Équation de Langevin avec petites perturbations browniennes ou

Dimension: px
Commencer à balayer dès la page:

Download "Équation de Langevin avec petites perturbations browniennes ou"

Transcription

1 Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215, Toulouse

2 v t = v x t = t t v s ds sign(v s ) v s β ds

3 v ε t x ε t = = v t t v ε sds sign(v ε s) v ε s β ds + εl t

4 1) Processus de Lévy et calcul stochastique 2) Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle 3)

5 1) Processus de Lévy et calcul stochastique 2) Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle 3)

6 1) Processus de Lévy et calcul stochastique 2) Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle 3)

7 Processus de Lévy et calcul stochastique

8 Processus de Lévy Processus de Lévy Un processus de Lévy X est un processus qui vérifie : X = presque sûrement X est à accroissements indépendants et stationnaires X est càdlàg Processus α-stable Un processus de Lévy X est appelé α-stable pour α (, 2] si les processus (X c α t) t et (cx t ) t ont la même loi pour tout c >. Remarque : Pour α = 2, le processus est un mouvement Brownien standard et pour α (, 2), le processus est purement à sauts.

9 Processus de Lévy Processus de Lévy Un processus de Lévy X est un processus qui vérifie : X = presque sûrement X est à accroissements indépendants et stationnaires X est càdlàg Processus α-stable Un processus de Lévy X est appelé α-stable pour α (, 2] si les processus (X c α t) t et (cx t ) t ont la même loi pour tout c >. Remarque : Pour α = 2, le processus est un mouvement Brownien standard et pour α (, 2), le processus est purement à sauts.

10 Processus de Lévy Processus de Lévy Un processus de Lévy X est un processus qui vérifie : X = presque sûrement X est à accroissements indépendants et stationnaires X est càdlàg Processus α-stable Un processus de Lévy X est appelé α-stable pour α (, 2] si les processus (X c α t) t et (cx t ) t ont la même loi pour tout c >. Remarque : Pour α = 2, le processus est un mouvement Brownien standard et pour α (, 2), le processus est purement à sauts.

11 Mesure de Poisson Soit (S; A) un espace mesurable et (Ω; F; P) un espace probabilisé. Mesure de Poisson Soit µ une mesure σ-finie sur (S; A). Une mesure aléatoire de Poisson N sur (S; A) est une collection de variables aléatoires (N(B); B A) telle que : pour tout B A tel que µ(b) < +, N(B) suit une loi de Poisson de paramètre µ(b), si A 1,..., A m sont des ensembles disjoints de A, les variables aléatoires N(A 1 ),..., N(A m ) sont indépendantes, pour tout ω Ω, A N(A, ω) est une mesure de comptage sur (S, A).

12 Mesure et intégrale de Poisson Si X est un processus de Lévy, N([, T], A) := #{ s t, X t X t A} est une mesure de Poisson. Intégrale de Poisson Soit N une mesure aléatoire de Poisson d intensité dt µ sur R + (R/{}). Si f : R R est une fonction borélienne et si A B(R/{}) vérifie µ(a) < +, on définit, pour tout t et ω Ω, l intégrale stochastique de Poisson de f par : f (z)n(t, dz) := f (z)n(t, {z}). A z A

13 Mesure et intégrale de Poisson Si X est un processus de Lévy, N([, T], A) := #{ s t, X t X t A} est une mesure de Poisson. Intégrale de Poisson Soit N une mesure aléatoire de Poisson d intensité dt µ sur R + (R/{}). Si f : R R est une fonction borélienne et si A B(R/{}) vérifie µ(a) < +, on définit, pour tout t et ω Ω, l intégrale stochastique de Poisson de f par : f (z)n(t, dz) := f (z)n(t, {z}). A z A

14 Décomposition d Itô-Lévy Théorème de décomposition d Itô-Lévy Si X est un processus de Lévy alors il existe b R, un mouvement brownien standard B, un coefficient de diffusion σ et une mesure aléatoire de Poisson N sur R + (R/{}), d intensité dt µ où µ est une mesure de Lévy (i.e. vérifiant R/{} (1 z2 )µ(dz) < + ) tels que, pour tout t : X t = bt + σb t + < z <1 z Ñ(t, dz) + z N(t, dz) z >1 où Ñ est la mesure de Poisson compensée de N définie par : Ñ(t, dz) = N(t, dz) tµ(dz).

