Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Dimension: px
Commencer à balayer dès la page:

Download "Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)"

Transcription

1 Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut ^etre utilise sans demonstration. Tous les documents sont autorises. La seconde partie est commune aux deux parcours (Paris 13 et Centrale), la premiere partie est uniquement pour la specialite MACS, mais les resultats numerotes dans la premiere partie peuvent ^etre utilises sans demonstration dans la seconde. Seuls les resultats enonces dans le texte de la premiere partie sont utilisables eventuellement dans la seconde partie. La partie 1 et la partie 2 sont a rediger sur deux copies separees, et la partie 1 sera relevee au bout de deux heures. Dans ce sujet, nous etudions l'equation d'advection-diusion. Elle intervient dans de nombreux domaines : mecanique des uides (equation de Navier-Stokes linearisee), environnement (equation des milieux poreux), mathematiques - nancieres (equation de Blaack et Scholes). 1 Partie 1 Dans cette partie, designe un domaine borne de IR d avec d = 1 ou d = 2, de frontiere susamment reguliere. Soit l'equation d'advection-diusion : " u + a ru = f u j = (1.1) On suppose f 2 L 2 (), " > et a(x) = (a 1 (x); :::; a d (x)) est un champ de vecteur dont toutes les composantes sont de classe C 1, uniformement bornees sur et tel que div(a) = en tout point de. On note kak L 1 = sup( x2 dx i=1 ja i (x)j 2 ) 1=2 et on notera u " la solution de (1.1) associee au coecient de diusion ". 1

2 1. (Etude theorique) On suppose dans cette partie que est un domaine regulier de classe C 2 de IR d. (a) Montrer que toute solution u " 2 H 2 () est aussi solution de la formulation variationnelle suivante : 8 >< >: Trouver u " 2 H 1 () 8v 2 H 1 () " ru " rv + (a ru " ) v = fv (1.2) Montrer reciproquement que toute solution u " de (1.2) qui appartient a H 2 () est aussi solution de (1.1). R (b) Montrer que la forme bilineaire b(u; v) = (a ru) v est antisymetrique sur H 1 (). En deduire que (1.2) admet une solution unique dans H 1 (). (c) Etablir l'estimation ku " k H 1 () C 1 kfk L 2 () ou l'on exprimera C 1 en fonction de la constante C P de Poincare du domaine (que l'on denira precisement sans la calculer) et de " >. (d) On rappelle que si v est la solution de la formulation variationnelle du probleme v = g dans avec condition aux limites v = sur et g 2 L 2 (), on a l'estimation de regularite kvk H 2 () C kgk L 2 () ou la constante C ne depend que du domaine. En deduire que la solution u " de (1.2) verie une estimation similaire de la forme ku " k H 2 () C 2 kfk L 2 () ou l'on exprimera C 2 en fonction de C P, C, kak L 1 et " >. (e) Montrer que les constantes C 1 et C 2 tendent vers +1 lorsque "!. 2. (Etude numerique) On supposera dans cette partie que est un domaine polyhedrique convexe de IR d et on admettra que tous les rsultats obtenus precedemment restent valables dans cette situation. On considere une suite (T h ) h> de maillages reguliers conformes de. On rappelle que { la suite h = max K2Th diam(k) tend vers. { il existe une constante C r telle que pour tout h > et K 2 T h, on a diam(k) C r (K) avec (K) rayon du cercle inscrit de K. On designe par V h l'espace d'elements nis P 1 Lagrange associe au maillage T h et on utilise la discretisation de (1.1) par la methode de Galerkin : 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ru ";h rv h + (a ru ";h ) v h = fv h (1.3) 2

