Équation de Langevin avec petites perturbations browniennes ou

Dimension: px
Commencer à balayer dès la page:

Download "Équation de Langevin avec petites perturbations browniennes ou"

Transcription

1 Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215, Toulouse

2 v t = v x t = t t v s ds sign(v s ) v s β ds

3 v ε t x ε t = = v t t v ε sds sign(v ε s) v ε s β ds + εl t

4 1) Processus de Lévy et calcul stochastique 2) Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle 3)

5 1) Processus de Lévy et calcul stochastique 2) Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle 3)

6 1) Processus de Lévy et calcul stochastique 2) Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle 3)

7 Processus de Lévy et calcul stochastique

8 Processus de Lévy Processus de Lévy Un processus de Lévy X est un processus qui vérifie : X = presque sûrement X est à accroissements indépendants et stationnaires X est càdlàg Processus α-stable Un processus de Lévy X est appelé α-stable pour α (, 2] si les processus (X c α t) t et (cx t ) t ont la même loi pour tout c >. Remarque : Pour α = 2, le processus est un mouvement Brownien standard et pour α (, 2), le processus est purement à sauts.

9 Processus de Lévy Processus de Lévy Un processus de Lévy X est un processus qui vérifie : X = presque sûrement X est à accroissements indépendants et stationnaires X est càdlàg Processus α-stable Un processus de Lévy X est appelé α-stable pour α (, 2] si les processus (X c α t) t et (cx t ) t ont la même loi pour tout c >. Remarque : Pour α = 2, le processus est un mouvement Brownien standard et pour α (, 2), le processus est purement à sauts.

10 Processus de Lévy Processus de Lévy Un processus de Lévy X est un processus qui vérifie : X = presque sûrement X est à accroissements indépendants et stationnaires X est càdlàg Processus α-stable Un processus de Lévy X est appelé α-stable pour α (, 2] si les processus (X c α t) t et (cx t ) t ont la même loi pour tout c >. Remarque : Pour α = 2, le processus est un mouvement Brownien standard et pour α (, 2), le processus est purement à sauts.

11 Mesure de Poisson Soit (S; A) un espace mesurable et (Ω; F; P) un espace probabilisé. Mesure de Poisson Soit µ une mesure σ-finie sur (S; A). Une mesure aléatoire de Poisson N sur (S; A) est une collection de variables aléatoires (N(B); B A) telle que : pour tout B A tel que µ(b) < +, N(B) suit une loi de Poisson de paramètre µ(b), si A 1,..., A m sont des ensembles disjoints de A, les variables aléatoires N(A 1 ),..., N(A m ) sont indépendantes, pour tout ω Ω, A N(A, ω) est une mesure de comptage sur (S, A).

12 Mesure et intégrale de Poisson Si X est un processus de Lévy, N([, T], A) := #{ s t, X t X t A} est une mesure de Poisson. Intégrale de Poisson Soit N une mesure aléatoire de Poisson d intensité dt µ sur R + (R/{}). Si f : R R est une fonction borélienne et si A B(R/{}) vérifie µ(a) < +, on définit, pour tout t et ω Ω, l intégrale stochastique de Poisson de f par : f (z)n(t, dz) := f (z)n(t, {z}). A z A

13 Mesure et intégrale de Poisson Si X est un processus de Lévy, N([, T], A) := #{ s t, X t X t A} est une mesure de Poisson. Intégrale de Poisson Soit N une mesure aléatoire de Poisson d intensité dt µ sur R + (R/{}). Si f : R R est une fonction borélienne et si A B(R/{}) vérifie µ(a) < +, on définit, pour tout t et ω Ω, l intégrale stochastique de Poisson de f par : f (z)n(t, dz) := f (z)n(t, {z}). A z A

14 Décomposition d Itô-Lévy Théorème de décomposition d Itô-Lévy Si X est un processus de Lévy alors il existe b R, un mouvement brownien standard B, un coefficient de diffusion σ et une mesure aléatoire de Poisson N sur R + (R/{}), d intensité dt µ où µ est une mesure de Lévy (i.e. vérifiant R/{} (1 z2 )µ(dz) < + ) tels que, pour tout t : X t = bt + σb t + < z <1 z Ñ(t, dz) + z N(t, dz) z >1 où Ñ est la mesure de Poisson compensée de N définie par : Ñ(t, dz) = N(t, dz) tµ(dz).

15 Décomposition d Itô-Lévy Corollaire Si X est un processus de Lévy α-stable pour α (, 2), on a : X t = z Ñ(t, dz) + z N(t, dz) < z <1 z >1 où la mesure de Lévy µ est µ(dz) = z 1 α dz.

16 Formule d Itô-Lévy Théorème Soit X un processus de la forme : t t t t X t = X + b(s)ds+ σ(s)db s+ H(s, z)ñ(ds, dz)+ K(s, z)n(ds, dz), < z <1 z >1 alors, pour toute fonction f C 2 (R) et tout t, on a : f (X t) = t t f (X ) + f (X s )b(s)ds + f (X s )σ(s)db s + 1 t f (X 2 s )σ 2 (s)ds t + [f (X s + H(s, z)) f (X s )]Ñ(ds, dz) + < z <1 t [f (X s + H(s, z)) f (X s ) f (X s )H(s, z)]dsµ(dz) < z <1 t + [f (X s + K(s, z)) f (X s )]N(ds, dz). z >1

17 Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle

18 Proposition, Gradinau et E. Pour β, quand ε, {v ε t : t } (respectivement x ε ) converge vers v (respectivement x) en probabilité uniformement sur tout intervalle compact. Pour β 1, on introduit Z t := t β v s β 1 Z s ds + l t. On a 1 ε (vε v εz) et 1 ε (xε x ε Z) convergent UCP vers, quand ε.

19

20 On pose, pour t, X ε t := x ε ε α t et V ε t := v ε ε α t qui satisfont alors respectivement, X ε t = 1 ε α t V ε s ds et V ε t = L ε t 1 ε α t sgn(v ε s ) V ε s β ds. où {L ε t := εl ε α t : t } est aussi un processus α-stable.

21 Théorème, Gradinaru et E. Supposons que < α 2 et β + α 2 > 2, on pose θ := α α+β 1 (, 1). Alors il existe une constante positive κ α,β telle que le processus } { } {ε θ(β+ α 2 2) xε ε α t : t = ε θ(β+ α 2 2) Xt ε : t converge en distribution vers un mouvement Brownien avec coefficient de diffusion κ α,β quand ε. De plus, si α = 2, le résultat est vrai pour 1 < β 1.

22 Si α + β 1 >, on pose Ľ ε t := Lε t ε αθ ε θ = l t ε θ(β 1) ε θ(β 1) α et ˇV ε t := Vε t ε αθ ε θ. Par auto-similarité, Ľ ε est un processus de Lévy α-stable et on a : X ε t = ε θ(2 β) tε αθ ˇV ε s ds et ˇV ε t = Ľ ε t t sgn(ˇv ε s ) ˇV ε s β ds.

23 Théorème de Whitt Pour n 1, soit M n = (M n,1,..., M n,k ) une martingale locale dans D k pour une filtration F n, satisfaisant M n () = (,..., ). Soit C = (c i,j ) une matrice de covariance de taille k 2. Si M n est de carré intégrable, on peut introduire la covariation quadratique prédictible M n,i, M n,j. Si, de plus, pour tout T > et (i, j) [ 1, k ] 2, on a : lim E[J( M n,i, M n,j, T) = n + lim E[J(M n, T) 2 ] = n + M n,i, M n,j (t) c i,j t alors M n M dans D k où M est un (, C)-mouvement brownien.

24 Schéma de preuve dans le cas Brownien Étape 1 On résout l équation de Poisson : (L 2,β g β )(x) = x où L 2,β := 1 2 dx 2 d sgn(x) x β dx. La solution est : g β (x) = x ( + avec c β (x) := 2 β+1 x β+1. y d 2 ) 2ze cβ(z) dz e cβ(y) dy,

25 Schéma de preuve dans le cas Brownien Étape 1 On résout l équation de Poisson : (L 2,β g β )(x) = x où L 2,β := 1 2 dx 2 d sgn(x) x β dx. La solution est : g β (x) = x ( + avec c β (x) := 2 β+1 x β+1. y d 2 ) 2ze cβ(z) dz e cβ(y) dy,

26 Schéma de preuve dans le cas Brownien Étape 2 En utilisant la formule d Itô, on obtient alors : 2θ t ε ε θ(β 1) Xt ε = ε θ g β (ˇV s )dˇb s + ε θ g β (ˇV t ε 2θ ) Étape 3 On montre que ε θ g β (ˇV t ε 2θ converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε θ t ε 2θ g β (ˇV s )dˇb s converge vers un mouvement Brownien avec coefficient de diffusion κ 2,β. Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure. ).

27 Schéma de preuve dans le cas Brownien Étape 2 En utilisant la formule d Itô, on obtient alors : 2θ t ε ε θ(β 1) Xt ε = ε θ g β (ˇV s )dˇb s + ε θ g β (ˇV t ε 2θ ) Étape 3 On montre que ε θ g β (ˇV t ε 2θ converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε θ t ε 2θ g β (ˇV s )dˇb s converge vers un mouvement Brownien avec coefficient de diffusion κ 2,β. Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure. ).

28 Schéma de preuve dans le cas Brownien Étape 2 En utilisant la formule d Itô, on obtient alors : 2θ t ε ε θ(β 1) Xt ε = ε θ g β (ˇV s )dˇb s + ε θ g β (ˇV t ε 2θ ) Étape 3 On montre que ε θ g β (ˇV t ε 2θ converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε θ t ε 2θ g β (ˇV s )dˇb s converge vers un mouvement Brownien avec coefficient de diffusion κ 2,β. Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure. ).

29 Le cas purement à sauts Étape 1 Par la décomposition de Itô-Lévy, il existe un processus de Poisson N et son compensé Ñ tel que t t Ľ t = zñ(ds, dz) + zn(ds, dz). z 1 Le générateur de ˇV est : (L α,β g)(x) = sgn(x) x β g (x)+ R z >1 [g(x+y) g(x) yg (x)1 y 1 ] ν(dy). Pour résoudre l Équation de Poisson, il suffit de trouver une fonction de Lyapunov h (i.e. : L α,β h Ch). Le théorème de Glynn et Meyn nous assure alors l existence d une solution ĝ vérifiant ĝ c(h + 1), avec c une constante positive.

30 Le cas purement à sauts Étape 1 Par la décomposition de Itô-Lévy, il existe un processus de Poisson N et son compensé Ñ tel que t t Ľ t = zñ(ds, dz) + zn(ds, dz). z 1 Le générateur de ˇV est : (L α,β g)(x) = sgn(x) x β g (x)+ R z >1 [g(x+y) g(x) yg (x)1 y 1 ] ν(dy). Pour résoudre l Équation de Poisson, il suffit de trouver une fonction de Lyapunov h (i.e. : L α,β h Ch). Le théorème de Glynn et Meyn nous assure alors l existence d une solution ĝ vérifiant ĝ c(h + 1), avec c une constante positive.

31 Le cas purement à sauts Étape 2 En utilisant la formule d Itô-Lévy, on obtient alors : avec ε θ(β+ α 2 2) Xt ε = ε (ˇV ) αθ αθ 2 ĝ t ε αθ ε 2 Mt ε αθ, M t := t R [ĝ(z + ˇV s ) ĝ(ˇv s )]Ñ(ds, dz). Étape 3 On montre que ε αθ 2 ĝ (ˇV t ε αθ) converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε αθ 2 M t ε αθ converge vers un mouvement Brownien avec coefficient de diffusion κ α,β.

32 Le cas purement à sauts Étape 2 En utilisant la formule d Itô-Lévy, on obtient alors : avec ε θ(β+ α 2 2) Xt ε = ε (ˇV ) αθ αθ 2 ĝ t ε αθ ε 2 Mt ε αθ, M t := t R [ĝ(z + ˇV s ) ĝ(ˇv s )]Ñ(ds, dz). Étape 3 On montre que ε αθ 2 ĝ (ˇV t ε αθ) converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε αθ 2 M t ε αθ converge vers un mouvement Brownien avec coefficient de diffusion κ α,β.

33 Le cas purement à sauts Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure.

34 Applebaum, D., Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge University Press, 211. Bhattacharya, R. N., On the functional central limit theorem and the law of iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete 6 (1982), Billingsley, P. Convergence of Probability Measures, Second Edition, Wiley-Interscience, Fournier, N. On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes. Ann. Inst. H. Poincaré Probab. Statist., 49 (213), Glynn, P.W., Meyn S.P., A Lyapunov bound for solutions of the Poisson equation. Ann. Probab. 24 (1996),

35 Gradinaru, M., Pavlyukevich, I., Small noise asymptotics of solutions of the Langevin equation with non-linear damping subject α-stable Lévy forcing, in preparation. Hintze, R., Pavlyukevich, I. Small noise asymptotics and first passage times integrated Ornstein-Uhlenbeck process driven by α-stable Lévy process, Bernoulli 2 (214), Kulik, A.M., Exponential ergodicity of the solutions to SDE s with a jump noise, Stochastic Proc. Appl. 119 (29), Rogers, L.C.G., Williams, D., Diffusions, Markov Processes, and Martingales, vol. 2, Itô calculus, John Wiley & Sons, Samorodnitsky, G., Grigoriu, M., Tails of solutions of certain nonlinear stochastic differential equations driven by heavy

36 tailed Levy motions, Stochastic Proc. Appl. 15 (23), Whitt, W., Proofs of the martingale FCLT, Probability Surveys 4 (27),

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Processus de Lévy et calcul stochastique. Rhodes Rémi

Processus de Lévy et calcul stochastique. Rhodes Rémi Processus de Lévy et calcul stochastique Rhodes Rémi 18 novembre 21 2 Table des matières 1 Quelques rappels sur les processus de Poisson 5 1.1 Processus de Poisson................................ 5 1.2

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

PROCESSUS ALEATOIRES :

PROCESSUS ALEATOIRES : EcoledesMinesdeSaint Etienne PROCESSUSALEATOIRES: MARTINGALES,MOUVEMENTBROWNIEN,CALCULSTOCHASTIQUE Exercices Janvier2009 OlivierRoustant Processusaléatoires,calculstochastique:exercicesENSM SE2009 MOUVEMENTBROWNIEN

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Introduction à la modélisation financière en temps continue & Calcul Stochastique

Introduction à la modélisation financière en temps continue & Calcul Stochastique Introduction à la modélisation financière en temps continue & Calcul Stochastique Mireille Bossy INRIA pour le MASTER IMAFA à Polytech Nice Sophia Antipolis 16 novembre 213 2 Cours de maths financières

Plus en détail

Martingales dans l étude de quelques arbres aléatoires

Martingales dans l étude de quelques arbres aléatoires Martingales dans l étude de quelques arbres aléatoires Brigitte CHAUVIN Brigitte.Chauvin@math.uvsq.fr Monastir, 18-20 Octobre 2010 Contents 1 Introduction 1 2 Arbres binaires de recherche 2 2.1 Définitions.....................................

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

Remise à niveau en processus stochastiques

Remise à niveau en processus stochastiques M2IR Université Claude Bernard Lyon 1 Année universitaire 212-213 Remise à niveau en processus stochastiques F. Bienvenüe-Duheille Le but de ce poly est de vous mettre à niveau sur les processus stochastiques

Plus en détail

Asymétrie des rendements et volatilité multifractale

Asymétrie des rendements et volatilité multifractale Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE MENTOURI - CONSTANTINE FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Modèle de stockage et exposition à un risque alimentaire

Modèle de stockage et exposition à un risque alimentaire Modèle de stockage et exposition à un risque alimentaire Séminaire Paris XIII Hong Kong University of Science and Technology Paris, le 14 juin 2006 Plan de la présentation Contexte Première approche pour

Plus en détail

Situation professionnelle. Études. Thèmes de recherche

Situation professionnelle. Études. Thèmes de recherche Arnaud GLOTER Né le 03/11/72 (42 ans), à Montreuil Adresse : Université d Evry Val d Essonne, 23 bd de France, 91037 Evry Cedex Téléphone : 01 64 85 35 68 e-mail : arnaud.gloter@univ-evry.fr Situation

Plus en détail

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par Probabilités) Calculus on Fock space and a non-adapted quantum Itô formula Nicolas Privault Abstract - The aim of this note is to introduce a calculus on Fock space with its probabilistic interpretations,

Plus en détail

Christophe Pouzat. SELECT : 26 Octobre 2009

Christophe Pouzat. SELECT : 26 Octobre 2009 Une application simple du théorème de Donsker pour la construction de tests de qualité d ajustement de modèles de l intensité conditionnelle d un processus de comptage Christophe Pouzat Laboratoire de

Plus en détail

Mathématiques. Víctor Manuel RIVERO MERCADO. pour l obtention du grade de. Sujet de la thèse : soutenue le 14 juin 2004 devant le Jury composé de

Mathématiques. Víctor Manuel RIVERO MERCADO. pour l obtention du grade de. Sujet de la thèse : soutenue le 14 juin 2004 devant le Jury composé de Thèse de Doctorat de l Université Pierre et Marie Curie (Paris 6) Spécialité Mathématiques présentée par Víctor Manuel RIVERO MERCADO pour l obtention du grade de Docteur de l Université Pierre et Marie

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Paramètre de longue mémoire d une série temporelle : le cas non linéaire Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Notion de longue mémoire Les valeurs d une série temporelle X = (X l )

Plus en détail

Mouvement brownien et calcul stochastique

Mouvement brownien et calcul stochastique Université Pierre et Marie Curie 27-28 Master de Mathématiques Spécialité: Probabilités et Applications Mouvement brownien et calcul stochastique Jean Jacod Chapitre 1 Le mouvement brownien 1.1 Processus

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM365 Intégration 2 Année 2011 12 Théorie de la Mesure et Intégration Amaury Lambert 1 1. Responsable de l UE. Mél : amaury.lambert@upmc.fr

Plus en détail

Théorie de la mesure. S. Nicolay

Théorie de la mesure. S. Nicolay Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation

Plus en détail

Volatilité stochastique : étude d un modèle ergodique.

Volatilité stochastique : étude d un modèle ergodique. Volatilité stochastique : étude d un modèle ergodique. Julien Guyon julien.guyon@polytechnique.fr novembre Table des matières 1 Introduction 5 1.1 Notations............................. 5 1. Interprétation...........................

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

Modélisation de séries financières par un modèle multifractal. Céline Azizieh

Modélisation de séries financières par un modèle multifractal. Céline Azizieh Modélisation de séries financières par un modèle multifractal Céline Azizieh Mémoire présenté à l Université Libre de Bruxelles en vue d obtenir le diplôme d actuaire Supervision: W. Breymann (RiskLab,

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : économique et commerciale Option : Scientifique (ECS) Discipline : Mathématiques- Informatique Seconde année Ministère de l enseignement

Plus en détail

Université de Montréal. Temps de Branchement du Mouvement Brownien Branchant Inhomogène. Jean-Sébastien Turcotte

Université de Montréal. Temps de Branchement du Mouvement Brownien Branchant Inhomogène. Jean-Sébastien Turcotte Université de Montréal Temps de Branchement du Mouvement Brownien Branchant Inhomogène par Jean-Sébastien Turcotte Département de mathématiques et de statistique Faculté des arts et des sciences Mémoire

Plus en détail

Machines à sous (compléments)

Machines à sous (compléments) CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Estimation ultra haute fréquence de la volatilité et de la co-volatilité

Estimation ultra haute fréquence de la volatilité et de la co-volatilité Estimation ultra haute fréquence de la volatilité et de la co-volatilité Christian Y. Robert 1 et Mathieu Rosenbaum 2 1 CREST-ENSAE Paris Tech, 2 CMAP-École Polytechnique Paris Christian Y. Robert et Mathieu

Plus en détail

Modélisation du risque de crédit et asymétrie d information

Modélisation du risque de crédit et asymétrie d information Modélisation du risque de crédit et asymétrie d information David Kurtz, Groupe de Recherche Opérationnelle 10 juin 2004, Université de Poitiers Introduction [1] (1) Le risque de crédit (2) Modèles structurels

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Résumé des travaux et des activités scientifiques présenté en vue d obtention d une Habilitation à Diriger les Recherches

Résumé des travaux et des activités scientifiques présenté en vue d obtention d une Habilitation à Diriger les Recherches Résumé des travaux et des activités scientifiques présenté en vue d obtention d une Habilitation à Diriger les Recherches par Peter Tankov Professeur chargé des cours en mathématiques appliquées à l Ecole

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Cours de probabilités à Saint-Louis, Sénégal. Rhodes Rémi

Cours de probabilités à Saint-Louis, Sénégal. Rhodes Rémi Cours de probabilités à Saint-Louis, Sénégal Rhodes Rémi 2 Table des matières 1 Chaînes de Markov 5 1.1 Généralités..................................... 5 1.2 Existence......................................

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

DES DISTRIBUTIONS DE PROBABILITÉ SINGULIÈRES. Marc BARBUT 1

DES DISTRIBUTIONS DE PROBABILITÉ SINGULIÈRES. Marc BARBUT 1 Math. Sci. hum / Mathematics and Social Sciences (48 e année, n 9, 2(2), p. -8) DES DISTRIBUTIONS DE PROBABILITÉ SINGULIÈRES Marc BARBUT RÉSUMÉ Ce texte n a rien d original. Son objectif est seulement

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Calcul Stochastique pour la finance. Romuald ELIE

Calcul Stochastique pour la finance. Romuald ELIE Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Probabilités Approfondies

Probabilités Approfondies Université Pierre et Marie Curie Master de Mathématique 2005-2006 Probabilités Approfondies Polycopié: J. Lacroix & P. Priouret, Cours: J. Lacroix 1 Université Pierre et Marie Curie Master de Mathématiques

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Théorème limite central

Théorème limite central Université des Sciences et Technologies de Lille UFR de Mathématiques Pures et Appliquées Bât M2, F-59655 Villeneuve d Ascq Cedex Théorème limite central Charles SUQUET Agrégation Externe 2005 2006 Théorème

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Apprentissage des équilibres de Nash

Apprentissage des équilibres de Nash Chapitre 7 Apprentissage des équilibres de Nash Ce chapitre se consacre à des algorithmes d apprentissage d équilibres de Nash purs et à leur temps de convergence. La section 7. rappelle quelques résultats

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

1 Introduction, but du cours, rappels

1 Introduction, but du cours, rappels DEA 2-21 Calcul stochastique II, applications aux finances Université Paul Sabatier 1 Introduction, but du cours, rappels Les applications en finance sont dans ce cours, une valorisation et une justification

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Éléments spectraux d une fonction cyclostationnaire

Éléments spectraux d une fonction cyclostationnaire Éléments spectraux d une fonction cyclostationnaire Alain BOUDOU 1 & Sylvie VIGUIR-PLA 1 & 2 1 quipe de Stat. et Proba., Institut de Mathématiques, UMR5219 Université Paul Sabatier, 118 Route de Narbonne,

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Evaluation des options américaines

Evaluation des options américaines BADJI MOKHTAR -ANNABA UNIVERSITY BADJI MOKHTAR -ANNABA UNIVERSITE Faculté des Sciences Département de Mathématiques MEMOIRE Présenté en vue de l obtention du diplôme de MAGISTER EN MATHEMATIQUES Evaluation

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail