Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.
|
|
- Géraldine Malo
- il y a 2 ans
- Total affichages :
Transcription
1 Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors du cours du 9 Février A joindre : - la rédaction de la partie mathématique ainsi que la justication des techniques employées pour la simulation. - les valeurs numériques obtenues et vos commentaires. - le listing du programme de simulation. 1 Partie mathématique Soit (Ω, F, (F t ) t 0, P) un espace de probabilité ltré muni d'un mouvement Brownien standard d-dimensionnel W. On considère un processus de dynamique X t = x + bt + σw t, b R d, σ R d R d, avec σσ symétrique dénie positive. Introduisons le demi-espace D := {y R d : n y + m > 0}, n R d, m R, et τ := inf{s 0 : X s D}. Pour x D, T > 0 déterministe, et une fonction de pay-o g donnés, on s'intéresse à l'approximation numérique de la quantité E x [g(x T )I τ>t ] associée au prix d'une option à barrières. On a ici aaire à une option path dependent, et il va donc falloir tenir compte de la trajectoire du processus. On dénit pour N N, h := T/N et τ N := inf{t i := ih, i N : X ti D}. On va tout d'abord dans cette partie prouver une majoration de l'erreur faible : à l'aide de techniques de calcul stochastique. 1.1 Résultats préliminaires Err(x, T, g, h) = E x [g(x T )(I τ N >T I τ>t )] Considérons d'abord le cas d = 1 = σ, b = 0 et D = R Soit x D, A B(R + ), tribu borélienne de R +. A l'aide du principe de réexion pour le mouvement Brownien donner l'expression explicite de P x [X t A, τ > t] en terme de noyaux Gaussiens dont on précisera moyenne et variance. 2. Pour (t, x) [0, T ] D et g à croissance exponentielle, on dénit v(t, x) := E x [g(x T t )I τ>t t ]. Préciser l'edp satisfaite par v. 3. Montrer que v C 1,2 ([0, T ) D). Donner une condition sur g pour que v C 0 ([0, T ] D), puis pour que v C 2,4 ([0, T ] D). On entend par là que l'on peut prolonger de façon régulière les dérivées sur un voisinage de D. 1
2 4. Même question pour obtenir v C 2,4 b ([0, T ] D), i.e. la fonction ainsi que ses dérivées jusqu'à l'ordre indiqué sont bornées. Reprendre les questions précédentes dans le cas plus général introduit ci-avant. 1.2 Analyse de l'erreur i=0 N 1 1. Montrer que Err(x, t, g, h) = E[I τ N >t i (v(t i+1, Π D(X ti+1 )) v(t i, X ti ))] où Π D désigne la projection sur l'adhérence de D. 2. En supposant désormais que les hypothèses garantissant que v C 2,4 b ([0, T ] D) sont vériées, déduire de l'application d'une formule de Taylor à l'ordre 3 Err(x, t, g, h) = N 1 E x [I τ N >t i ( v(t i, X ti ) nf (X ti+1 ) + O(F (X ti+1 ) X ti+1 X ti ) i=0 ) +O((F (X ti+1 ) 2 ) + O(h 2 ) ]. (1) où F (x) = d(x, D)I x D d(x, D)I x D est la distance signée au bord du domaine. On pourra utiliser que Π D(X ti+1 ) = X ti+1 + nf (X ti+1 ). 3. En notant τ ti := inf{s t i : X s D}, établir C > 0, P[τ ti < t i+1 F ti ] CP[X ti+1 D F ti ]. 4. A l'aide de contrôles usuels sur le Brownien déduire du résultat précédent que Err(x, t, g, h) C h. Il existe en fait, sous de bonnes hypothèses, un développement de l'erreur de la forme Err(x, t, g, h) = C h + o( h), C = C 0 σ n E[I τ<t v(τ, X τ ) n], C 0 = On peut renvoyer aux travaux de Siegmund, [Sie79], pour des précisions sur la nature de la constante C 0 σ n. Il s'agit de l'espérance de l'overshoot normalisé, i.e. distance à la frontière lorsque le processus sort du domaine à temps discret divisé par h. Le développement d'erreur précédent justie l'utilisation d'une méthode d'extrapolation de type Romberg pour améliorer la convergence. La connaissance explicite de C 0 permet par ailleurs de proposer une méthode alternative basée sur la correction de domaine. Précisément, on va restreindre le domaine de sorte à compenser la surestimation due au temps discret. Introduisons D N := {y R d : y n + m > C 0 h σ n }, τ N D N := inf{t i : X N t i D N }. On a en fait le résultat suivant : E[g(X T )(I τ N DN >T I τ>t )] = o( h). (2) Dans un contexte d'application nancière, cette identité est présentée dans [BGK97]. Dans la suite du TP on s'attachera à mettre en oeuvre les diérentes techniques de simulation suggérées par ces résultats : simulation naive, simulation par ponts browniens, extrapolation de Romberg, technique de correction dérivant de (2). 2 Partie mise en oeuvre en C++ On va ici compléter les classes introduites lors du TP précédent pour évaluer des quantités de type Q T = E x [f(s T )I τ>t ] où S t = S 0 exp(σw t + (r σ2 )t), avec 2 (W t) t 0 mouvement Brownien monodimensionnel, τ := inf{t 0 : S t D}, D ouvert connexe de R. La fonction f sera supposée à croissance polynomiale. On rappelle que l'on a ici aaire à une option path dependent. Il va donc falloir tenir compte de la trajectoire de l'actif. A ce propos on va introduire un ensemble de classes pour simuler des processus stochastiques à valeurs réelles. 2
3 2.1 Classes associées à des processus aléatoires On va tout d'abord créer une classe abstraite Process dérivant de Loi_Proba et de prototype class Process: public Loi_Proba{ protected: int N; double T,DT; Process(double Ti=1,double DTi=.01); virtual double getincrement() const=0; virtual double getfinalvalue() const=0; double Simule() const{return getfinalvalue();} où T>0 désigne le temps terminal jusqu'auquel on souhaite observer le processus en partant de 0, DT est le pas de discrétisation et N le nombre de pas de discrétisation sur l'intervalle [0,T]. La méthode getincrement() renverra pour un processus X donné une réalisation de X ti+1 X ti pour i [0, N 1]. La méthode getfinalvalue() renverra une réalisation de X T. Question 1. Ecrire les constructeurs de la classe Process. Question 2. Faire dériver de Process une classe Brownian. On suggère d'utiliser le prototype suivant : class Brownian: public Process{ Normale No; Brownian(double Ti=1,double DTi=.01); double getincrement() const; double getfinalvalue() const; Implémenter les méthodes de la partie publique de cette classe. Question 3. Faire dériver de Process une classe Geometric_Brownian, de prototype : class Geometric_Brownian: public Process{ Brownian B; double sigma, r, S0; Geometric_Brownian(double S0i=100,double sigmai=.15, double r=.02, double Ti=1, double DTi=.01); double getincrement() const; double getfinalvalue() const; Implémenter les méthodes de cette classe. 2.2 Options et héritage Nous allons dans cette partie décrire et implémenter un ensemble de classes pour estimer des prix d'options par méthode de Monte Carlo dans un modèle de Black et Scholes. La classe de base pour cela sera 3
4 OptionBS:public Loi_Proba{ protected: double r,t; // On peut considérer que le taux d'actualisation et la maturité // sont des données de l'option. Geometric_Brownian GB; PayOff & PO; OptionBS(PayOff & POi,double S0i=100,double sigmai=.15, double ri=.02, double Ti=1, double DTi=.01); C'est là une classe abstraite, i.e. on n'y implémente pas la méthode Simule de Loi_Proba dont la classe OptionBS dérive. A titre indicatif, la classe VanillaOptionBS du TP précédent devrait maintenant dériver de OptionBS. Question 1. On va écrire une classe BarrierOptionBS dérivant de OptionBS de prototype class BarrierOptionBS:public OptionBS{ double borne_gauche, borne_droite; BarrierOptionBS(double bg, double bd, PayOff & POi, double SOi=100, double sigmai=.15, double r=.02, double Ti=1, double DT=.01); double Simule() const; où D = (borne_gauche,borne_droite). Implémenter les méthodes précédentes. On utilisera pour cela la discrétisation naïve du temps de sortie qui consiste à observer si la trajectoire est hors du domaine à un des instants de discrétisation. Question 2. A l'aide de la procédure de simulation élémentaire précédente, mettre en évidence numériquement l'identité E[f(S T )I τ N >T ] E[f(S T )I τ>t ] = C DT + o( DT) où τ N := inf{t i = ih : S ti D}, pour f(x) = (x K) +, D = (0, B), K < B. On pourra utiliser que l'expression explicite du prix, cf. [MR97], est dans ce cas donnée par ( E[f(S T )I τ>t ] = S 0 exp(rt ) N (d 1 (K, S 0, σ, r, T )) N (d 1 (B, S 0, σ, r, T )) ( B + K S 0 ) 2r σ 2 +1 ( N (2 ˆd2 (B, S 0, σ, r, T ) ˆd 2 (K, S 0, σ, r, T )) N ( ˆd 2 (B, S 0, σ, r, T )) )) ( N (d 2 (K, S 0, σ, r, T )) N (d 2 (B, S 0, σ, r, T )) ( ) 2r B σ ( N (2 ˆd1 (B, S 0, σ, r, T ) S ˆd 1 (K, S 0, σ, r, T )) N ( ˆd 1 (B, S 0, σ, r, T )) )) 0 où N (x) = P[N (0, 1) x], d 1 (x, S 0, σ, r, T ) = log(s0/x)+rt σ + 1 T 2 σ T, ˆd 1 (x, S 0, σ, r, T ) = d 1 (x, S 0, σ, r, T ) 2r σ T, et d2 (x, S 0, σ, r, T ) = d 1 (x, S 0, σ, r, T ) σ T, ˆd 2 (x, S 0, σ, r, T ) = d 2 (x, S 0, σ, r, T ) 2r σ T. On prendra S 0 = 100, B = 130, K = 90, σ =.15, r =.02. On fera varier le nombre N de pas de discrétisation en faisant bien attention à équilibrer erreur statistique associée à la méthode de Monte Carlo, dirigée par le théorème central limite, et erreur de discrétisation que l'on cherche à mettre en évidence. 4
5 Question 3. Implémenter la méthode de simulation qui utilise la probabilité qu'un pont Brownien ait dépassé un certain seuil entre deux instants de discrétisation. On suggère pour cela d'ajouter dans la partie publique de la classe Brownian une fonction de prototype static double ProbBrownBridgeBigger(double B, double xi, double xip1, double h) ; qui renvoie P[sup s [0,h] W s B W 0 = xi, W h = xip1]. Ecrire une fonction double SimuleBB() const dans la partie publique de BarrierOptionBS utilisant cette probabilité dans les cas où D = (0, B) ou D = (B, + ). Etudier l'impact de la discrétisation en temps par cette technique. Estimer le gain associé en terme de vitesse de convergence. Question 4. Implémenter les méthodes d'extrapolation de Romberg et de correction de domaine introduites en Section 1. Commenter les résultats. Question 5. An de permettre à l'utilisateur de choisir entre les diérentes méthodes de simulation on va utiliser des pointeurs sur fonctions et surcharger les constructeurs. 1. Introduire une variable double (BarrierOptionBS::*PTR_Simule) () const ; dans la partie privée de BarrierOptionBS. La variable PTR_Simule est un pointeur de fonction. Il ne peut pointer que des fonctions const de la classe BarrierOptionBS n'ayant pas d'arguments, et renvoyant un double. L'aectation de ce type de variables se fait de la façon suivante : PTR_Simule=& BarrierOptionBS::SimuleBB ; 2. Modier les constructeurs de cette classe en ajoutant un champ int FLAG, qui prendra les valeurs 0,1,2,3 en fonction de la technique retenue par l'utilisateur. - 0 : simulation naive. - 1 : simulation par ponts Browniens. - 2 : extrapolation de Romberg. - 3 : correction de domaine. 3. Modier la fonction Simule qui devient double BarrierOptionBS::Simule() const { return (this->*ptr_simule)(); } Mettre enn les diérentes méthodes de simulation dans la partie privée de la classe. Ces dernières ne sont ainsi plus directement accessibles à l'utilisateur. Références [BGK97] M. Broadie, P. Glasserman, and S. Kou. A continuity correction for discrete barrier options. Mathematical Finance, 7 :325349, [MR97] M. Musiela and M. Rutkowski. Martingale methods in nancial modelling. Springer, [Sie79] D. Siegmund. Corrected diusion approximations in certain random walk problems. Adv. in Appl. Probab., 11(4) :701719,
Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes
Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université
Modèles structurels. Chapitre 4. 4.1 Modèle de Merton
Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas
Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.
Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre
Méthodes numériques pour le pricing d options
Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA
Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le
Méthodes de Monte Carlo pour le pricing d options
Méthodes de Monte Carlo pour le pricing d options Mohamed Ben Alaya 14 février 2013 Nous allons tester les différentes méthodes probabilistes vu dans le cours en l appliquant au calcul du call ou le put
Ecole Supérieure d Ingénieurs Léonard de Vinci
Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet
MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA
MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Utilisation des arbres binomiaux pour le pricing des options américaines
Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les
Introduction à la simulation de Monte Carlo
Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues
Modèles en temps continu pour la Finance
Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition
Simulations des Grecques : Malliavin vs Différences finies
0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le
1 La formule de Black et Scholes en t discret
Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose
Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010
27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
PROCESSUS ALEATOIRES :
EcoledesMinesdeSaint Etienne PROCESSUSALEATOIRES: MARTINGALES,MOUVEMENTBROWNIEN,CALCULSTOCHASTIQUE Exercices Janvier2009 OlivierRoustant Processusaléatoires,calculstochastique:exercicesENSM SE2009 MOUVEMENTBROWNIEN
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein
1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières
Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date
Tutorat 3 de Mathématiques (2ème année)
Tutorat 3 de Mathématiques (2ème année) Marches aléatoires et marchés financiers Groupe 4 tuteur : J. Bouttier 8 février 2010 Résumé Depuis la thèse de Bachelier, les marchés nanciers ont constitué un
Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo
La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation
Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h
Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec
Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5
Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non)
Les mathématiques appliquées de la finance
Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la
Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets
Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)
Master Modélisation Statistique M2 Finance - chapitre 0. Introduction au cours de finance
Master Modélisation Statistique M2 Finance - chapitre 0 Introduction au cours de finance Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)
Introduction aux produits de taux d intérêts
Introduction aux produits de taux d intérêts R&D Banque CPR 8 avril 2002 Plan 1. Notations et préliminaires 2. Euribor, caplets, caps 3. Swaps, swaptions 4. Constant Maturity Swap (CMS) 5. Quelques produits
Lois normales, cours, terminale S
Lois normales, cours, terminale S F.Gaudon 6 mai 2014 Table des matières 1 Variables centrées et réduites 2 2 Loi normale centrée et réduite 2 3 Loi normale N (µ, σ 2 ) 4 1 1 Variables centrées et réduites
Calcul Stochastique et Applications Financières
0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION
Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com
Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix
Ecole Supérieure d Ingénieurs Léonard de Vinci
Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction
Problèmes de simulation pour des options path-dependent : le rôle des grandes déviations
Problèmes de simulation pour des options path-dependent : le rôle des grandes déviations Paolo Baldi Université de Roma - Tor Vergata 1 Le problème Les options barrière sont devenues assez populaires das
Simulations de Monte Carlo
Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,
Estimation et calibration des paramètres
et calibration des paramètres 6-601-09 Simulation Monte Carlo Geneviève Gauthier HEC Montréal 1 1. Nous allons discuter des diverses façons de déterminer les paramètres des modèles que nous employons lors
Gestion des Risques Financiers
Gestion des Risques Financiers Thierry Roncalli 9 janvier 2008 Merci de rédiger entièrement vos réponses. 1 La réglementation Bâle II 1. Quelles sont les principales diérences entre l'accord originel de
ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I
CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS
Méthodes de Monte-Carlo Simulation de grandeurs aléatoires
Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes
Schéma d Euler pour les EDS
Schéma d Euler pour les EDS Christophe Chorro (christophe.chorro@univ-paris1.fr) ENSA AGADIR Décembre 2008 hristophe Chorro (christophe.chorro@univ-paris1.fr) (ENSA AGADIR) Schéma d Euler pour les EDS
Feuille n 2 : Contrôle du flux de commandes
Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte
de calibration Master 2: Calibration de modèles: présentation et simulation d
Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe
Options exotiques complexes
Options exotiques complexes Cette série d exercices porte sur les options exotiques (chapitre 14 ) avec éventuellement des taux d intérêt stochastiques (chapitres 16 et 17). Les exercices les plus difficiles
Contrat didactique Finance stochastique
Contrat didactique Finance stochastique Les compétences de ce cours sont à placer dans le contexte général de l appropriation de la notion de modèle mathématique et de son utilisation pratique en gestion
Résumé des communications des Intervenants
Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit
Machines à sous (compléments)
CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des
Le Modèle de taux de Ho-Lee - Pricing d obligation
Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité
Prix d options européennes
Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd
Asymétrie des rendements et volatilité multifractale
Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest
Modélisation du risque de crédit et asymétrie d information
Modélisation du risque de crédit et asymétrie d information David Kurtz, Groupe de Recherche Opérationnelle 10 juin 2004, Université de Poitiers Introduction [1] (1) Le risque de crédit (2) Modèles structurels
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Probabilités 5. Simulation de variables aléatoires
Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système
1.8 Exercices. Analyse d'erreurs 43
1.8 Exercices Analyse d'erreurs 43 1. Tous les chires des nombres suivants sont signicatifs. Donner une borne supérieure de l'erreur absolue et estimer l'erreur relative. a) 0,1234 b) 8,760 c) 3,14156
Année 2009/2010. Rapport de projet de dernière année ISIMA F4
Année 2009/2010 Rapport de projet de dernière année ISIMA F4 «Evaluation d options Européenne Vanille, Américaine Vanille et Asiatique» Elaboré par : Encadré par : Monsieur Mehdi Fhima Résumé Les options
Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009
Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la
Primitives Cours maths Terminale S
Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives
Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1
Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).
ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques
ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural
Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO
Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour
Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph
Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -
Intégrale stochastique
Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t
Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.
Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on
Nouveaux programmes de terminale Probabilités et statistiques
Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage
Utilisation des éléments finis pour le pricing d'options
1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes
Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration
Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes
Processus de Poisson. 3-602-84 Modèles probabilistes et stochastiques de la gestion. Geneviève Gauthier. Automne 2007. HEC Montréal.
Processus de Poisson 3-602-84 Modèles probabilistes et stochastiques de la gestion Geneviève Gauthier HEC Montréal Automne 2007 1 Références Ce texte a été librement inspiré de notes prises au cours de
EXAMEN 14 janvier 2009 Finance 1
EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque
A. Popier (Le Mans) Processus de Lévy. Octobre / 38
PROCESSUS DE LÉVY. Alexandre Popier Université du Maine, Le Mans Octobre 2010 A. Popier (Le Mans) Processus de Lévy. Octobre 2010 1 / 38 PLAN DU COURS 1 PROCESSUS DE LÉVY À ACTIVITÉ FINIE. Mouvement brownien
Programmation C++ (débutant)/les tableaux statiques
Programmation C++ (débutant)/les tableaux statiques 1 Programmation C++ (débutant)/les tableaux statiques Le cours du chapitre 6 : les tableaux statiques Les tableaux Une variable entière de type int ne
TD2 Fonctions mesurables Corrigé
Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles
Table des matières. Listings. 1 Tests Algorithmique et Matlab. Travaux pratiques - E.D.O. Travail individuel et personnel. Sup'Galilée Année 2014-2015
Energétique I Méthodes Numériques II Sup'Galilée Année -5 Travaux pratiques - E.D.O. Groupes B à B6 Travail individuel et personnel Table des matières Tests Algorithmique et Matlab Résolution numérique
Provisionnement face au risque de défaut des emprunteurs
Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
Polytech Lille GIS4 Projet de PPO
Polytech Lille GIS4 Projet de PPO 2014-2015 http ://weppes.studserv.deule.net/ bcarre/gis4/2014/tutorat-ppo L'objectif est de concevoir un noyau de représentation et de calcul pour grilles de tableurs
Gestion d'un entrepôt
Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
ECOLE NATIONALE DES PONTS ET CHAUSSEES. Risque de crédit. Vente de protection d'une rme sur elle-même. Sébastien LEROUX Antony Mc BRIDE Rémi PARIS
ECOLE NATIONALE DES PONTS ET CHAUSSEES Risque de crédit Vente de protection d'une rme sur elle-même Sébastien LEROUX Antony Mc BRIDE Rémi PARIS March 7, 2007 Introduction Généralement, la vente ou l'achat
TD 3 : suites réelles : application économique et nancière
Mathématiques Appliquées Cours-TD : K. Abdi, M. Huaulmé, B. de Loynes et S. Pommier Université de Rennes 1 - L1 AES - 009-010 TD 3 : suites réelles : application économique et nancière Exercice 1 Calculer
Introduction aux modèles financiers
Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu
CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006
ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront
TD 5- Applications linéaires
TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f
Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.
Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages
Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.
Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement
Modèles stochastiques et applications à la finance
1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une
Modélisation mathématique et finance des produits dérivés
Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu
StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous
StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux
Le Calcul de Malliavin Appliqué à la Finance
Le Calcul de Malliavin Appliqué à la Finance Frédéric Cosmao, Frédéric Dupuy et Antoine Guillon Groupe de Travail Dirigé par Jean-Frédéric Jouanin, Ashkan Nikeghbali et Thierry Roncalli 4 Juin 22 Introduction
Programmation Objet - Cours II
Programmation Objet - Cours II - Exercices - Page 1 Programmation Objet - Cours II Exercices Auteur : E.Thirion - Dernière mise à jour : 05/07/2015 Les exercices suivants sont en majorité des projets à
Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1
Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs
Introduction à la modélisation financière en temps continue & Calcul Stochastique
Introduction à la modélisation financière en temps continue & Calcul Stochastique Mireille Bossy INRIA pour le MASTER IMAFA à Polytech Nice Sophia Antipolis 16 novembre 213 2 Cours de maths financières
Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite
Calcul stochastique appliqué à la finance Ioane Muni Toke Draft version Ce document rassemble de brèves notes de cours. Les résultats sont proposés sans démonstration, les preuves ayant été données en
Problèmes de fiabilité dépendant du temps
Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =
Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)
Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser
TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien
TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)
Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est