3 (a) Montrer que (1.3) admet une solution unique u ";h qui verie l'estimation d'erreur ku " u ";h k H 1 () C 3 inf v h 2V h ku " v h k H 1 () ou l'on exprimera C 3 en fonction de C P, kak L 1 et " >. (b) Montrer que l'on a l'estimation inf v h 2V h ku " v h k H 1 () C 4 h ku " k H 2 () ou la constante C 4 ne depend que de C r. En deduire l'estimation d'erreur ku " u ";h k H 1 () C 5 h kfk L 2 () ou l'on exprimera C 5 en fonction de C 2, C 3 et C 4. (c) Montrer la constante C 5 tend vers +1 lorsque "!. Conclure. 3. (Discretisation en dimension 1) Dans cette partie, on se place en dimension 1, =]; L[ et f = a = 1, soit "u " + u " = 1 sur ]; L[ u " () = u " (L) = : (1.4) (a) Ecrire le schema obtenu par la discretisation en elements nis P 1 Lagrange sur un maillage rgulier. Montrer qu'il coincide avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence centree. Comment cela se relie-t-il intuitivement avec les problemes numeriques precedents? (b) Une solution possible a ces problemes consiste a discretiser (1.1) par une formulation variationnelles du type 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ];L[ u ";h v h + ];L[ u ";h v h + h u ";h v h = fv h ];L[ ];L[ (1.5) avec h choisi de maniere adequate. Pour preciser le choix de h, on le cherche sous la forme h = h: Pour quelle valeur de, le schema coincide-t-il avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence decentree amont dont on connait la stabilite dans la limite " tend vers? 3

4 2 Partie 2 Soit f 2 L 2 ([; L]). On considere l'equation dierentielle ordinaire qui est (1.1) en dimension 1, a etant une constante donc de divergence nulle(l > ) : "u + au = f(x); x 2]; L[; u 2 H 1 ([; L]) (2.6) (elle est donc munie des conditions aux limites u() = u(l) =. 1. (Generalites) On considere une fonctionnelle J(u) deux fois derivable sur H 1 ([; L]). R 1 (a) Calculer (J (tu); u)dt pour tout u. (b) On introduit c(u; v) = R L ( "u + au f)(x)v(x)dx. Montrer que u 2 H 1 ([; L]) solution de (2.6) si et seulement si 8v 2 H 1 ([; L]); c(u; v) = : (c) Calculer c(u; v) + c(v; u) pour tous u; v dans H 1 ([; L]). (d) On suppose qu'il existe J qui verie 8u; v 2 H 1 ([; 1]); (J (u); v) = c(u; v): Determiner J(u) pour tout u en utilisant deux questions precedentes et en deduire que J n'existe pas. Existe-t-il un probleme de minimisation sans contraintes sur H 1 ([; L]) tel que (2.6) soit l'equation d'euler associee? 2. Se ramener a un probleme quadratique. Dans ce paragraphe, on montre que, dans certaines conditions, l'equation avec un terme antisymetrique peut se ramener a une equation associee a un probleme symetrique. C'est cette analyse qui permet d'obtenir des resultats (en homogeneisation) sur la diusion moleculaire. (a) Trouver le changement de variable lineaire, et le changement de fonction inconnue et de terme source tels que (2.6) est equivalente a (1.4) sur un nouvel intervalle [; ~ L]. Cette relation ne sera pas utilisee par la suite. (b) Montrer que (2.6) est equivalente a "U + a2 4" U = f(x)e a 2" x = F (x) (2.7) ou on exprimera U en fonction de u. (c) Demontrer que U est solution du probleme de minimisation suivant sur H 1 ([; L]) : infj (U) ou J (V ) = 1 2 L ["(V ) 2 + a2 4" V 2 ]dx L F (x)v (x)dx: Montrer que ce probleme admet une unique solution U. 4

5 (d) Montrer que la fonctionnelle J est convexe sur H 1 ([; L]) et donner la meilleure constante ("; a). (e) Montrer que la fonctionnelle J est M Lipschitzienne et donner la meilleure constante M("; a). (f) Identier les limites lorsque " tend vers des deux constantes. (g) Montrer l'inegalite inf("; a2 4" )jju jj H 1 jjf jj L 2: Quelle est la limite lorsque " tend vers de la norme jju jj H 1? Quelle est la limite lorsque " tend vers de la norme jju jj L 2 (on pourra utiliser une inegalite celebre). 3. On considere dans cette section la fonctionnelle J. (a) Est-ce une fonctionnelle quadratique? (b) Montrer l'egalite J (V ) = J (U ) a(v U ; V U ) R ou ~a(v; W ) = (J L (U)V; W ) = ("V W + a2 4" V W )dx. Est ce que ~a depend de U? Comment appelle-t-on de telles fonctionnelles? (c) Montrer l'existence d'un unique K(V ) tel que 8w 2 H 1 ([; L]); ~a(v; W ) = (K(V ); W ) H 1 ou (:; :) H 1 designe le produit scalaire sur H 1. Montrer que K est un operateur lineaire. (d) Montrer l'egalite J(V ) = K(V U ): (e) Algorithme de gradient a pas optimal? 4. On considere maintenant un champ a(x; y); b(x; y) non constant veriant : il existe (x; y) de classe C 2 telle que a(x; y) x (x; y), b(x; y) y (x; y) et =. (a) Dans le cas ou (x; y) = x 2 y 2, montrer que ces hypotheses sont veriees (b) Montrer que ces hypotheses sont aussi veriees lorsque (x; y) = Re(x + iy) N. (c) Soit un ouvert borne regulier. On considere l'equation aux derivees partielles, pour f 2 L 2 () " u + (a(x; x u + b(x; y u) = f(x; y); u 2 H 1 () (2.8) ou a; b verie les hypotheses enoncees au debut de cette section. Montrer, en utilisant point par point les elements de 1, qu'il n'existe pas de fonctionnelle J(u) telle que (2.8) soit l'equation d'euler associee a J(u). 5

6 (d) Trouver une fonction U(x; y) = (x; y; a; ")u(x; y) telle que U(x; y) soit solution de l'equation aux derivees partielles " U + 1 4" jr j2 U = F (2.9) ou F sera a determiner en fonction de f et de. (e) Determiner la forme quadratique J 1 (U) dont l'equation d'euler associee est (2.9). On admet dans ce qui suit que est un ouvert borne regulier sur lequel l'inegalite de Poincare U 2 dx C ~ P (ru) 2 dx est vraie pour U 2 H 1 (). (f) Demontrer que J 1 admet un unique point de minimum, note U 1 sur H 1 (), muni de la norme ((u; u)) = R (ru)2 dx. 5. Analyse abstraite de l'algorithme de gradient optimal. Dans cette question, on etudie l'algorithme de gradient a pas optimal en dimension innie. On considere pour cela J (U) = 1 " (ru) 2 dx + 1 V (x)u 2 dx 2 2 ou V (x) = 1 4" jr j2 est continue bornee sur. On utilisera en permanence pour f et g dans H 1 () les identites de Green : f gdx = rf:rgdx = f gdx: (a) Montrer sans calculs que l'algorithme de gradient a pas optimal pour J 1 avec valeur initiale est le m^eme que l'algorithme de gradient a pas optimal pour J avec comme valeur initiale U 1, ou U 1 est l'unique solution de (2.9) dans H 1 (). (b) Montrer que 8W 2 H 1 (); (J (U); W ) = ((R; W )) ou R est l'unique solution dans H 1 () de R = " U + V (x)u: (c) En deduire que U! R = KU est un operateur bijectif de H 1 () sur H 1 (). (d) Montrer que J (U) = 1((KU; U)) = 1 ((R; U)). 2 2 (e) On introduit R 1 = KR. En rappelant le theoreme du polycopie (numero, et page) donner le pas n de l'etape n de l'algorithme de gradient a pas optimal 6

7 (f) Montrer les egalites ((KU; KU)) = ((R; KU)) = ((R; R)) = R Rdx ((KU; KU)) = " 2 (ru) 2 dx + " V (x)u 2 dx + V (x)rudx ((K 2 U; KU)) = ((R 1 ; R)) = " 2 (ru) 2 dx+" 3 V (x)u 2 +" 2 V (x)rudx+" V (x)r 2 : En utilisant l'egalite V (x) = 1 4" jr j2, montrer l'egalite (K 2 U; KU) = " 2 (KU; KU) jr j 2 R 2 dx: Donner le pas optimal. Estimer sa valeur en fonction de ". (g) Expliquer pourquoi, dans ce cas, calculer une etape de l'algorithme de gradient a pas optimal ou de gradient a pas constant est exactement de la m^eme diculte que de calculer la solution du probleme. 6. Discretisation du probleme sur des splines. On considere dans toute cette section que l'intervalle [; L] est decompose en segments de taille egale L N en nombre N. On admet l'existence de fonctions, appellees splines, de classe C 1 sur IR, ayant les proprietes suivantes : pour 1 j N 1, N j a pour support [ j 1 j+1 N L; N L], N j est de degre 2 au plus sur [ j 1 N L; j N L] et sur [ j j+1 N L; N L]. On note S N = f X j N j ; 1 j N 1g; SN = f X j N j e x 2" ; 1 j N 1g (a) Montrer que S N et S N sont inclus dans H 1 ([; L]). (b) Determiner les coecients de la matrice de masse a jp et les coecients du terme source b p tels que la solution de inf V 2S N J (V ) P soit l'element de S N donne par j N j tel que X 8j; a pj j = b p : (c) On reecrit, sur S N, la formulation variationnelle (1.5) de la premiere partie, dont on admettra qu'elle existe et que sa solution est unique. Montrer que si on note A jp = L ["( N j ) ( N p ) N j ( N p ) N p ( N j ) + 1 4" (N j N p )+( N j ) N p + 1 2" N j N p ]e x " dx 7

8 le probleme est equivalent a L 8v 2 S N ; ("u v + u v)dx = 8j; X p A jp p = L L f(x)e x 2" dx = b j : fvdx (2.1) On note A la matrice des A jp et A la matrice des a jp. Est ce que les systemes A~ = ~ b et A ~ = ~ b sont identiques? Equivalents? (d) Proposez une methode qui permettrait d'avoir a partir de (2.1) le systeme A~ = ~ b. 7. Solution explicite dans le cas 1d : En posant u(x) = A(x)e a " x + B(x), ou B (x) + A (x)e a " x =, determiner l'unique solution de (2.6). 8

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Une premiere approche des elements nis sur un exemple tres simple

Une premiere approche des elements nis sur un exemple tres simple EDP MTH Analyse 2215 EmmanuelFrenod numeri Premiere partie Une premiere approche s elements nis un exemple tres simple 1 Equation la chaleur dans barre 2 Resolution u00 f [0;1] par elements nis avec un

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction (0.1) Ce cours s articule autour du calcul différentiel et, en particulier, son application au

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

208. Espaces vectoriels normés. Applications linéaires continues. Exemples.

208. Espaces vectoriels normés. Applications linéaires continues. Exemples. 208. Espaces vectoriels normés. Applications linéaires continues. Exemples. Pierre Lissy May 29, 2010 Dans totue la suite, E désigne un espace vectoriel sur R ou C. 1 Norme. Espace vectoriel normé 1.1

Plus en détail

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours à l ISFA, en M1SAF Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 1.1 Motivation.................................... 4 1.2 Le problème général d optimisation......................

Plus en détail

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations Optimisation numérique Introduction et exemples Daniele Di Pietro A.A. 2012-2013 Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Chapitre 5 ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Exercice 5.2.1 A l aide de l approche variationnelle démontrer l existence et l unicité de la solution de { u + u = f dans (5.1) u = 0 sur où est

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

3.1 Espace vectoriel. La multiplication par un scalaire. L'addition et la multiplication par un scalaire obeissent aux regles suivantes :

3.1 Espace vectoriel. La multiplication par un scalaire. L'addition et la multiplication par un scalaire obeissent aux regles suivantes : .1 Espace vectoriel Un espace vectoriel de dimension p sur le corps des reels IR est une construction mathematique dont les elements sont des vecteurs. Il est deni par deux operations : L'addition. Soient

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

TD 5- Applications linéaires

TD 5- Applications linéaires TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Méthodes de Décomposition de Domaine de Type Optimisation

Méthodes de Décomposition de Domaine de Type Optimisation Méthodes de Décomposition de Domaine de Type Optimisation Jonas Koko LIMOS, Université Blaise Pascal CNRS FRE 2239 ISIMA, Campus des Cézeaux BP 10125 F63173 Aubière cedex, France email: koko@sp.isima.fr

Plus en détail

Introduction à l Optimisation Numérique

Introduction à l Optimisation Numérique DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

TD 2 Exercice 1. Un bûcheron a 100 hectares de bois de feuillus. Couper un hectare de bois et laisser la zone se régénérer naturellement coûte 10 kf par hectares, et rapporte 50 kf. Alternativement, couper

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

19. APPLICATIONS LINÉAIRES

19. APPLICATIONS LINÉAIRES 19. APPLICATIONS LINÉAIRES 1 Dénitions générales. 1. 1 Applications linéaires. On dit qu'une application d'un espace vectoriel E dans un espace vectoriel F est linéaire si elle est compatible avec les

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Méthodes de décomposition de domaine pour des problèmes hétérogènes

Méthodes de décomposition de domaine pour des problèmes hétérogènes Méthodes de décomposition de domaine pour des problèmes hétérogènes SMA - Projet de semestre - Analyse Numérique Sous la direction du Dr. Marco Discacciati Rime Mathias automne 2008 Remerciements Je remercie

Plus en détail

Géométrie vectorielle plane, cours, première S

Géométrie vectorielle plane, cours, première S Géométrie vectorielle plane, cours, première S F.Gaudon 25 septembre 2015 Table des matières 1 Géométrie vectorielle dans un repère 2 1.1 Compléments sur la colinéarité.................................

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non)

Plus en détail

Extrema locaux (ou relatifs)

Extrema locaux (ou relatifs) Chapitre 3 Extrema locaux (ou relatifs) 3.0.77 DÉFINITION Soit f : U! R une fonction, U ouvert d un espace vectoriel normé E et a 2 U. On dit que f présente un minimum local (respectivement un maximum

Plus en détail

3 2 Séries numériques

3 2 Séries numériques BCPST 9 5 3 Séries numériques I Généralités A) Dénition Soit (a n ) n N une suite à valeurs dans R. On appelle série de terme général a n, et on note a n la suite dénie par : S n = On dit que S n est la

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix.

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix. ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN 1 AVRIL 21 CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE EPREUVE D'ORDRE GENERAL DUREE :

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

1 Formalisme de la Mécanique Quantique

1 Formalisme de la Mécanique Quantique Théorie Spectrale et Mécanique Quantique Christian Gérard Département de Mathématiques, Bât. 425 UMR 8628 du CNRS Université de Paris-Sud F-91405 Orsay Cédex FRANCE email : Christian.Gerard@math.u-psud.fr

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Université de Provence, C.M.I. Master de Mathématiques. T.E.R Equations Elliptiques Couplées

Université de Provence, C.M.I. Master de Mathématiques. T.E.R Equations Elliptiques Couplées Université de Provence, C.M.I. Master de Mathématiques T.E.R Equations Elliptiques Couplées Vincent BLAIN, Alain DOURDIL Mars 2005 Table des matières Introduction Outils d Analyse 3. Espaces L p ().............................

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail