Intégrales doubles et triples - M

Dimension: px
Commencer à balayer dès la page:

Download "Intégrales doubles et triples - M"

Transcription

1 Intégrales s et - 1/27

2 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > x On peut alors délimiter une surface par : le graphe de f, l axe Ox, les droites x = a, x = b, puis lui associer un nombre réel noté S appelé aire de la surface (l unité de mesure étant un cube de coté 1). 2/27

3 Valeurs approchées - Intégrale définie Rappels Approximation Une valeur approchée I n de S peut être obtenue en partageant I en n parties égales x = a,, x k = a + k b a n,, x n = b, x i = x i+1 x i et en calculant la somme des aires des rectangles de base b a n et de hauteurs f (x 1 ),, f (x n ) : I n = b a [f (x 1 ) + + f (x k ) + + f (x n )] n éfinition (Propriété admise): Si f est continue sur [a, b] alors lim n a Subdivision avec n=5 (b-a)/n x b Valeur approchøe = Valeur exacte = x n f (x i ) x i = I(f ). I(f ) sera appelée intégrale définie de la fonction f continue entre les bornes a et b i=1 3/27

4 1.1- Intégrale ouble 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale éfinition: Intégrale ouble un domaine inscrit dans le rectangle [a, b] [c, d] (borné, connexe de IR 2 ), f une fonction définie continue sur (prolongée par zéro à l extérieur de ) on subdivise [a, b] en n parties {x = a, x 1,..., x i,..., x n = b}, x i = x i x i 1 on { subdivise [c, d] en m parties y = c, y 1,..., y j,..., y m = d }, y j = y j y j 1 r ij = [x i 1, x i ] [y j 1, y j ] un rectangle élémentaire ainsi on a subdivisé en n m parties (r ij ) i,j l intégrale de f sur est définie par I(f ) = f (x, y)dxdy = lim n m r ij n i=1 j=1 m f (x i, y j ) x i y j 4/27

5 1.2- Interprétation graphique 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale S f surface représentative de f dans un repère orthonormé p ij = [x i 1, x i ] [y j 1, y j ] [, f (x i, y j )] un parallélépipède élémentaire et v ij = f (x i, y j ) x i y j le volume de p ij I(f ) = f (x, y)dxdy = v ij = volume de V lim n m r ij V est le volume intérieur au cylindre droit de section limité par la surface S f d équation z=f(x,y) et le plan z = Cas particulier: Si f (x, y) = 1 alors dxdy = aire de. ds = dxdy est l élément d aire en coordonnées cartésiennes i j 5/27

6 1) Calcul de l Intégrale ouble 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale 1)- Première un domaine borné de IR 2 de frontière Γ intersectée au plus en deux points par toute droite d équation x=cte, (Γ est continuement différentiable sauf en un nombre fini de points) (r ij ) i,j une subdivision de en rectangles élémentaires si f est une fonction de deux variables définie et continue sur, l intégrale de f sur est définie par: I(f ) = f (x, y) dxdy = lim f (x i, y j ) x i y j = rij i j { b y2 (x) a y 1 (x) f (x, y) dy [a, b] est la projection orthogonale de sur (Ox) [y 1 (x), y 2 (x)] est l intersection de avec la droite x = cte } dx 6/27

7 Première (démo) 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Partant de I(f ) = lim (lim f (x i, y j ) y j ) x i i j on remarque que lim f (x i, y j ) y j = j y2 (x i ) y 1 (x i ) b I(f ) = lim A(x i ) x i = i I(f ) = f (x, y) dxdy = f (x i, y) dy = A(x i ) d où a b A(x)dx { } y2 (x) f (x, y) dy a y 1 (x) dx 7/27

8 Exemple 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Calculer I = x dxdy avec [ ] = (x, y) IR 2 / x 1, y 2x [a, b] = [, 1], [y 1 (x), y 2 (x)] = [, 2x] { 1 } 2x 1 I = x dy dx = x [ y] 2x dx I = 1 2x 2 dx = [ 2x 3 3 ] 1 = 2 3 8/27

