TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

Dimension: px
Commencer à balayer dès la page:

Download "TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION"

Transcription

1 TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun avec Yacouba Boubacar Maïnassara Conférence Séries Temporelles, Économétrie et Finance Besançon 6 et 7 mai 2014

2 PLAN MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

3 MODÈLES ARMA FAIBLES ET MOTIVATIONS CADRE D ÉTUDE PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

4 MODÈLES ARMA FAIBLES ET MOTIVATIONS CADRE D ÉTUDE REPRÉSENTATION ARMA(p, q) FAIBLE Un processus stationnaire au second ordre, tel que pour t Z p q X t a 0i X t i = ɛ t b 0i ɛ t j. i=1 j=1 Les paramètres a 0i, i {1,..., p} et b 0j, j {1,..., q} sont des réels, p et q sont des entiers appelés ordres. Le terme d erreur ɛ t est un bruit blanc faible i.e : une suite de v.a. centrées (Eɛ t = 0), non corrélées (Cov (ɛ t, ɛ t+h ) = 0 h, t Z, h 0), de même variance σ 2 0. MODÈLES ARMA FAIBLES ET FORTS Si on suppose le processus ɛ = (ɛ t ) est un bruit blanc fort, à savoir une suite de variables iid, alors on dit que X = (X t ) est un modèle ARMA(p, q) fort. Si on suppose simplement que ɛ est non corrélé, on dit que X admet une représentation ARMA(p, q) faible. On a la relation suivante {ARMA forts} {ARMA faibles}.

5 MODÈLES ARMA FAIBLES ET MOTIVATIONS CADRE D ÉTUDE INVERSIBILITÉ DE LA REPRÉSENTATION p q X t a i X t i = ɛ t b i ɛ t j. i=1 j=1 On note θ = (a 1,..., a p, b 1,..., b q) le paramètre du modèle. Forme compacte : a(l)x t = b(l)ɛ t où L est l opérateur retard défini pour t, k Z) par LX t = X t 1 et L k X t = X t k. Définissons a(z) = 1 p i=1 a i z i et b(z) = 1 q j=1 b j z j. HYPOTHÈSE (A1) : a(z)b(z) = 0 implique que z > 1. CONSÉQUENCE ɛ t (θ) = b 1 (L)a(L)X t = X t + c i (θ)x t i i=1

6 MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

7 MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES MÉTHODES DES MOINDRES CARRÉS ORDINAIRES (MCO) Observations X 1,..., X n de longueur n. Pour 0 < t n, les variables aléatoires e t (θ) sont définies récursivement par p q e t (θ) = X t a i X t i + b j e t j (θ), où les valeurs initiales inconnues sont remplacées par zéro : e 0 (θ) = = e 1 q (θ) = X 0 = = X 1 p = 0. i=1 Un estimateur des MCO de θ 0 est défini comme toute solution, p.s., mesurable ˆθ n de Francq et Zakoïan (1998). j=1 1 Q n(ˆθ n) = min Qn(θ), où Qn(θ) = θ Θ 2n n et 2 (θ). t=1

8 MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES PROPRIÉTÉS ASYMPTOTIQUES DE L ESTIMATEUR DES MCO HYPOTHÈSES (A2) : Le processus (ɛ t ) est stationnaire et ergodique. (A3) : On a θ 0 Θ, où Θ désigne l intérieur de Θ. (A4) : Il existe un réel ν > 0 tel que E ( ɛ t 4+2ν) < les coefficients de mélange du processus (ɛ t ) vérifient k=0 {αɛ(k)} 2+ν ν <. Hypothèse de mélange qui nous permet de contrôler la dépendance dans le temps du processus (ɛ t ) THÉORÈME (FZ 98) Sous les hypothèses (H1) à (H4), on a n (ˆθ n θ 0 ) L N (0, Ω := J 1 IJ 1 ), où J = J(θ 0 ) et I = I(θ 0 ), avec J(θ) = lim n 2 ( ) Q n(θ) n θ θ p.s., I(θ) = lim Var n θ Qn(θ).

9 MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES Q n(θ) = 1 2n n t=1 et 2 1 (θ) et On := 2n n ɛ 2 t (θ) sont "proches" car t=1 ( n θ Qn(θ 0) ) θ On(θ 0) = o P (1). IDÉE DE LA PREUVE 0 = n Qn(ˆθ n) θ = n Qn(θ 0) θ = n On(θ 0) θ ˆθ n θ 0 = J 1 On(θ 0) θ + o P (1) + 2 Q n(θ ) θ θ n (ˆθ n θ 0 ) + o P (1) + 2 O n(θ 0 ) θ θ } {{ } J + o P (1) = J 1 1 n t=1 n (ˆθn θ 0 ) + o P (1). n ɛ t (θ 0 ) ɛ t (θ 0 ) θ } {{ } :=Y t +o P (1). (1)

10 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

11 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL ON VEUT TESTER POUR DES ORDRES p ET q DONNÉS H 0 : (X t ) satisfait une représentation ARMA(p, q) avec bruit blanc faible H 1 : (X t ) n admet pas une représentation ARMA ou admet une représentation ARMA(p, q ), p > p ou q > q. ENJEUX : Choisir des ordres trop grands introduction d un grand nombre de paramètres non pertinents à estimer, une perte de précision de l estimation des paramètres. Choisir des ordres trop petits perte d information détectable par une corrélation des résidus ou estimation non convergente des paramètres. AUTOCOVARIANCES EMPIRIQUES DU BRUIT DE RETARD h : Pour 0 h < n, elles sont définies par : γ(h) = 1 n ɛ t ɛ t h. n t=h+1 Les γ(h) ne sont pas des statistiques (sauf si p 0 = q 0 = 0) puisqu elles dépendent des innovations théoriques ɛ t = ɛ t (θ 0 ). Vecteurs des m (pour m 1) premières autocovariances empiriques du bruit : γ m = (γ(1),..., γ(m)).

12 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL AUTOCOVARIANCES ET AUTOCORRÉLATIONS RÉSIDUELLES On note ê t = e t (ˆθ n). Autocovariances résiduelles de retard h définies par ˆγ(h) = 1 n ê t ê t h pour 0 h < n. n t=h+1 Nous utilisons des vecteurs de ces autocovariances résiduelles ˆγ m = (ˆγ(1),..., ˆγ(m)) et les vecteurs des autocorrélations résiduelles ˆρ(l) = ˆγ(l)/ˆγ(0), avec γ(0) := σ 2. ˆρ m = (ˆρ(1),..., ˆρ(m)), pour m 1 et

13 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL STATISTIQUES DE TESTS PORTMANTEAU Statistique du test portmanteau (BP, 1970) Q BP m m = n ˆρ 2 (h) h=1 et statistique modifiée du test portmanteau (LB, 1978) Q LB m = n(n + 2) m h=1 ˆρ 2 (h) n h. DÉVELOPPEMENT DE ˆγ(m) Pour h {1,..., m}, en utilisant la fonction θ 1 n n t=h+1 ɛ t (θ) ɛ t h (θ) on obtient Ainsi où la ligne h de la matrice Φ m est φ h. ( ) ɛt (θ 0 ) ˆγ(h) = γ(h) + E θ ɛ t h (θ 0 ) (ˆθ n θ 0 ) + o P (1). } {{ } :=φ h ˆγ m = γ m + Φ m (ˆθ n θ 0 ) + o P (1), (2)

14 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL DISTRIBUTIONS ASYMPTOTIQUES DES AUTOCOVARIANCES ET AUTOCORRÉLATIONS RÉSIDUELLES (FRZ05) Supposons p > 0 ou q > 0. Sous les hypothèses (A1) à (A4), quand n, nous avons n ˆγm N ( ) 0, Σˆγm et n ˆρm N ( ) 0, Σ ˆρm où, Σˆγm = Σ γm + Φ mσ ˆθn Φ m + ΦmΣ ˆθn,γ m + Σ ˆθn,γ Φ m m Σ ˆρm = Σˆγm /σ 4 où les matrices Σ γm, Σ ˆθn et Σ ˆθ proviennent de la distribution asymptotique jointe de n,γ m l estimateur MCO et des autocovariances empiriques du bruit.

15 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL THÉORÈME : (COMPORTEMENT ASYMPTOTIQUE DES STATISTIQUES DES TESTS PORTMANTEAU) Sous les précédentes, les statistiques Qm BP et Qm LB convergent en distribution, quand n, vers Z m(ξ m) = m i=1 ξ i,m Z 2 i où ξ m = (ξ 1,m,..., ξ m,m) est un vecteur des valeurs propres de la matrice Σ ˆρm = Σˆγm /σ 4, et Z 1,..., Z m sont des variables indépendantes de loi N (0, 1). ESTIMATION DE Σˆρm Dans la littérature économique, il existe (principalement) deux méthodes La méthode d estimation non paramétrique du noyau aussi appelée HAC (Heteroscedasticity and Autocorrelation Consistent). La méthode d estimation paramétrique de la densité spectrale.

