Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Dimension: px
Commencer à balayer dès la page:

Download "Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)"

Transcription

1 Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut ^etre utilise sans demonstration. Tous les documents sont autorises. La seconde partie est commune aux deux parcours (Paris 13 et Centrale), la premiere partie est uniquement pour la specialite MACS, mais les resultats numerotes dans la premiere partie peuvent ^etre utilises sans demonstration dans la seconde. Seuls les resultats enonces dans le texte de la premiere partie sont utilisables eventuellement dans la seconde partie. La partie 1 et la partie 2 sont a rediger sur deux copies separees, et la partie 1 sera relevee au bout de deux heures. Dans ce sujet, nous etudions l'equation d'advection-diusion. Elle intervient dans de nombreux domaines : mecanique des uides (equation de Navier-Stokes linearisee), environnement (equation des milieux poreux), mathematiques - nancieres (equation de Blaack et Scholes). 1 Partie 1 Dans cette partie, designe un domaine borne de IR d avec d = 1 ou d = 2, de frontiere susamment reguliere. Soit l'equation d'advection-diusion : " u + a ru = f u j = (1.1) On suppose f 2 L 2 (), " > et a(x) = (a 1 (x); :::; a d (x)) est un champ de vecteur dont toutes les composantes sont de classe C 1, uniformement bornees sur et tel que div(a) = en tout point de. On note kak L 1 = sup( x2 dx i=1 ja i (x)j 2 ) 1=2 et on notera u " la solution de (1.1) associee au coecient de diusion ". 1

2 1. (Etude theorique) On suppose dans cette partie que est un domaine regulier de classe C 2 de IR d. (a) Montrer que toute solution u " 2 H 2 () est aussi solution de la formulation variationnelle suivante : 8 >< >: Trouver u " 2 H 1 () 8v 2 H 1 () " ru " rv + (a ru " ) v = fv (1.2) Montrer reciproquement que toute solution u " de (1.2) qui appartient a H 2 () est aussi solution de (1.1). R (b) Montrer que la forme bilineaire b(u; v) = (a ru) v est antisymetrique sur H 1 (). En deduire que (1.2) admet une solution unique dans H 1 (). (c) Etablir l'estimation ku " k H 1 () C 1 kfk L 2 () ou l'on exprimera C 1 en fonction de la constante C P de Poincare du domaine (que l'on denira precisement sans la calculer) et de " >. (d) On rappelle que si v est la solution de la formulation variationnelle du probleme v = g dans avec condition aux limites v = sur et g 2 L 2 (), on a l'estimation de regularite kvk H 2 () C kgk L 2 () ou la constante C ne depend que du domaine. En deduire que la solution u " de (1.2) verie une estimation similaire de la forme ku " k H 2 () C 2 kfk L 2 () ou l'on exprimera C 2 en fonction de C P, C, kak L 1 et " >. (e) Montrer que les constantes C 1 et C 2 tendent vers +1 lorsque "!. 2. (Etude numerique) On supposera dans cette partie que est un domaine polyhedrique convexe de IR d et on admettra que tous les rsultats obtenus precedemment restent valables dans cette situation. On considere une suite (T h ) h> de maillages reguliers conformes de. On rappelle que { la suite h = max K2Th diam(k) tend vers. { il existe une constante C r telle que pour tout h > et K 2 T h, on a diam(k) C r (K) avec (K) rayon du cercle inscrit de K. On designe par V h l'espace d'elements nis P 1 Lagrange associe au maillage T h et on utilise la discretisation de (1.1) par la methode de Galerkin : 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ru ";h rv h + (a ru ";h ) v h = fv h (1.3) 2

3 (a) Montrer que (1.3) admet une solution unique u ";h qui verie l'estimation d'erreur ku " u ";h k H 1 () C 3 inf v h 2V h ku " v h k H 1 () ou l'on exprimera C 3 en fonction de C P, kak L 1 et " >. (b) Montrer que l'on a l'estimation inf v h 2V h ku " v h k H 1 () C 4 h ku " k H 2 () ou la constante C 4 ne depend que de C r. En deduire l'estimation d'erreur ku " u ";h k H 1 () C 5 h kfk L 2 () ou l'on exprimera C 5 en fonction de C 2, C 3 et C 4. (c) Montrer la constante C 5 tend vers +1 lorsque "!. Conclure. 3. (Discretisation en dimension 1) Dans cette partie, on se place en dimension 1, =]; L[ et f = a = 1, soit "u " + u " = 1 sur ]; L[ u " () = u " (L) = : (1.4) (a) Ecrire le schema obtenu par la discretisation en elements nis P 1 Lagrange sur un maillage rgulier. Montrer qu'il coincide avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence centree. Comment cela se relie-t-il intuitivement avec les problemes numeriques precedents? (b) Une solution possible a ces problemes consiste a discretiser (1.1) par une formulation variationnelles du type 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ];L[ u ";h v h + ];L[ u ";h v h + h u ";h v h = fv h ];L[ ];L[ (1.5) avec h choisi de maniere adequate. Pour preciser le choix de h, on le cherche sous la forme h = h: Pour quelle valeur de, le schema coincide-t-il avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence decentree amont dont on connait la stabilite dans la limite " tend vers? 3

4 2 Partie 2 Soit f 2 L 2 ([; L]). On considere l'equation dierentielle ordinaire qui est (1.1) en dimension 1, a etant une constante donc de divergence nulle(l > ) : "u + au = f(x); x 2]; L[; u 2 H 1 ([; L]) (2.6) (elle est donc munie des conditions aux limites u() = u(l) =. 1. (Generalites) On considere une fonctionnelle J(u) deux fois derivable sur H 1 ([; L]). R 1 (a) Calculer (J (tu); u)dt pour tout u. (b) On introduit c(u; v) = R L ( "u + au f)(x)v(x)dx. Montrer que u 2 H 1 ([; L]) solution de (2.6) si et seulement si 8v 2 H 1 ([; L]); c(u; v) = : (c) Calculer c(u; v) + c(v; u) pour tous u; v dans H 1 ([; L]). (d) On suppose qu'il existe J qui verie 8u; v 2 H 1 ([; 1]); (J (u); v) = c(u; v): Determiner J(u) pour tout u en utilisant deux questions precedentes et en deduire que J n'existe pas. Existe-t-il un probleme de minimisation sans contraintes sur H 1 ([; L]) tel que (2.6) soit l'equation d'euler associee? 2. Se ramener a un probleme quadratique. Dans ce paragraphe, on montre que, dans certaines conditions, l'equation avec un terme antisymetrique peut se ramener a une equation associee a un probleme symetrique. C'est cette analyse qui permet d'obtenir des resultats (en homogeneisation) sur la diusion moleculaire. (a) Trouver le changement de variable lineaire, et le changement de fonction inconnue et de terme source tels que (2.6) est equivalente a (1.4) sur un nouvel intervalle [; ~ L]. Cette relation ne sera pas utilisee par la suite. (b) Montrer que (2.6) est equivalente a "U + a2 4" U = f(x)e a 2" x = F (x) (2.7) ou on exprimera U en fonction de u. (c) Demontrer que U est solution du probleme de minimisation suivant sur H 1 ([; L]) : infj (U) ou J (V ) = 1 2 L ["(V ) 2 + a2 4" V 2 ]dx L F (x)v (x)dx: Montrer que ce probleme admet une unique solution U. 4

5 (d) Montrer que la fonctionnelle J est convexe sur H 1 ([; L]) et donner la meilleure constante ("; a). (e) Montrer que la fonctionnelle J est M Lipschitzienne et donner la meilleure constante M("; a). (f) Identier les limites lorsque " tend vers des deux constantes. (g) Montrer l'inegalite inf("; a2 4" )jju jj H 1 jjf jj L 2: Quelle est la limite lorsque " tend vers de la norme jju jj H 1? Quelle est la limite lorsque " tend vers de la norme jju jj L 2 (on pourra utiliser une inegalite celebre). 3. On considere dans cette section la fonctionnelle J. (a) Est-ce une fonctionnelle quadratique? (b) Montrer l'egalite J (V ) = J (U ) a(v U ; V U ) R ou ~a(v; W ) = (J L (U)V; W ) = ("V W + a2 4" V W )dx. Est ce que ~a depend de U? Comment appelle-t-on de telles fonctionnelles? (c) Montrer l'existence d'un unique K(V ) tel que 8w 2 H 1 ([; L]); ~a(v; W ) = (K(V ); W ) H 1 ou (:; :) H 1 designe le produit scalaire sur H 1. Montrer que K est un operateur lineaire. (d) Montrer l'egalite J(V ) = K(V U ): (e) Algorithme de gradient a pas optimal? 4. On considere maintenant un champ a(x; y); b(x; y) non constant veriant : il existe (x; y) de classe C 2 telle que a(x; y) x (x; y), b(x; y) y (x; y) et =. (a) Dans le cas ou (x; y) = x 2 y 2, montrer que ces hypotheses sont veriees (b) Montrer que ces hypotheses sont aussi veriees lorsque (x; y) = Re(x + iy) N. (c) Soit un ouvert borne regulier. On considere l'equation aux derivees partielles, pour f 2 L 2 () " u + (a(x; x u + b(x; y u) = f(x; y); u 2 H 1 () (2.8) ou a; b verie les hypotheses enoncees au debut de cette section. Montrer, en utilisant point par point les elements de 1, qu'il n'existe pas de fonctionnelle J(u) telle que (2.8) soit l'equation d'euler associee a J(u). 5

6 (d) Trouver une fonction U(x; y) = (x; y; a; ")u(x; y) telle que U(x; y) soit solution de l'equation aux derivees partielles " U + 1 4" jr j2 U = F (2.9) ou F sera a determiner en fonction de f et de. (e) Determiner la forme quadratique J 1 (U) dont l'equation d'euler associee est (2.9). On admet dans ce qui suit que est un ouvert borne regulier sur lequel l'inegalite de Poincare U 2 dx C ~ P (ru) 2 dx est vraie pour U 2 H 1 (). (f) Demontrer que J 1 admet un unique point de minimum, note U 1 sur H 1 (), muni de la norme ((u; u)) = R (ru)2 dx. 5. Analyse abstraite de l'algorithme de gradient optimal. Dans cette question, on etudie l'algorithme de gradient a pas optimal en dimension innie. On considere pour cela J (U) = 1 " (ru) 2 dx + 1 V (x)u 2 dx 2 2 ou V (x) = 1 4" jr j2 est continue bornee sur. On utilisera en permanence pour f et g dans H 1 () les identites de Green : f gdx = rf:rgdx = f gdx: (a) Montrer sans calculs que l'algorithme de gradient a pas optimal pour J 1 avec valeur initiale est le m^eme que l'algorithme de gradient a pas optimal pour J avec comme valeur initiale U 1, ou U 1 est l'unique solution de (2.9) dans H 1 (). (b) Montrer que 8W 2 H 1 (); (J (U); W ) = ((R; W )) ou R est l'unique solution dans H 1 () de R = " U + V (x)u: (c) En deduire que U! R = KU est un operateur bijectif de H 1 () sur H 1 (). (d) Montrer que J (U) = 1((KU; U)) = 1 ((R; U)). 2 2 (e) On introduit R 1 = KR. En rappelant le theoreme du polycopie (numero, et page) donner le pas n de l'etape n de l'algorithme de gradient a pas optimal 6

7 (f) Montrer les egalites ((KU; KU)) = ((R; KU)) = ((R; R)) = R Rdx ((KU; KU)) = " 2 (ru) 2 dx + " V (x)u 2 dx + V (x)rudx ((K 2 U; KU)) = ((R 1 ; R)) = " 2 (ru) 2 dx+" 3 V (x)u 2 +" 2 V (x)rudx+" V (x)r 2 : En utilisant l'egalite V (x) = 1 4" jr j2, montrer l'egalite (K 2 U; KU) = " 2 (KU; KU) jr j 2 R 2 dx: Donner le pas optimal. Estimer sa valeur en fonction de ". (g) Expliquer pourquoi, dans ce cas, calculer une etape de l'algorithme de gradient a pas optimal ou de gradient a pas constant est exactement de la m^eme diculte que de calculer la solution du probleme. 6. Discretisation du probleme sur des splines. On considere dans toute cette section que l'intervalle [; L] est decompose en segments de taille egale L N en nombre N. On admet l'existence de fonctions, appellees splines, de classe C 1 sur IR, ayant les proprietes suivantes : pour 1 j N 1, N j a pour support [ j 1 j+1 N L; N L], N j est de degre 2 au plus sur [ j 1 N L; j N L] et sur [ j j+1 N L; N L]. On note S N = f X j N j ; 1 j N 1g; SN = f X j N j e x 2" ; 1 j N 1g (a) Montrer que S N et S N sont inclus dans H 1 ([; L]). (b) Determiner les coecients de la matrice de masse a jp et les coecients du terme source b p tels que la solution de inf V 2S N J (V ) P soit l'element de S N donne par j N j tel que X 8j; a pj j = b p : (c) On reecrit, sur S N, la formulation variationnelle (1.5) de la premiere partie, dont on admettra qu'elle existe et que sa solution est unique. Montrer que si on note A jp = L ["( N j ) ( N p ) N j ( N p ) N p ( N j ) + 1 4" (N j N p )+( N j ) N p + 1 2" N j N p ]e x " dx 7

8 le probleme est equivalent a L 8v 2 S N ; ("u v + u v)dx = 8j; X p A jp p = L L f(x)e x 2" dx = b j : fvdx (2.1) On note A la matrice des A jp et A la matrice des a jp. Est ce que les systemes A~ = ~ b et A ~ = ~ b sont identiques? Equivalents? (d) Proposez une methode qui permettrait d'avoir a partir de (2.1) le systeme A~ = ~ b. 7. Solution explicite dans le cas 1d : En posant u(x) = A(x)e a " x + B(x), ou B (x) + A (x)e a " x =, determiner l'unique solution de (2.6). 8

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Optimisation numérique. Outline. Multiplicateurs de Lagrange. Daniele Di Pietro A.A Contraintes d'égalité. 2 Contraintes d'inégalité

Optimisation numérique. Outline. Multiplicateurs de Lagrange. Daniele Di Pietro A.A Contraintes d'égalité. 2 Contraintes d'inégalité Optimisation numérique Multiplicateurs de Lagrange Daniele Di Pietro A.A. 2013-2014 Outline 1 Contraintes d'égalité 2 Contraintes d'inégalité Introduction Nous cherchons à écrire des conditions de minimalité

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations Optimisation numérique Introduction et exemples Daniele Di Pietro A.A. 2012-2013 Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

Une premiere approche des elements nis sur un exemple tres simple

Une premiere approche des elements nis sur un exemple tres simple EDP MTH Analyse 2215 EmmanuelFrenod numeri Premiere partie Une premiere approche s elements nis un exemple tres simple 1 Equation la chaleur dans barre 2 Resolution u00 f [0;1] par elements nis avec un

Plus en détail

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Chapitre 5 ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Exercice 5.2.1 A l aide de l approche variationnelle démontrer l existence et l unicité de la solution de { u + u = f dans (5.1) u = 0 sur où est

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

Multiplicateurs de Lagrange

Multiplicateurs de Lagrange Analyse numérique et optimisation TD5 27/05/204 A. Ern et A. de Bouard Groupes 5 & 2 Multiplicateurs de Lagrange Exercice : optimisation quadratique sous contraintes affines On pose V = R n et on considère

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

208. Espaces vectoriels normés. Applications linéaires continues. Exemples.

208. Espaces vectoriels normés. Applications linéaires continues. Exemples. 208. Espaces vectoriels normés. Applications linéaires continues. Exemples. Pierre Lissy May 29, 2010 Dans totue la suite, E désigne un espace vectoriel sur R ou C. 1 Norme. Espace vectoriel normé 1.1

Plus en détail

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours à l ISFA, en M1SAF Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 1.1 Motivation.................................... 4 1.2 Le problème général d optimisation......................

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

TD 5- Applications linéaires

TD 5- Applications linéaires TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Extrema locaux (ou relatifs)

Extrema locaux (ou relatifs) Chapitre 3 Extrema locaux (ou relatifs) 3.0.77 DÉFINITION Soit f : U! R une fonction, U ouvert d un espace vectoriel normé E et a 2 U. On dit que f présente un minimum local (respectivement un maximum

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Zoltán Szigeti Ensimag April 4, 2015 Z. Szigeti (Ensimag) RO 1A April 4, 2015 1 / 16 Forme Générale Définition

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction (0.1) Ce cours s articule autour du calcul différentiel et, en particulier, son application au

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non)

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail

RELAXATION LAGRANGIENNE

RELAXATION LAGRANGIENNE Chapitre 4 RELAXATION LAGRANGIENNE 4.1 Introduction La relaxation lagrangienne est une manipulation classique en optimisation sous contraintes. Bien qu intimement liée à la convexité, elle est couramment

Plus en détail

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24)

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24) Espaces de Sobolev Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002 medp-sobolevtex (2001nov24) Sauf mention explicite du contraire, toutes les fonctions considérées seront à valeurs réelles

Plus en détail

Définition d une norme

Définition d une norme Définition d une norme Définition E est un K-ev. L application N : E R + est une norme sur E ssi 1. x E, N(x) = 0 x = 0. 2. k K, x E, N(k.x) = k N(x). 3. x, y E, N(x + y) N(x) + N(y) Notation N,. Propriété

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R TOPOLOGIE 1) DISTANCE, ESPACES MÉTRIQUES a : distances : d'après le cours de M. Nicolas Tosel professeur en MP* au Lycée du Parc, Lyon Année 2004 2005 une distance est une application d de E dans R + telle

Plus en détail

Table des matières. Applications linéaires.

Table des matières. Applications linéaires. Table des matières Introduction...2 I- s et exemples...3 1-...3 2- Exemples...4 II- Noyaux et images...5 1- Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples...5 2- Ker

Plus en détail

Equations dierentielles

Equations dierentielles Equations dierentielles Université Mohammed I Faculté des Sciences Département de Mathématiques Oujda. Plan 1 Introduction 2 3 Résponsable du cours : Pr. NAJIB TSOULI. 1 Introduction 2 3 Introduction Une

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Université de Provence, C.M.I. Master de Mathématiques. T.E.R Equations Elliptiques Couplées

Université de Provence, C.M.I. Master de Mathématiques. T.E.R Equations Elliptiques Couplées Université de Provence, C.M.I. Master de Mathématiques T.E.R Equations Elliptiques Couplées Vincent BLAIN, Alain DOURDIL Mars 2005 Table des matières Introduction Outils d Analyse 3. Espaces L p ().............................

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Vandana BHANDARI Marc-Olivier CZARNECKI P R E P AMA TH Collection dirigée par Éric MAURETTE Sommaire Algèbre Notionsdebase... 1,2 Arithmétique...

Plus en détail

Équations de Navier-Stokes dans des domaines quelconques

Équations de Navier-Stokes dans des domaines quelconques Équations de Navier-Stokes dans des domaines quelconques Sylvie Monniaux Univ. Paul Cézanne Aix-Marseille 3, France Séminaire EDP, Rennes 2008 Sylvie Monniaux (Univ. P. Cézanne) NS dans Ω qcq Rennes, mars

Plus en détail