9 2) euxième 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale un domaine borné de IR 2 de frontière Γ intersectée au plus en deux points par toute droite d équation y=cte, (Γ est continuement différentiable sauf en un nombre fini de points) (r ij ) i,j une subdivision de en rectangles élémentaires si f est une fonction de deux variables définie et continue sur, l intégrale de f sur est définie par: I(f ) = f (x, y) dxdy = lim f (x i, y j ) x i y j = rij i j { d x2 (y) c x 1 (y) f (x, y) dx [c, d] est la projection orthogonale de sur (Oy) [x 1 (y), x 2 (y)] est l intersection de avec la droite y = cte } dy 9/27

10 euxième (démo) 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Partant de I(f ) = lim { lim } f (x i, y j ) x i y j j i on remarque que lim f (x i, y j ) x i = i x2 (y j ) x 1 (y j ) d I(f ) = lim B(y j ) y j = j I(f ) = f (x, y) dxdy = f (x, y j ) dx = B(y j ) d où c d c B(y)dy { } x2 (y) f (x, y) dx x 1 (y) dy 1/27

11 Exemple 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Calculer I = x dxdy avec [ ] = (x, y) IR 2 / x 1, y 2x [ y ] [c, d] = [, 2], [x 1 (y), x 2 (y)] = 2, 1 I = 2 I = 1 2 { } 1 x dx dy = 2 y 2 2 [ x 2 2 ] 1 y 2 (1 y 2 4 ) dy = 1 [y y dy ] 2 = /27

12 1.4- Propriétés de l Intégrale ouble 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Elles découlent de celles de l intégrale simple. Pour f et g intégrables sur. a) Propriétés liées à la fonction I(f + g) = I(f ) + I(g) et I(λf ) = λi(f ) si f = I(f ) λ IR b) Propriétés liées au domaine si ( 1 2 ) = et si l aire de ( 1 2 ) est nulle = f (x, y) dxdy = f (x, y) dxdy + f (x, y) dxdy /27

13 1.5- Changement de l intégrale 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale a) Rappel sur l intégrale simple Soit ϕ une application de [t 1, t 2 ] sur [a, b], dérivable et inversible, on pose x = ϕ(t) b a f (x)dx = t2 t 1 f [ϕ(t)]ϕ (t)dt où ϕ(t 1 ) = a et ϕ(t 2 ) = b L expression suivante est équivalente à celle ci-dessus. b a f (x)dx = [a,b] f (x)dx = ϕ 1 ([a,b]) f [ϕ(t)] ϕ (t) dt Remarque: Suivant le signe de ϕ (t), ϕ 1 ([a, b]) = [t 1, t 2 ] ou [t 2, t 1 ], ce qui conduit à ϕ (t) (t 2 t 1 ) > pour (a < b). 13/27

14 b) Changement de une intégrale 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale On admettra sans démonstration le théorème suivant: f (x, y)dxdy = =ϕ 1 () f [ϕ(u, v)] J(u, v) dudv où les fonctions x et y admettent des dérivées partielles continues sur ϕ(u, v) = [x(u, v), y(u, v)] une application inversible de IR 2 (portant sur u et v) sur IR 2 (portant sur x et y), telle que = ϕ( ) = = ϕ 1 () et J(u, v) = x u y u x v y v = x u(u, v)y v(u, v) x v(u, v)y u(u, v) est le Jacobien de ϕ qui ne doit pas s annuler sur pour que l application ϕ soit inversible. 14/27

15 c) Cas particulier important: les coordonnées polaires 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale On considère les variables x(ρ, θ) = ρ cos θ, y(ρ, θ) = ρ sin θ le Jacobien est alors J(ρ, θ) = x ρ y ρ = cos θ sin θ ρ sin θ ρ cos θ = ρ x θ y θ On vérifie les hypothèses précédentes en imposant à (ρ, θ) les deux contraintes suivantes ρ > et θ [α, α + 2π[ ds = ρdρdθ est l élément d aire en coordonnées polaires 15/27