15 Décomposition d Itô-Lévy Corollaire Si X est un processus de Lévy α-stable pour α (, 2), on a : X t = z Ñ(t, dz) + z N(t, dz) < z <1 z >1 où la mesure de Lévy µ est µ(dz) = z 1 α dz.

16 Formule d Itô-Lévy Théorème Soit X un processus de la forme : t t t t X t = X + b(s)ds+ σ(s)db s+ H(s, z)ñ(ds, dz)+ K(s, z)n(ds, dz), < z <1 z >1 alors, pour toute fonction f C 2 (R) et tout t, on a : f (X t) = t t f (X ) + f (X s )b(s)ds + f (X s )σ(s)db s + 1 t f (X 2 s )σ 2 (s)ds t + [f (X s + H(s, z)) f (X s )]Ñ(ds, dz) + < z <1 t [f (X s + H(s, z)) f (X s ) f (X s )H(s, z)]dsµ(dz) < z <1 t + [f (X s + K(s, z)) f (X s )]N(ds, dz). z >1

17 Étude du comportement de la vitesse et de la position pour une vitesse initiale non nulle

18 Proposition, Gradinau et E. Pour β, quand ε, {v ε t : t } (respectivement x ε ) converge vers v (respectivement x) en probabilité uniformement sur tout intervalle compact. Pour β 1, on introduit Z t := t β v s β 1 Z s ds + l t. On a 1 ε (vε v εz) et 1 ε (xε x ε Z) convergent UCP vers, quand ε.

19

20 On pose, pour t, X ε t := x ε ε α t et V ε t := v ε ε α t qui satisfont alors respectivement, X ε t = 1 ε α t V ε s ds et V ε t = L ε t 1 ε α t sgn(v ε s ) V ε s β ds. où {L ε t := εl ε α t : t } est aussi un processus α-stable.

21 Théorème, Gradinaru et E. Supposons que < α 2 et β + α 2 > 2, on pose θ := α α+β 1 (, 1). Alors il existe une constante positive κ α,β telle que le processus } { } {ε θ(β+ α 2 2) xε ε α t : t = ε θ(β+ α 2 2) Xt ε : t converge en distribution vers un mouvement Brownien avec coefficient de diffusion κ α,β quand ε. De plus, si α = 2, le résultat est vrai pour 1 < β 1.

22 Si α + β 1 >, on pose Ľ ε t := Lε t ε αθ ε θ = l t ε θ(β 1) ε θ(β 1) α et ˇV ε t := Vε t ε αθ ε θ. Par auto-similarité, Ľ ε est un processus de Lévy α-stable et on a : X ε t = ε θ(2 β) tε αθ ˇV ε s ds et ˇV ε t = Ľ ε t t sgn(ˇv ε s ) ˇV ε s β ds.

23 Théorème de Whitt Pour n 1, soit M n = (M n,1,..., M n,k ) une martingale locale dans D k pour une filtration F n, satisfaisant M n () = (,..., ). Soit C = (c i,j ) une matrice de covariance de taille k 2. Si M n est de carré intégrable, on peut introduire la covariation quadratique prédictible M n,i, M n,j. Si, de plus, pour tout T > et (i, j) [ 1, k ] 2, on a : lim E[J( M n,i, M n,j, T) = n + lim E[J(M n, T) 2 ] = n + M n,i, M n,j (t) c i,j t alors M n M dans D k où M est un (, C)-mouvement brownien.

24 Schéma de preuve dans le cas Brownien Étape 1 On résout l équation de Poisson : (L 2,β g β )(x) = x où L 2,β := 1 2 dx 2 d sgn(x) x β dx. La solution est : g β (x) = x ( + avec c β (x) := 2 β+1 x β+1. y d 2 ) 2ze cβ(z) dz e cβ(y) dy,

25 Schéma de preuve dans le cas Brownien Étape 1 On résout l équation de Poisson : (L 2,β g β )(x) = x où L 2,β := 1 2 dx 2 d sgn(x) x β dx. La solution est : g β (x) = x ( + avec c β (x) := 2 β+1 x β+1. y d 2 ) 2ze cβ(z) dz e cβ(y) dy,

26 Schéma de preuve dans le cas Brownien Étape 2 En utilisant la formule d Itô, on obtient alors : 2θ t ε ε θ(β 1) Xt ε = ε θ g β (ˇV s )dˇb s + ε θ g β (ˇV t ε 2θ ) Étape 3 On montre que ε θ g β (ˇV t ε 2θ converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε θ t ε 2θ g β (ˇV s )dˇb s converge vers un mouvement Brownien avec coefficient de diffusion κ 2,β. Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure. ).

27 Schéma de preuve dans le cas Brownien Étape 2 En utilisant la formule d Itô, on obtient alors : 2θ t ε ε θ(β 1) Xt ε = ε θ g β (ˇV s )dˇb s + ε θ g β (ˇV t ε 2θ ) Étape 3 On montre que ε θ g β (ˇV t ε 2θ converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε θ t ε 2θ g β (ˇV s )dˇb s converge vers un mouvement Brownien avec coefficient de diffusion κ 2,β. Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure. ).

28 Schéma de preuve dans le cas Brownien Étape 2 En utilisant la formule d Itô, on obtient alors : 2θ t ε ε θ(β 1) Xt ε = ε θ g β (ˇV s )dˇb s + ε θ g β (ˇV t ε 2θ ) Étape 3 On montre que ε θ g β (ˇV t ε 2θ converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε θ t ε 2θ g β (ˇV s )dˇb s converge vers un mouvement Brownien avec coefficient de diffusion κ 2,β. Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure. ).

29 Le cas purement à sauts Étape 1 Par la décomposition de Itô-Lévy, il existe un processus de Poisson N et son compensé Ñ tel que t t Ľ t = zñ(ds, dz) + zn(ds, dz). z 1 Le générateur de ˇV est : (L α,β g)(x) = sgn(x) x β g (x)+ R z >1 [g(x+y) g(x) yg (x)1 y 1 ] ν(dy). Pour résoudre l Équation de Poisson, il suffit de trouver une fonction de Lyapunov h (i.e. : L α,β h Ch). Le théorème de Glynn et Meyn nous assure alors l existence d une solution ĝ vérifiant ĝ c(h + 1), avec c une constante positive.

30 Le cas purement à sauts Étape 1 Par la décomposition de Itô-Lévy, il existe un processus de Poisson N et son compensé Ñ tel que t t Ľ t = zñ(ds, dz) + zn(ds, dz). z 1 Le générateur de ˇV est : (L α,β g)(x) = sgn(x) x β g (x)+ R z >1 [g(x+y) g(x) yg (x)1 y 1 ] ν(dy). Pour résoudre l Équation de Poisson, il suffit de trouver une fonction de Lyapunov h (i.e. : L α,β h Ch). Le théorème de Glynn et Meyn nous assure alors l existence d une solution ĝ vérifiant ĝ c(h + 1), avec c une constante positive.

31 Le cas purement à sauts Étape 2 En utilisant la formule d Itô-Lévy, on obtient alors : avec ε θ(β+ α 2 2) Xt ε = ε (ˇV ) αθ αθ 2 ĝ t ε αθ ε 2 Mt ε αθ, M t := t R [ĝ(z + ˇV s ) ĝ(ˇv s )]Ñ(ds, dz). Étape 3 On montre que ε αθ 2 ĝ (ˇV t ε αθ) converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε αθ 2 M t ε αθ converge vers un mouvement Brownien avec coefficient de diffusion κ α,β.

32 Le cas purement à sauts Étape 2 En utilisant la formule d Itô-Lévy, on obtient alors : avec ε θ(β+ α 2 2) Xt ε = ε (ˇV ) αθ αθ 2 ĝ t ε αθ ε 2 Mt ε αθ, M t := t R [ĝ(z + ˇV s ) ĝ(ˇv s )]Ñ(ds, dz). Étape 3 On montre que ε αθ 2 ĝ (ˇV t ε αθ) converge vers, UCP. On utilise le théorème de Whitt et le théorème ergodique pour montrer que ε αθ 2 M t ε αθ converge vers un mouvement Brownien avec coefficient de diffusion κ α,β.

33 Le cas purement à sauts Étape 4 On utilise le théorème de Slutsky et le continuous mapping theorem pour conclure.

34 Applebaum, D., Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge University Press, 211. Bhattacharya, R. N., On the functional central limit theorem and the law of iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete 6 (1982), Billingsley, P. Convergence of Probability Measures, Second Edition, Wiley-Interscience, Fournier, N. On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes. Ann. Inst. H. Poincaré Probab. Statist., 49 (213), Glynn, P.W., Meyn S.P., A Lyapunov bound for solutions of the Poisson equation. Ann. Probab. 24 (1996),

35 Gradinaru, M., Pavlyukevich, I., Small noise asymptotics of solutions of the Langevin equation with non-linear damping subject α-stable Lévy forcing, in preparation. Hintze, R., Pavlyukevich, I. Small noise asymptotics and first passage times integrated Ornstein-Uhlenbeck process driven by α-stable Lévy process, Bernoulli 2 (214), Kulik, A.M., Exponential ergodicity of the solutions to SDE s with a jump noise, Stochastic Proc. Appl. 119 (29), Rogers, L.C.G., Williams, D., Diffusions, Markov Processes, and Martingales, vol. 2, Itô calculus, John Wiley & Sons, Samorodnitsky, G., Grigoriu, M., Tails of solutions of certain nonlinear stochastic differential equations driven by heavy

36 tailed Levy motions, Stochastic Proc. Appl. 15 (23), Whitt, W., Proofs of the martingale FCLT, Probability Surveys 4 (27),

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Processus de Lévy et calcul stochastique. Rhodes Rémi

Processus de Lévy et calcul stochastique. Rhodes Rémi Processus de Lévy et calcul stochastique Rhodes Rémi 18 novembre 21 2 Table des matières 1 Quelques rappels sur les processus de Poisson 5 1.1 Processus de Poisson................................ 5 1.2

Plus en détail

PROCESSUS ALEATOIRES :

PROCESSUS ALEATOIRES : EcoledesMinesdeSaint Etienne PROCESSUSALEATOIRES: MARTINGALES,MOUVEMENTBROWNIEN,CALCULSTOCHASTIQUE Exercices Janvier2009 OlivierRoustant Processusaléatoires,calculstochastique:exercicesENSM SE2009 MOUVEMENTBROWNIEN

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Construction du Mouvement Brownien

Construction du Mouvement Brownien Chapitre 1 Construction du Mouvement Brownien 1 Un peu d histoire (voir [7] et [1]) Le nom de mouvement Brownien vient du botaniste Robert Brown. Brown n a pas découvert le mouvement brownien, car n importe

Plus en détail

Martingales dans l étude de quelques arbres aléatoires

Martingales dans l étude de quelques arbres aléatoires Martingales dans l étude de quelques arbres aléatoires Brigitte CHAUVIN Brigitte.Chauvin@math.uvsq.fr Monastir, 18-20 Octobre 2010 Contents 1 Introduction 1 2 Arbres binaires de recherche 2 2.1 Définitions.....................................

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Introduction à la modélisation financière en temps continue & Calcul Stochastique

Introduction à la modélisation financière en temps continue & Calcul Stochastique Introduction à la modélisation financière en temps continue & Calcul Stochastique Mireille Bossy INRIA pour le MASTER IMAFA à Polytech Nice Sophia Antipolis 16 novembre 213 2 Cours de maths financières

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Asymétrie des rendements et volatilité multifractale

Asymétrie des rendements et volatilité multifractale Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest

Plus en détail

Remise à niveau en processus stochastiques

Remise à niveau en processus stochastiques M2IR Université Claude Bernard Lyon 1 Année universitaire 212-213 Remise à niveau en processus stochastiques F. Bienvenüe-Duheille Le but de ce poly est de vous mettre à niveau sur les processus stochastiques

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par Probabilités) Calculus on Fock space and a non-adapted quantum Itô formula Nicolas Privault Abstract - The aim of this note is to introduce a calculus on Fock space with its probabilistic interpretations,

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo

Plan de la présentation. La simulation de Monte Carlo des processus de diffusion. La simulation de Monte Carlo. La simulation de Monte Carlo La simulation de Monte Carlo des processus de diffusion Les méthodes stochastiques dans les sciences de la gestion 6-640-93 Geneviève Gauthier Plan de la présentation La simulation de Monte Carlo La simulation

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Volatilité stochastique : étude d un modèle ergodique.

Volatilité stochastique : étude d un modèle ergodique. Volatilité stochastique : étude d un modèle ergodique. Julien Guyon julien.guyon@polytechnique.fr novembre Table des matières 1 Introduction 5 1.1 Notations............................. 5 1. Interprétation...........................

Plus en détail

Calcule des options américaines dans un modèle exponentiel de Lévy via l arbre multinomial. Mohammed MIKOU. March 1, 2012.

Calcule des options américaines dans un modèle exponentiel de Lévy via l arbre multinomial. Mohammed MIKOU. March 1, 2012. Calcule des options américaines dans un modèle exponentiel de Lévy via l arbre multinomial Mohammed MIKOU March 1, 2012 Premia 14 1 La méthode de l arbre multinomial 1.1 Préliminaire On considère (X t

Plus en détail

Modèle de stockage et exposition à un risque alimentaire

Modèle de stockage et exposition à un risque alimentaire Modèle de stockage et exposition à un risque alimentaire Séminaire Paris XIII Hong Kong University of Science and Technology Paris, le 14 juin 2006 Plan de la présentation Contexte Première approche pour

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Mouvement brownien et calcul stochastique

Mouvement brownien et calcul stochastique Université Pierre et Marie Curie 27-28 Master de Mathématiques Spécialité: Probabilités et Applications Mouvement brownien et calcul stochastique Jean Jacod Chapitre 1 Le mouvement brownien 1.1 Processus

Plus en détail

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE MENTOURI - CONSTANTINE FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Machines à sous (compléments)

Machines à sous (compléments) CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Situation professionnelle. Études. Thèmes de recherche

Situation professionnelle. Études. Thèmes de recherche Arnaud GLOTER Né le 03/11/72 (42 ans), à Montreuil Adresse : Université d Evry Val d Essonne, 23 bd de France, 91037 Evry Cedex Téléphone : 01 64 85 35 68 e-mail : arnaud.gloter@univ-evry.fr Situation

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Estimation ultra haute fréquence de la volatilité et de la co-volatilité

Estimation ultra haute fréquence de la volatilité et de la co-volatilité Estimation ultra haute fréquence de la volatilité et de la co-volatilité Christian Y. Robert 1 et Mathieu Rosenbaum 2 1 CREST-ENSAE Paris Tech, 2 CMAP-École Polytechnique Paris Christian Y. Robert et Mathieu

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Modélisation de séries financières par un modèle multifractal. Céline Azizieh

Modélisation de séries financières par un modèle multifractal. Céline Azizieh Modélisation de séries financières par un modèle multifractal Céline Azizieh Mémoire présenté à l Université Libre de Bruxelles en vue d obtenir le diplôme d actuaire Supervision: W. Breymann (RiskLab,

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM365 Intégration 2 Année 2011 12 Théorie de la Mesure et Intégration Amaury Lambert 1 1. Responsable de l UE. Mél : amaury.lambert@upmc.fr

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Les systèmes hybrides stochastiques généraux (GSHS)

Les systèmes hybrides stochastiques généraux (GSHS) Groupe de travail SDH (GdR MACS) Exposé pour la réunion du 20 septembre 2007 Les systèmes hybrides stochastiques généraux (GSHS) et leur équation de Fokker-Planck-Kolmogorov Julien Bect Département Signaux

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Paramètre de longue mémoire d une série temporelle : le cas non linéaire Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Notion de longue mémoire Les valeurs d une série temporelle X = (X l )

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Christophe Pouzat. SELECT : 26 Octobre 2009

Christophe Pouzat. SELECT : 26 Octobre 2009 Une application simple du théorème de Donsker pour la construction de tests de qualité d ajustement de modèles de l intensité conditionnelle d un processus de comptage Christophe Pouzat Laboratoire de

Plus en détail

Calcul stochastique appliqué à la finance. Introduction aux modèles d actifs à sauts

Calcul stochastique appliqué à la finance. Introduction aux modèles d actifs à sauts Calcul stochastique appliqué à la finance Ioane Muni Toke Draft version 1 Introduction aux processus à sauts On énonce ici quelques concepts et résultats sur les processus à sauts. Certaines démonstrations

Plus en détail

Résumé des travaux et des activités scientifiques présenté en vue d obtention d une Habilitation à Diriger les Recherches

Résumé des travaux et des activités scientifiques présenté en vue d obtention d une Habilitation à Diriger les Recherches Résumé des travaux et des activités scientifiques présenté en vue d obtention d une Habilitation à Diriger les Recherches par Peter Tankov Professeur chargé des cours en mathématiques appliquées à l Ecole

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Université de Montréal. Temps de Branchement du Mouvement Brownien Branchant Inhomogène. Jean-Sébastien Turcotte

Université de Montréal. Temps de Branchement du Mouvement Brownien Branchant Inhomogène. Jean-Sébastien Turcotte Université de Montréal Temps de Branchement du Mouvement Brownien Branchant Inhomogène par Jean-Sébastien Turcotte Département de mathématiques et de statistique Faculté des arts et des sciences Mémoire

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Mathématiques. Víctor Manuel RIVERO MERCADO. pour l obtention du grade de. Sujet de la thèse : soutenue le 14 juin 2004 devant le Jury composé de

Mathématiques. Víctor Manuel RIVERO MERCADO. pour l obtention du grade de. Sujet de la thèse : soutenue le 14 juin 2004 devant le Jury composé de Thèse de Doctorat de l Université Pierre et Marie Curie (Paris 6) Spécialité Mathématiques présentée par Víctor Manuel RIVERO MERCADO pour l obtention du grade de Docteur de l Université Pierre et Marie

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Introduction Christophe Chorro, Alexandre Marino Ce document constitue, dans sa forme actuelle, un

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Curriculum Vitae. Khalifa ES-SEBAIY

Curriculum Vitae. Khalifa ES-SEBAIY Curriculum Vitae Khalifa ES-SEBAIY Informations personnelles Adresse professionnelle : Institut Mathématiques de Bourgogne Université de Bourgogne UMR 5584 CNRS 9 rue Alain Savary - BP 47870 21078 DIJON

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Calcul Stochastique pour la finance. Romuald ELIE

Calcul Stochastique pour la finance. Romuald ELIE Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis

Plus en détail

M A R T I N G A L E S

M A R T I N G A L E S EcoledesMinesdeSaint Etienne MARTINGALES SupportdeCours Janvier2009 OlivierRoustant 1 1. INTRODUCTION Une martingale est un processus aléatoire qui ne possède pas de partie prévisible relativement à l

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Projet de Semestre. Processus de Wiener. Analyse de B(u,T) avec racines de l équation de Lundberg complexes

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Projet de Semestre. Processus de Wiener. Analyse de B(u,T) avec racines de l équation de Lundberg complexes ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Projet de Semestre Processus de Wiener Analyse de B(u,T) avec racines de l équation de Lundberg complexes Meichtry Eliane Mathématiques Paroz Sandrine 3ème année

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Théorème limite central

Théorème limite central Université des Sciences et Technologies de Lille UFR de Mathématiques Pures et Appliquées Bât M2, F-59655 Villeneuve d Ascq Cedex Théorème limite central Charles SUQUET Agrégation Externe 2005 2006 Théorème

Plus en détail

Cours de probabilités à Saint-Louis, Sénégal. Rhodes Rémi

Cours de probabilités à Saint-Louis, Sénégal. Rhodes Rémi Cours de probabilités à Saint-Louis, Sénégal Rhodes Rémi 2 Table des matières 1 Chaînes de Markov 5 1.1 Généralités..................................... 5 1.2 Existence......................................

Plus en détail