Intégrales doubles et triples - M

Dimension: px
Commencer à balayer dès la page:

Download "Intégrales doubles et triples - M"

Transcription

1 Intégrales s et - 1/27

2 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > x On peut alors délimiter une surface par : le graphe de f, l axe Ox, les droites x = a, x = b, puis lui associer un nombre réel noté S appelé aire de la surface (l unité de mesure étant un cube de coté 1). 2/27

3 Valeurs approchées - Intégrale définie Rappels Approximation Une valeur approchée I n de S peut être obtenue en partageant I en n parties égales x = a,, x k = a + k b a n,, x n = b, x i = x i+1 x i et en calculant la somme des aires des rectangles de base b a n et de hauteurs f (x 1 ),, f (x n ) : I n = b a [f (x 1 ) + + f (x k ) + + f (x n )] n éfinition (Propriété admise): Si f est continue sur [a, b] alors lim n a Subdivision avec n=5 (b-a)/n x b Valeur approchøe = Valeur exacte = x n f (x i ) x i = I(f ). I(f ) sera appelée intégrale définie de la fonction f continue entre les bornes a et b i=1 3/27

4 1.1- Intégrale ouble 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale éfinition: Intégrale ouble un domaine inscrit dans le rectangle [a, b] [c, d] (borné, connexe de IR 2 ), f une fonction définie continue sur (prolongée par zéro à l extérieur de ) on subdivise [a, b] en n parties {x = a, x 1,..., x i,..., x n = b}, x i = x i x i 1 on { subdivise [c, d] en m parties y = c, y 1,..., y j,..., y m = d }, y j = y j y j 1 r ij = [x i 1, x i ] [y j 1, y j ] un rectangle élémentaire ainsi on a subdivisé en n m parties (r ij ) i,j l intégrale de f sur est définie par I(f ) = f (x, y)dxdy = lim n m r ij n i=1 j=1 m f (x i, y j ) x i y j 4/27

5 1.2- Interprétation graphique 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale S f surface représentative de f dans un repère orthonormé p ij = [x i 1, x i ] [y j 1, y j ] [, f (x i, y j )] un parallélépipède élémentaire et v ij = f (x i, y j ) x i y j le volume de p ij I(f ) = f (x, y)dxdy = v ij = volume de V lim n m r ij V est le volume intérieur au cylindre droit de section limité par la surface S f d équation z=f(x,y) et le plan z = Cas particulier: Si f (x, y) = 1 alors dxdy = aire de. ds = dxdy est l élément d aire en coordonnées cartésiennes i j 5/27

6 1) Calcul de l Intégrale ouble 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale 1)- Première un domaine borné de IR 2 de frontière Γ intersectée au plus en deux points par toute droite d équation x=cte, (Γ est continuement différentiable sauf en un nombre fini de points) (r ij ) i,j une subdivision de en rectangles élémentaires si f est une fonction de deux variables définie et continue sur, l intégrale de f sur est définie par: I(f ) = f (x, y) dxdy = lim f (x i, y j ) x i y j = rij i j { b y2 (x) a y 1 (x) f (x, y) dy [a, b] est la projection orthogonale de sur (Ox) [y 1 (x), y 2 (x)] est l intersection de avec la droite x = cte } dx 6/27

7 Première (démo) 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Partant de I(f ) = lim (lim f (x i, y j ) y j ) x i i j on remarque que lim f (x i, y j ) y j = j y2 (x i ) y 1 (x i ) b I(f ) = lim A(x i ) x i = i I(f ) = f (x, y) dxdy = f (x i, y) dy = A(x i ) d où a b A(x)dx { } y2 (x) f (x, y) dy a y 1 (x) dx 7/27

8 Exemple 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Calculer I = x dxdy avec [ ] = (x, y) IR 2 / x 1, y 2x [a, b] = [, 1], [y 1 (x), y 2 (x)] = [, 2x] { 1 } 2x 1 I = x dy dx = x [ y] 2x dx I = 1 2x 2 dx = [ 2x 3 3 ] 1 = 2 3 8/27

9 2) euxième 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale un domaine borné de IR 2 de frontière Γ intersectée au plus en deux points par toute droite d équation y=cte, (Γ est continuement différentiable sauf en un nombre fini de points) (r ij ) i,j une subdivision de en rectangles élémentaires si f est une fonction de deux variables définie et continue sur, l intégrale de f sur est définie par: I(f ) = f (x, y) dxdy = lim f (x i, y j ) x i y j = rij i j { d x2 (y) c x 1 (y) f (x, y) dx [c, d] est la projection orthogonale de sur (Oy) [x 1 (y), x 2 (y)] est l intersection de avec la droite y = cte } dy 9/27

10 euxième (démo) 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Partant de I(f ) = lim { lim } f (x i, y j ) x i y j j i on remarque que lim f (x i, y j ) x i = i x2 (y j ) x 1 (y j ) d I(f ) = lim B(y j ) y j = j I(f ) = f (x, y) dxdy = f (x, y j ) dx = B(y j ) d où c d c B(y)dy { } x2 (y) f (x, y) dx x 1 (y) dy 1/27

11 Exemple 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Calculer I = x dxdy avec [ ] = (x, y) IR 2 / x 1, y 2x [ y ] [c, d] = [, 2], [x 1 (y), x 2 (y)] = 2, 1 I = 2 I = 1 2 { } 1 x dx dy = 2 y 2 2 [ x 2 2 ] 1 y 2 (1 y 2 4 ) dy = 1 [y y dy ] 2 = /27

12 1.4- Propriétés de l Intégrale ouble 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Elles découlent de celles de l intégrale simple. Pour f et g intégrables sur. a) Propriétés liées à la fonction I(f + g) = I(f ) + I(g) et I(λf ) = λi(f ) si f = I(f ) λ IR b) Propriétés liées au domaine si ( 1 2 ) = et si l aire de ( 1 2 ) est nulle = f (x, y) dxdy = f (x, y) dxdy + f (x, y) dxdy /27

13 1.5- Changement de l intégrale 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale a) Rappel sur l intégrale simple Soit ϕ une application de [t 1, t 2 ] sur [a, b], dérivable et inversible, on pose x = ϕ(t) b a f (x)dx = t2 t 1 f [ϕ(t)]ϕ (t)dt où ϕ(t 1 ) = a et ϕ(t 2 ) = b L expression suivante est équivalente à celle ci-dessus. b a f (x)dx = [a,b] f (x)dx = ϕ 1 ([a,b]) f [ϕ(t)] ϕ (t) dt Remarque: Suivant le signe de ϕ (t), ϕ 1 ([a, b]) = [t 1, t 2 ] ou [t 2, t 1 ], ce qui conduit à ϕ (t) (t 2 t 1 ) > pour (a < b). 13/27

14 b) Changement de une intégrale 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale On admettra sans démonstration le théorème suivant: f (x, y)dxdy = =ϕ 1 () f [ϕ(u, v)] J(u, v) dudv où les fonctions x et y admettent des dérivées partielles continues sur ϕ(u, v) = [x(u, v), y(u, v)] une application inversible de IR 2 (portant sur u et v) sur IR 2 (portant sur x et y), telle que = ϕ( ) = = ϕ 1 () et J(u, v) = x u y u x v y v = x u(u, v)y v(u, v) x v(u, v)y u(u, v) est le Jacobien de ϕ qui ne doit pas s annuler sur pour que l application ϕ soit inversible. 14/27

15 c) Cas particulier important: les coordonnées polaires 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale On considère les variables x(ρ, θ) = ρ cos θ, y(ρ, θ) = ρ sin θ le Jacobien est alors J(ρ, θ) = x ρ y ρ = cos θ sin θ ρ sin θ ρ cos θ = ρ x θ y θ On vérifie les hypothèses précédentes en imposant à (ρ, θ) les deux contraintes suivantes ρ > et θ [α, α + 2π[ ds = ρdρdθ est l élément d aire en coordonnées polaires 15/27

16 d) Application : calcul de l aire du disque 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Soit le disque de rayon a centré à l origine d un repère orthonormé, d inéquation x 2 + y 2 a 2 le domaine est défini par: θ [, 2π[, ρ > et ρ 2 a 2 = = { (ρ, θ) IR 2 / < ρ a et θ [, 2π[} On remarque que le disque est transformé en un rectangle dans le plan (ρ, θ). Aire de = dxdy = ρ dρdθ = 2π { a } 2π [ ] ρ 2 a ρdρ dθ = dθ = aire de = πa /27

17 éfinition de 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de un domaine borné et connexe de IR 3, inscrit dans le parallélépipède [a, b] [c, d] [e, h] f une fonction définie continue sur le domaine, prolongée par zéro à l extérieur de {x =a,..., x i,..., x n =b} subdivision de [a, b], x i =x i x i 1 {y =c,..., y j,..., y m =d} subdivision de [c, d], y j =y j y j 1 {z =e,..., z k,..., z p =h} subdivision de [e, h], z k =z k z k 1 p ijk = [x i 1, x i ] [y j 1, y j ] [z k 1 z k ] (p ijk ) i,j,k subdivision de en parallélépipèdes élémentaires l intégrale de f sur est définie par : I(f )= f (x, y, z)dxdydz = lim f (x i, y j, z k ) x i y j z k p ijk i j k Cas particulier: Si f (x, y, z) = 1 alors dxdydz = Volume de dv = dxdydz est l élément de volume en 17/27

18 Propriétés de 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Elles découlent de celles de l intégrale simple et de l intégrale pour f et g intégrables sur. 1) Propriétés liées à la fonction I(f + g) = I(f ) + I(g) et I(λf ) = λi(f ) λ IR Si f alors I(f ) 2) Propriétés liées au domaine Si 1 2 = et si le volume de 1 2 est nul alors f (x, y, z) dxdydz = f (x, y, z) dxdydz + f (x, y, z) dxdydz /27

19 Calcul de 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de 1) Première Soit f une fonction définie et continue sur, l intersection de par tout plan d équation z=cte est un ensemble connexe de IR 2 I(f ) = lim p ijk lim k i j I(f )= f (x, y, z) dxdydz = f (x i, y j, z k ) x i y j z k h e { } f (x, y, z) dxdy dz δ(z) [e, h] est la projection orthogonale de sur (Oz) δ(z) est l intersection de avec le plan z = cte 19/27

20 Exemple d application 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de I = dx dy dz avec [ ] = (x, y, z) R 3 / x, y, z, x + y + z 1 Ici [e, h] { = [, 1] } δ(z) = (x, y) IR 2 / x, y, z, x + y 1 z { 1 } 1 I = dz = aire de δ(z)dz I = 1 dxdy δ(z) [ (1 z) 2 2 ] dz = [ (1 z)3 6 ] 1 = volume de = 1 6 2/27

21 euxième 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Soit f une fonction définie et continue sur, l intersection de par toute droite parallèle à (oz) est un intervalle connexe de IR { I(f ) = lim lim } f (x i, y j, z k ) z k x i y j p ijk i j k { } z2 (x,y) I(f )= f (x, y, z)dxdydz = f (x, y, z)dz dxdy δ z 1 (x,y) δ est la projection orthogonale de sur le plan (xoy) [z 1 (x, y), z 2 (x, y)] est l intersection de avec la droite d: intersection des deux plans x =cte et y =cte 21/27

22 Exemple d application 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de I = dxdydz avec [ ] = (x, y, z) R 3 / x, y, z, x + y + z 1 Ici δ = { } (x, y) IR 2 / x, y, x + y 1 et [z 1 (x, y), z 2 (x, y)] = [, 1 x y] { } 1 x y I = dz dxdy = (1 x y)dxdy = δ δ { 1 } 1 x 1 ] 1 x (1 x y)2 (1 x y)dy dx = [ dx 2 ] 1 (1 y)3 I = [ = volume de = /27

23 2.4- Changement de l intégrale triple 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de 1) Cas général f (x, y, z)dxdydz = f [Φ(u, v, w)] J(u, v, w) dudvdw =Φ 1 () où Φ(u, v, w) = [x(u, v, w), y(u, v, w), z(u, v, w)] est une application inversible de IR 3 (portant sur u,v et w) sur IR 3 (portant sur x,y et z), on a = Φ( ) = Φ 1 () les fonctions x, y et z admettent des dérivées partielles continues sur, où J le Jacobien de Φ est défini par: J = J(u, v, w) = x u y u z u x v y v z v x w y w z w = z x v u x w y v y w +z x w v x u y w y u +z x u w x v y u y v. J =z u(x vy w x wy v)+z v(x wy u x uy w)+z w(x uy v x vy v) sur. Ce Jacobien ne doit pas s annuler sur pour que l application Φ soit inversible. 23/27

24 Coordonnées cylindriques 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de 2) Les coordonnées cylindriques les variables x(ρ, θ, z) = ρ cos θ, y(ρ, θ, z) = ρ sin θ, z = z les conditions d inversibilité ρ > et θ [α, α + 2π[ le Jacobien J(ρ, θ, z) = x ρ y ρ z ρ x θ y θ z θ x z y z z z = cos θ sin θ ρ sin θ ρ cos θ 1 = ρ dv = ρdρdθdz est l élément de volume en coordonnées cylindriques 24/27

25 Application: Calcul du volume du cylindre 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Soit le cylindre droit d axe de rotation (Oz), d inéquations x 2 + y 2 a 2 et z h le domaine est défini par: θ [, 2π[, ρ >, ρ 2 a 2 et z h = { } = (ρ, θ, z) IR 3 / < ρ a, θ [, 2π[ et z h volume de = dxdydz = ρdρdθdz = { h 2π { a } } ρdρ dθ dz = volume du cylindre = πa 2 h le cylindre est transformé en parallèlépipède dans l espace (ρ, θ, z) 25/27

26 Les coordonnées sphèriques 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de les variables x(r, θ, ϕ) = r cos θ cos ϕ, y(r, θ, ϕ) = r sin θ cos ϕ, z = r sin ϕ les conditions d inversibilité r >, θ [α, α + 2π[ ] et ϕ π 2, π [ 2 le Jacobien J(r, θ, ϕ) = x r y r z r x θ y θ z θ x ϕ y ϕ z ϕ J(r, θ, ϕ) = r 2 cos ϕ = cos θ cos ϕ sin θ cos ϕ sin ϕ r sin θ cos ϕ r cos θ cos ϕ r cos θ sin ϕ r sin θ sin ϕ r cos ϕ dv = r 2 cos ϕdrdθdϕ est l élément de volume en coordonnées sphèriques 26/27

27 Application: calcul du volume de la sphère 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Soit la sphère de rayon "a" centrée à l origine d un repère orthonormé, d inéquation x 2 + y 2 + z 2 a 2 le domaine est défini par: θ [, 2π[, r >, ϕ ] π 2, π 2 [ et r 2 a 2 = { ] = (r, θ, ϕ) IR 3 / < r a, θ [, 2π[, et ϕ π 2, π [} 2 volume de = dxdydz = r 2 cos(ϕ)drdθdϕ = π 2 π 2 { 2π { a cos ϕ r 2 dr } dθ } dϕ = volume de la sphère= 4 3 πa3 Remarque : la sphère est transformée en parallèlépipède dans l espace (r, θ, ϕ) 27/27

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre 9 : Intégrales triples Équipe de Mathématiques Appliquées UTC Mai 2013 suivant Chapitre 9 Intégrales triples 9.1 Motivation, définition et calcul de l intégrale

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

8.2 Calcul intégral à plusieurs variables

8.2 Calcul intégral à plusieurs variables 8.2 Calcul intégral à plusieurs variables La notion d intégrale d une fonction à une variable, telle qu on l a vue jusqu ici, peut être généralisée à des fonctions à plus grand nombre de variables. Nous

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 Outils Mathématiques 4 Intégrales de surfaces résumé 1 Surfaces paramétrées éfinition 1.1 Une surface paramétrée dans l espace, est la donnée de trois fonctions de classes

Plus en détail

1 Outils mathématiques pour la Physique

1 Outils mathématiques pour la Physique Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier TUE 302 : Outil Physique et Géophysique 1 Outils mathématiques pour la Physique k Daniel.Brito@ujf-grenoble.fr

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Formules intégrales. Chapitre Intégrales curvilignes Définition. On appelle intégrale curviligne de V le long de γ, l intégrale :

Formules intégrales. Chapitre Intégrales curvilignes Définition. On appelle intégrale curviligne de V le long de γ, l intégrale : Chapitre 6 Formules intégrales 6.1 Intégrales curvilignes Soit : t (t) = (x(t), y(t), z(t)) une courbe paramétrée régulière de l espace R 3 et V = (P(x, y, z), Q(x, y, z), R(x, y, z)) un champ de vecteurs.

Plus en détail

Surfaces. (u; v) 7! M(u; v) = (x(u; v); y(u; v); z(u; v))

Surfaces. (u; v) 7! M(u; v) = (x(u; v); y(u; v); z(u; v)) Surfaces. Généralités sur les surfaces a) Surfaces paramétrées. - Dé nition : Une surface paramétrée S de l espace R 3 est une application d une partie de R à valeurs dans R 3, (u; v) 7! M(u; v) = (x(u;

Plus en détail

Faculté : ST TD de Maths 3 : Série 1. Départements : G.C et ELN. [ x. dy 5)

Faculté : ST TD de Maths 3 : Série 1. Départements : G.C et ELN. [ x. dy 5) Université A/MIRA de Béjaia Année : 5-6 Faculté : ST T de Maths : Série. épartements : G.C et ELN. Exercice :Intervertir l ordre d intégration dans les intégrales suivantes : y ) f(x, y)dy dx ) f(x, y)dy

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Université Joseph Fourier, Grenoble Maths en Ligne Fonctions de plusieurs variables Bernard Ycart Ce chapitre contient des techniques que vous utiliserez très souvent en physique, mais les justifications

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ 2 Champ et potentiel électrostatique Les e ets électriques peuvent être décrits par deux grandeurs que nous allons étudier dans ce chapitre : le champ électrostatique (grandeur vectorielle) et le potentiel

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type INTÉGRATION SUR LES SURFACES Le but de ce texte est d expliquer comment définir et calculer des expressions du type φ(x)dσ(x) Σ où Σ est une surface de classe C 1 de R 3 ou plus généralement une hypersurface

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m 1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Compléments sur les couples aléatoires

Compléments sur les couples aléatoires Licence Math et MASS, MATH54 : probabilités et statistiques Compléments sur les couples aléatoires 1 Couple image ans ce paragraphe, on va s intéresser à la loi d un vecteur aléatoire S, T qui s obtient

Plus en détail

Mathématiques II. Session de rattrapage

Mathématiques II. Session de rattrapage NOM :... FIPA BTP Prénom :... Date :... Mathématiques II Session de rattrapage Thème: Opérateurs vectoriels, potentiels scalaires, circulations vectorielles, intégrales doubles Durée: 1H00 Outils autorisés:

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Outils Mathématiques 4: Exercices. Fonctions de plusieurs variables et calcul vectoriel

Outils Mathématiques 4: Exercices. Fonctions de plusieurs variables et calcul vectoriel Université de Rennes 1 Année 2006/2007 A savoir Outils Mathématiques 4: Exercices Fonctions de plusieurs variables et calcul vectoriel 1. Définition du graphe G(f) d une fonction f 2. Courbes de niveau.

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

EN - EXERCICES SUR LES INTEGRALES MULTIPLES

EN - EXERCICES SUR LES INTEGRALES MULTIPLES EN - EXERCICES SUR LES INTEGRALES MULTIPLES Eercice Calculer I f(, y) ddy dans les cas suivants a) est le triangle de sommets O, A(,), B(,) f(,y) ln( + y + ) b) est le parallélogramme limité par les droites

Plus en détail

Du Calcul d Aire... ...Au Calcul Intégral

Du Calcul d Aire... ...Au Calcul Intégral Du Calcul d Aire......Au Calcul Intégral Objectifs Définir proprement l aire d une surface plane, au moins pour les domaines usuels (limités par des courbes simples) et fournir un moyen de la calculer.

Plus en détail

Mathématiques pour MPSI (mais pas que pour) 2011-2012 JPV

Mathématiques pour MPSI (mais pas que pour) 2011-2012 JPV Mathématiques pour MPSI (mais pas que pour) 211-212 JPV Lycée international de Valbonne Sophia-Antipolis E-mail address: jean-paul.vincent@prepas.org 3 Résumé. Ce fascicule développe le programme officiel

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre 7 : Intégrales doubles Équipe de Mathématiques Appliquées UTC (Juillet 215) suivant Chapitre 7 Intégrales doubles 7.1 Motivation, définition et calcul de l intégrale

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Changement de variables dans une intégrale multiple

Changement de variables dans une intégrale multiple Chapitre 1 Changement de variables dans une intégrale multiple Dans ce chapitre on poursuit l étude des intégrales multiples. Pour calculer une intégrale double, la méthode de base donnée par le théorème

Plus en détail

Cours de Mathématiques pour la Physique

Cours de Mathématiques pour la Physique Mustapha SADOUKI Maitre de Conférences Faculté des Sciences et de la Technologie Université Djilali Bounaama à Khemis-Miliana Cours de Mathématiques pour la Physique Intégrales simples et multiples Intégrales

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Intégrales curvilignes.

Intégrales curvilignes. Chapitre 1 Intégrales curvilignes. 1.1 Généralités 1.1.1 Courbes paramétrées dans le plan. Motivations, exemples. L exemple basique de courbe est la trajectoire décrite par un objet assimilée à un point

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Calcul des intégrales multiples. Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal

Calcul des intégrales multiples. Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal Calcul des intégrales multiples Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal 1 8 6 4 2 2 4 6 8 6 5 4 3 2 1 1 2 3 4 5 6 2 Table des matières 1 Intégrales doubles

Plus en détail

Utilisation du théorème de Gauss

Utilisation du théorème de Gauss Utilisation du théorème de Gauss Table des matières 1 Méthode générale 1 2 Plan infini uniformément chargé 2 2.1 Invariances et symétries................................... 2 2.2 Calcul du champ électrique.................................

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

EQUATIONS ET INEQUATIONS A DEUX INCONNUES

EQUATIONS ET INEQUATIONS A DEUX INCONNUES Chapitre 7 EQUATIONS ET INEQUATIONS A DEUX INCONNUES 7.1 Equation linéaire à deux inconnues L équation de la forme ax + by + c = 0, avec a, b, c IR est une équation linéaire à deux inconnues. L ensemble

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur

Plus en détail

Chapitre 6 La dérivation

Chapitre 6 La dérivation Capitre 6 La dérivation A) Nombre dérivé et tangente 1) Tangente en un point à une courbe et nombre dérivé Soit f(x) la fonction dont la courbe est représentée ci-dessus, et prenons deux points A et B

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Précession du périhélie de Mercure

Précession du périhélie de Mercure Préparation à l Agrégation de Sciences Physiques ENSP - Montrouge François Levrier Problème de mécanique Précession du périhélie de Mercure 1 er décembre 25 Ce problème, qui est basé en partie sur celui

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

I- Définition d un Vecteur:

I- Définition d un Vecteur: 1 I- Définition d un Vecteur: Un vecteur est une grandeur définie par trois paramètres: - Une direction : qui désigne le support du vecteur - Un sens : qui désigne l orientation du vecteur - un module

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL MINISTÈRE DE L ÉDUCATION DE L ALPHABÉTISATION ET DES LANGUES NATIONALES RÉPUBLIQUE DU MALI Un Peuple Un But Une Foi PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE

Plus en détail

Intégrales curvilignes et de surfaces

Intégrales curvilignes et de surfaces Intégrales curvilignes et de surfaces Fabrice Dodu FORMATION CONTINUE : DUT+3 DÉPARTEMENT DE MATHÉMATIQUES : INSA TOULOUSE 2-21 Version 1. Sommaire I Le cours 6 1 Intégrales curvilignes 8 1.1 Notions sur

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Mini-Projet d analyse numérique du cours MAP 411 : Autour du flot de la chaleur pour les applications harmoniques

Mini-Projet d analyse numérique du cours MAP 411 : Autour du flot de la chaleur pour les applications harmoniques Mini-Projet d analyse numérique du cours MAP 411 : Autour du flot de la chaleur pour les applications harmoniques Sujet proposé par Antoine Hocquet 014-015 La partie numérique devra être envoyée à l adresse

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

INTEGRALES DE SURFACES

INTEGRALES DE SURFACES INTEGRALES DE SURFACES P. Pansu November 1, 4 1 Surfaces paramétrées Définition 1 Une surface paramétrée dans l espace, cela consiste à se donner trois fonctions définies sur un domaine D du plan, x s

Plus en détail

ANNEXE LA TRANSFORMATON DE FOURIER

ANNEXE LA TRANSFORMATON DE FOURIER ANNEXE LA TRANSFORMATON DE FOURIER La transformation de Fourier est une des transformations la plus importante dans la branche de traitement du signal et particulièrement dans la spécialité de traitement

Plus en détail

Opérateurs différentiels

Opérateurs différentiels Master Dynamique terrestre et risques naturels Mathématiques pour géologues Opérateurs différentiels On étudie en géosciences des fonctions scalaires des coordonnées d espace, comme la température, ou

Plus en détail

INTÉGRALES MULTIPLES ET APPLICATIONS

INTÉGRALES MULTIPLES ET APPLICATIONS INTÉGRALES MULTIPLES ET APPLICATIONS Ce chapitre constitue une généralisation de la notion d'intégrales simples vue précédemment. Les propriétés énoncées pour les intégrales simples demeurent. On se contentera

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Corrigé des exercices de la feuille n o 5. 0 = Cov(2X + Y, X 3Y ) = 2Var(X) 3Var(Y ) 5Cov(X, Y ),

Corrigé des exercices de la feuille n o 5. 0 = Cov(2X + Y, X 3Y ) = 2Var(X) 3Var(Y ) 5Cov(X, Y ), Université Pierre et Marie Curie L3 - Mathématiques Année 3-4 Probabilités - LM39 Corrigé des exercices de la feuille n o 5 Exercice Puisque X et Y sont centrés, les données de l énoncé entraînent que

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES ÉCOLE NATIONALE DE L AVIATION CIVILE ANNEE 2009 CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte : 1 page de garde, 2 pages

Plus en détail

1.2 Plan d étude et exemples types.

1.2 Plan d étude et exemples types. Université de Rennes Licence Biologie Mathématiques Année 2008-2009.2 Plan d étude et exemples types..2. But Le but de ce chapitre est d étudier les fonctions comme celles données dans les exemples précédents.

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

Les opérateurs différentiels grad, div, rot. Une fois la lecture lancée (clique souris), utilisez les touches ou pour naviguer

Les opérateurs différentiels grad, div, rot. Une fois la lecture lancée (clique souris), utilisez les touches ou pour naviguer Les opérateurs différentiels grad, div, rot Une fois la lecture lancée (clique souris), utilisez les touches ou pour naviguer Champs scalaires et champs vectoriels scalar fields and vector fields Quelques

Plus en détail

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires M. Bergounioux & E. Trélat MAPMO Université d Orléans Journées du GDR - MOA Porquerolles 19-21 Octobre

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Géométrie dans l Espace Courbes de niveau

Géométrie dans l Espace Courbes de niveau Géométrie dans l Espae Courbes de niveau Christophe ROSSIGNOL Année solaire 008/009 Table des matières 1 Quelques rappels 1.1 Coordonnées d un point, d un veteur................................. 1. Colinéarité

Plus en détail