16 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL DESCRIPTION DU TEST Pour un niveau asymptotique α, le test portmanteau de LB (resp. de BP) consiste à rejeter l adéquation de modèle ARMA(p, q) faible quand où S 1 α m ( est telle que P Q LB m > Sm 1 α (resp. Qm BP > Sm 1 α ) ) Z m(ˆξ m) > S 1 α m = α. ˆξ m = (ˆξ 1,m,..., ˆξ m,m) le vecteur des valeurs propres de ˆΣ ˆρm. Z m(ˆξ m) sera évaluer grâce à l algorithme d Imhof (1961). BUT : Trouver une loi qui ne dépend pas (d un ou) des paramètres inconnus.

17 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

18 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION IDÉE On va "plus loin" dans le développement de ˆγ m donné par (2) : ˆγ m = γ m + Φ m (ˆθ n θ 0 ) + o P (1). On injecte le développement de ˆθ n ˆθ 0 donné par (1) : n ˆθ n θ 0 = J 1 1 n t=1 ɛ t (θ 0 ) ɛ t (θ 0 ) θ } {{ } :=Y t +o P (1), et on obtient avec n ˆγm = 1 n ΓU t + o P (1), ( U t = ɛ t (θ 0 ) ɛ ) t (θ 0 ), ɛ t ɛ t 1,..., ɛ t ɛ t m R p+q+m θ et Γ la matrice bloc de R m (p+q+m) définie par ) Γ = ( Φ mj 1 I m, où I m est la matrice identité d ordre m.

19 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION Il existe Ξ = ΥΥ avec Υ triangulaire inférieure avec des termes diagonaux strictement positifs telles que 1 n d U t N (0, Ξ). n n t=1 THÉORÈME LIMITE CENTRAL Avec ΓΞΓ = (ΓΥ)(ΓΥ) := ΨΨ, 1 n n d ΓU t N (0, n ΨΨ ). t=1 THÉORÈME LIMITE CENTRAL FONCTIONNEL nr 1 ΓU j n j=1 où (B m(r)) r 0 est un brownien m-dimensionnel. D m n ΨBm(r) CONSÉQUENCE DU "CONTINUOUS MAPPING THEOREM" (I) nr ( ) 1 Γ U j 1 n D U i m n n Ψ( B n m(r) rb ) m(1). j=1 i=1

20 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION ( ) On rappelle que U t = ɛ t (θ 0 ) ɛ t (θ 0 ), ɛ θ t ɛ t 1,..., ɛ t ɛ t m et on note ( t S t = Γ U j 1 n U i ). n j=1 i=1 C m = 1 n n 2 S t S t. t=1 CONSÉQUENCE DU "CONTINUOUS MAPPING THEOREM" (II) ( ) 1 d C m Ψ (B n m(r) rb m(1)) (B m(r) rb m(1)) dr Ψ. 0 } {{ } :=V m AUTO-NORMALISATION n ˆγ m C 1 m ˆγ m = 1 n n t=1 d n ( ) (ΓU t ) Cm 1 (ΓU t ) + o P (1) ( (ΨBm(1)) ΨV mψ ) 1 (ΨBm(1)) = B m 1 (1)Vm B m(1) := U m. La loi de la variable aléatoire U m est obtenue par simulation (Voir Lobato (JASA 2001)).

21 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION TABLE DES QUANTILES DE LA VARIABLE ALÉATOIRE U m TABLE: Upper Critical Values of the Distribution of U m. m\α

22 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES STATISTIQUES MODIFIÉES DE TESTS PORTMANTEAU PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

23 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES STATISTIQUES MODIFIÉES DE TESTS PORTMANTEAU Posons Ĉm = 1 n n 2 Ŝ t Ŝ t t=1 Statistique modifiée du test portmanteau (BP) Q SN m = n ˆσ4 ˆρ mĉ 1 m ˆρ m et la statistique modifiée du test portmanteau (LB) Q SN m = n(n + 2) ˆσ4 ˆρ m Dn,mĈ 1 m ˆρ m où la matrice diagonale D n,m a pour entrée (1/(n 1),..., 1/(n m)). THÉORÈME : (COMPORTEMENT ASYMPTOTIQUE DES STATISTIQUES MODIFIÉES DES TESTS PORTMANTEAU) Sous les hypothèses (A1) à (A4), les statistiques Qm SN et Q SN m convergent en distribution, quand n, vers la variable aléatoire U m = B m(1)v m 1 B m(1) où V m = 1 0 (Bm(r) rbm(1)) (Bm(r) rbm(1)) dr.