16 d) Application : calcul de l aire du disque 1.1- éfinition 1.2-Interprétation graphique 1)- Première 1.3- Calcul de l Intégrale ouble 2) euxième 1.4- Propriétés de l intégrale ouble 1.5- Changement de l intégrale Soit le disque de rayon a centré à l origine d un repère orthonormé, d inéquation x 2 + y 2 a 2 le domaine est défini par: θ [, 2π[, ρ > et ρ 2 a 2 = = { (ρ, θ) IR 2 / < ρ a et θ [, 2π[} On remarque que le disque est transformé en un rectangle dans le plan (ρ, θ). Aire de = dxdy = ρ dρdθ = 2π { a } 2π [ ] ρ 2 a ρdρ dθ = dθ = aire de = πa /27

17 éfinition de 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de un domaine borné et connexe de IR 3, inscrit dans le parallélépipède [a, b] [c, d] [e, h] f une fonction définie continue sur le domaine, prolongée par zéro à l extérieur de {x =a,..., x i,..., x n =b} subdivision de [a, b], x i =x i x i 1 {y =c,..., y j,..., y m =d} subdivision de [c, d], y j =y j y j 1 {z =e,..., z k,..., z p =h} subdivision de [e, h], z k =z k z k 1 p ijk = [x i 1, x i ] [y j 1, y j ] [z k 1 z k ] (p ijk ) i,j,k subdivision de en parallélépipèdes élémentaires l intégrale de f sur est définie par : I(f )= f (x, y, z)dxdydz = lim f (x i, y j, z k ) x i y j z k p ijk i j k Cas particulier: Si f (x, y, z) = 1 alors dxdydz = Volume de dv = dxdydz est l élément de volume en 17/27

18 Propriétés de 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Elles découlent de celles de l intégrale simple et de l intégrale pour f et g intégrables sur. 1) Propriétés liées à la fonction I(f + g) = I(f ) + I(g) et I(λf ) = λi(f ) λ IR Si f alors I(f ) 2) Propriétés liées au domaine Si 1 2 = et si le volume de 1 2 est nul alors f (x, y, z) dxdydz = f (x, y, z) dxdydz + f (x, y, z) dxdydz /27

19 Calcul de 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de 1) Première Soit f une fonction définie et continue sur, l intersection de par tout plan d équation z=cte est un ensemble connexe de IR 2 I(f ) = lim p ijk lim k i j I(f )= f (x, y, z) dxdydz = f (x i, y j, z k ) x i y j z k h e { } f (x, y, z) dxdy dz δ(z) [e, h] est la projection orthogonale de sur (Oz) δ(z) est l intersection de avec le plan z = cte 19/27

20 Exemple d application 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de I = dx dy dz avec [ ] = (x, y, z) R 3 / x, y, z, x + y + z 1 Ici [e, h] { = [, 1] } δ(z) = (x, y) IR 2 / x, y, z, x + y 1 z { 1 } 1 I = dz = aire de δ(z)dz I = 1 dxdy δ(z) [ (1 z) 2 2 ] dz = [ (1 z)3 6 ] 1 = volume de = 1 6 2/27

21 euxième 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Soit f une fonction définie et continue sur, l intersection de par toute droite parallèle à (oz) est un intervalle connexe de IR { I(f ) = lim lim } f (x i, y j, z k ) z k x i y j p ijk i j k { } z2 (x,y) I(f )= f (x, y, z)dxdydz = f (x, y, z)dz dxdy δ z 1 (x,y) δ est la projection orthogonale de sur le plan (xoy) [z 1 (x, y), z 2 (x, y)] est l intersection de avec la droite d: intersection des deux plans x =cte et y =cte 21/27

22 Exemple d application 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de I = dxdydz avec [ ] = (x, y, z) R 3 / x, y, z, x + y + z 1 Ici δ = { } (x, y) IR 2 / x, y, x + y 1 et [z 1 (x, y), z 2 (x, y)] = [, 1 x y] { } 1 x y I = dz dxdy = (1 x y)dxdy = δ δ { 1 } 1 x 1 ] 1 x (1 x y)2 (1 x y)dy dx = [ dx 2 ] 1 (1 y)3 I = [ = volume de = /27

23 2.4- Changement de l intégrale triple 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de 1) Cas général f (x, y, z)dxdydz = f [Φ(u, v, w)] J(u, v, w) dudvdw =Φ 1 () où Φ(u, v, w) = [x(u, v, w), y(u, v, w), z(u, v, w)] est une application inversible de IR 3 (portant sur u,v et w) sur IR 3 (portant sur x,y et z), on a = Φ( ) = Φ 1 () les fonctions x, y et z admettent des dérivées partielles continues sur, où J le Jacobien de Φ est défini par: J = J(u, v, w) = x u y u z u x v y v z v x w y w z w = z x v u x w y v y w +z x w v x u y w y u +z x u w x v y u y v. J =z u(x vy w x wy v)+z v(x wy u x uy w)+z w(x uy v x vy v) sur. Ce Jacobien ne doit pas s annuler sur pour que l application Φ soit inversible. 23/27

24 Coordonnées cylindriques 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de 2) Les coordonnées cylindriques les variables x(ρ, θ, z) = ρ cos θ, y(ρ, θ, z) = ρ sin θ, z = z les conditions d inversibilité ρ > et θ [α, α + 2π[ le Jacobien J(ρ, θ, z) = x ρ y ρ z ρ x θ y θ z θ x z y z z z = cos θ sin θ ρ sin θ ρ cos θ 1 = ρ dv = ρdρdθdz est l élément de volume en coordonnées cylindriques 24/27

25 Application: Calcul du volume du cylindre 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Soit le cylindre droit d axe de rotation (Oz), d inéquations x 2 + y 2 a 2 et z h le domaine est défini par: θ [, 2π[, ρ >, ρ 2 a 2 et z h = { } = (ρ, θ, z) IR 3 / < ρ a, θ [, 2π[ et z h volume de = dxdydz = ρdρdθdz = { h 2π { a } } ρdρ dθ dz = volume du cylindre = πa 2 h le cylindre est transformé en parallèlépipède dans l espace (ρ, θ, z) 25/27

26 Les coordonnées sphèriques 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de les variables x(r, θ, ϕ) = r cos θ cos ϕ, y(r, θ, ϕ) = r sin θ cos ϕ, z = r sin ϕ les conditions d inversibilité r >, θ [α, α + 2π[ ] et ϕ π 2, π [ 2 le Jacobien J(r, θ, ϕ) = x r y r z r x θ y θ z θ x ϕ y ϕ z ϕ J(r, θ, ϕ) = r 2 cos ϕ = cos θ cos ϕ sin θ cos ϕ sin ϕ r sin θ cos ϕ r cos θ cos ϕ r cos θ sin ϕ r sin θ sin ϕ r cos ϕ dv = r 2 cos ϕdrdθdϕ est l élément de volume en coordonnées sphèriques 26/27

27 Application: calcul du volume de la sphère 2.1- éfinition 2.2- Propriétés de 2.3- Calcul de 2.4- Changement de Soit la sphère de rayon "a" centrée à l origine d un repère orthonormé, d inéquation x 2 + y 2 + z 2 a 2 le domaine est défini par: θ [, 2π[, r >, ϕ ] π 2, π 2 [ et r 2 a 2 = { ] = (r, θ, ϕ) IR 3 / < r a, θ [, 2π[, et ϕ π 2, π [} 2 volume de = dxdydz = r 2 cos(ϕ)drdθdϕ = π 2 π 2 { 2π { a cos ϕ r 2 dr } dθ } dϕ = volume de la sphère= 4 3 πa3 Remarque : la sphère est transformée en parallèlépipède dans l espace (r, θ, ϕ) 27/27

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre 9 : Intégrales triples Équipe de Mathématiques Appliquées UTC Mai 2013 suivant Chapitre 9 Intégrales triples 9.1 Motivation, définition et calcul de l intégrale

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

1 Outils mathématiques pour la Physique

1 Outils mathématiques pour la Physique Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier TUE 302 : Outil Physique et Géophysique 1 Outils mathématiques pour la Physique k Daniel.Brito@ujf-grenoble.fr

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 Outils Mathématiques 4 Intégrales de surfaces résumé 1 Surfaces paramétrées éfinition 1.1 Une surface paramétrée dans l espace, est la donnée de trois fonctions de classes

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Université Joseph Fourier, Grenoble Maths en Ligne Fonctions de plusieurs variables Bernard Ycart Ce chapitre contient des techniques que vous utiliserez très souvent en physique, mais les justifications

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

Mathématiques pour MPSI (mais pas que pour) 2011-2012 JPV

Mathématiques pour MPSI (mais pas que pour) 2011-2012 JPV Mathématiques pour MPSI (mais pas que pour) 211-212 JPV Lycée international de Valbonne Sophia-Antipolis E-mail address: jean-paul.vincent@prepas.org 3 Résumé. Ce fascicule développe le programme officiel

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ 2 Champ et potentiel électrostatique Les e ets électriques peuvent être décrits par deux grandeurs que nous allons étudier dans ce chapitre : le champ électrostatique (grandeur vectorielle) et le potentiel

Plus en détail

Compléments sur les couples aléatoires

Compléments sur les couples aléatoires Licence Math et MASS, MATH54 : probabilités et statistiques Compléments sur les couples aléatoires 1 Couple image ans ce paragraphe, on va s intéresser à la loi d un vecteur aléatoire S, T qui s obtient

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m 1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

Intégrales curvilignes.

Intégrales curvilignes. Chapitre 1 Intégrales curvilignes. 1.1 Généralités 1.1.1 Courbes paramétrées dans le plan. Motivations, exemples. L exemple basique de courbe est la trajectoire décrite par un objet assimilée à un point

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type INTÉGRATION SUR LES SURFACES Le but de ce texte est d expliquer comment définir et calculer des expressions du type φ(x)dσ(x) Σ où Σ est une surface de classe C 1 de R 3 ou plus généralement une hypersurface

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Mathématiques II. Session de rattrapage

Mathématiques II. Session de rattrapage NOM :... FIPA BTP Prénom :... Date :... Mathématiques II Session de rattrapage Thème: Opérateurs vectoriels, potentiels scalaires, circulations vectorielles, intégrales doubles Durée: 1H00 Outils autorisés:

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Outils Mathe matiques pour les Sciences. COURS et EXERCICES

Outils Mathe matiques pour les Sciences. COURS et EXERCICES 14-15 Portail SI 1e re anne e Outils Mathe matiques pour les Sciences COURS et EXERCICES Responsable U.E. : pascale.senechaud@unilim.fr OMPS-Faculte des Sciences et Technique-Limoges Planning des séances

Plus en détail

Calcul des intégrales multiples. Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal

Calcul des intégrales multiples. Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal Calcul des intégrales multiples Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal 1 8 6 4 2 2 4 6 8 6 5 4 3 2 1 1 2 3 4 5 6 2 Table des matières 1 Intégrales doubles

Plus en détail

Précession du périhélie de Mercure

Précession du périhélie de Mercure Préparation à l Agrégation de Sciences Physiques ENSP - Montrouge François Levrier Problème de mécanique Précession du périhélie de Mercure 1 er décembre 25 Ce problème, qui est basé en partie sur celui

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

M42. Compléments d analyse (résumé).

M42. Compléments d analyse (résumé). Université d Evry-Val-d Essonne. Année 2008-09 D. Feyel M42. Compléments d analyse (résumé). Table. I. Rappels sur les suites. Limites supérieure et inférieure. II. Topologie élémentaire. III. Fonctions

Plus en détail

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL MINISTÈRE DE L ÉDUCATION DE L ALPHABÉTISATION ET DES LANGUES NATIONALES RÉPUBLIQUE DU MALI Un Peuple Un But Une Foi PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne Chapitre 1 Cinématique et Dynamique 1.1 Grandeurs cinématiques En classe de 2 e nous avons introduit les grandeurs cinématiques utilisées pour décrire le mouvement d un point matériel : l abscisse curviligne,

Plus en détail

Du Calcul d Aire... ...Au Calcul Intégral

Du Calcul d Aire... ...Au Calcul Intégral Du Calcul d Aire......Au Calcul Intégral Objectifs Définir proprement l aire d une surface plane, au moins pour les domaines usuels (limités par des courbes simples) et fournir un moyen de la calculer.

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES ÉCOLE NATIONALE DE L AVIATION CIVILE ANNEE 2009 CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte : 1 page de garde, 2 pages

Plus en détail

Propriétés électriques de la matière

Propriétés électriques de la matière 1 Propriétés électriques de la matière La matière montre des propriétés électriques qui ont été observées depuis l antiquité. Nous allons distinguer les plus fondamentales de ces propriétés. 1 Propriétés

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 2e année

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 2e année Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 2e année Courbes et surfaces Boris Thibert Les courbes et les surfaces interviennent

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Terminale S3 Année 2009-2010 Table des matières I Les fonctions. 4 1 Les limites (suite du cours) 5 IV Limites par comparaison....................................... 5 V Fonctions

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

UN EXEMPLE DE PRÉPARATION DES PETITES CLASSES DU COURS DE DE MÉCANIQUE DES MILIEUX CONTINUS

UN EXEMPLE DE PRÉPARATION DES PETITES CLASSES DU COURS DE DE MÉCANIQUE DES MILIEUX CONTINUS Département de Mécanique École Polytechnique UN EXEMPLE DE PRÉPARATION DES PETITES CLASSES DU COURS DE DE MÉCANIQUE DES MILIEUX CONTINUS O. Thual, mars 1998 Avertissement au lecteur Ce document regroupe

Plus en détail

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires M. Bergounioux & E. Trélat MAPMO Université d Orléans Journées du GDR - MOA Porquerolles 19-21 Octobre

Plus en détail

Mini-Projet d analyse numérique du cours MAP 411 : Autour du flot de la chaleur pour les applications harmoniques

Mini-Projet d analyse numérique du cours MAP 411 : Autour du flot de la chaleur pour les applications harmoniques Mini-Projet d analyse numérique du cours MAP 411 : Autour du flot de la chaleur pour les applications harmoniques Sujet proposé par Antoine Hocquet 014-015 La partie numérique devra être envoyée à l adresse

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Le planimètre polaire

Le planimètre polaire Le planimètre polaire Document d accompagnement des transparents. Bruno eischer Introduction Dans mon exposé à La Rochelle, ou au séminaire de l IREM de Besançon, j ai volontairement consacré une longue

Plus en détail

Géométrie dans l Espace Courbes de niveau

Géométrie dans l Espace Courbes de niveau Géométrie dans l Espae Courbes de niveau Christophe ROSSIGNOL Année solaire 008/009 Table des matières 1 Quelques rappels 1.1 Coordonnées d un point, d un veteur................................. 1. Colinéarité

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Séminaire de tomographie ToRIID

Séminaire de tomographie ToRIID C N D R I N ondes truc tive Tes ting by Ionis ing R adiations Séminaire de tomographie ToRIID CPE LYON, 02/02/2009 TOMOGRAPHIE PAR DIFFUSION : LE A. Peterzol Projet SPIDERS I. INTRODUTION AU SUJET (formules

Plus en détail

13. Géométrie analytique

13. Géométrie analytique 13. Géométrie analytique La géométrie analytique permet de résoudre par le calcul des problèmes de géométrie. Il convient toutefois de ne pas perdre de vue que la géométrie analytique est d abord de la

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5 Créer des figures dynamiques en 3 dimensions avec GeoGebra 5, 1/46 I. Pour débuter...3 IV. 9. Obtenir une sphère ou un cône tronqué...21 I. 1. Téléchargement...3 V. Illustration d'exercices...22 I. 2.

Plus en détail

Introduction à l'electromagnétisme

Introduction à l'electromagnétisme Introduction à l'electromagnétisme 5 novembre 2014 Table des matières 1 Systèmes de coordonnées et vecteurs 6 1.1 Systèmes de coordonnées................................... 6 1.1.1 Repère cartésien...................................

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables UNIVERSITÉ DE POITIERS Parcours Renforcé Première Année 2009/2010 Paul Broussous Fonctions de plusieurs variables Seconde version corrigée Table des matières 1. Un peu de topologie. 1.1. Distance euclidienne,

Plus en détail

Électromagnétisme. Chapitre 2. Approche locale du champ ( E, B)

Électromagnétisme. Chapitre 2. Approche locale du champ ( E, B) Électromagnétisme Chapitre 2 Approche locale du champ ( E, B) I Potentiel électrostatique Approche locale du champ ( E, B) Dans le premier chapitre, nous avons étudié les champs avec une approche globale,

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail