32B Systèmes d'exploitation année 2013-2014 Examen (1ère session) 16 décembre 2014 N. Sabouret L'épreuve dure 2h30. Tous les documents sont autorisés. Les exercices sont indépendants. 1 Exercice 1

Plus en détail