24 TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES STATISTIQUES MODIFIÉES DE TESTS PORTMANTEAU ( ) On rappelle que U t = ɛ t (θ 0 ) ɛ t (θ 0 ), ɛ θ t ɛ t 1,..., ɛ t ɛ t m R m+p+q et on note ( t St = U j 1 n U i ). n j=1 i=1 Cm+p+q = 1 n S n 2 t S t. REMARQUE t=1 ( ) 1 d Cm+p+q Ψ (B n m+p+q(r) rb m+p+q(1)) (B m+p+q(r) rb m+p+q(1)) dr Ψ. 0 } {{ } :=V m+p+q COMPORTEMENT ASYMPTOTIQUE DE (ˆθ n, ˆγ m ) Sous les hypothèses (A1) à (A4), quand n, nous avons 1 n(ˆθ n θ 0, γ m) C m+p+q (ˆθ n θ 0, γ m) d Um+p+q où U m+p+q := B m+p+q(1)v 1 m+p+q Bm+p+q(1).

25 ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

26 ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : BRUIT FORT Considérons le modèle ARMA(1,1) suivant X t = ax t 1 + ɛ t + bɛ t 1, où ɛ t = η t 1 + α 1 ɛ 2 t 1 et (η t ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the case of above strong ARMA model with the parameter θ 0 = (0,0) and α 1 = 0. The nominal asymptotic level of the tests is α = 5%. m = 2 m = 3 m = 4 Length n , , , 000 BPSN BPFRZ BP S m = 6 m = 10 m = 18 Length n , , , 000 BPSN BPFRZ BP S

27 ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : ARMA FORT Modèle ARMA(1,1) : X t = ax t 1 + ɛ t + bɛ t 1 où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the case of the above strong ARMA(1,1) model with the parameter θ 0 = (0.95, 0.6) and α 1 = 0. The nominal asymptotic level of the tests is α = 5%. m = 1 m = 2 m = 3 Length n 500 1, , , 000 BPSN BP FRZ BP S n.a. n.a. n.a. n.a m = 6 m = 12 m = 18 Length n 500 1, , , 000 BPSN BP FRZ BP S

28 ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : BRUIT FAIBLE Modèle ARMA(1,1) : X t = ax t 1 + ɛ t + bɛ t 1 où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the above weak ARMA(0,0) model with the parameter θ 0 = (0,0) and α 1 = 0.4. The nominal asymptotic level of the tests is α = 5%. m = 2 m = 3 m = 4 Length n 300 1, , , 000 BP SN BPFRZ BP S m = 6 m = 12 m = 18 Length n 300 1, , , 000 BP SN BPFRZ BP S

29 ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : ARMA FAIBLE Modèle ARMA(1,1) : X t = ax t 1 + ɛ t + bɛ t 1 où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the case of the above weak ARMA(1,1) model with the parameter θ 0 = (0.95, 0.6) and α 1 = 0.4. The nominal asymptotic level of the tests is α = 5%. m = 1 m = 2 m = 3 Length n 1, 000 2, 000 1, 000 2, 000 1, 000 2, 000 BPSN BP FRZ BP S n.a. n.a. n.a. n.a m = 6 m = 12 m = 18 Length n 1, 000 2, 000 1, 000 2, 000 1, 000 2, 000 BPSN BP FRZ BP S

30 ILLUSTRATIONS NUMÉRIQUES PUISSANCE EMPIRIQUE, ARMA(2,1) PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

31 ILLUSTRATIONS NUMÉRIQUES PUISSANCE EMPIRIQUE, ARMA(2,1) PUISSANCE EMPIRIQUE DES TESTS PORTMANTEAU : CAS FORT Les observations sont générées par le modèle ARMA(2,1) : X t = X t 1 0.2X t 2 + ɛ t + 0.8ɛ t 1, où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). On teste si le modèle est un ARMA(1,1). TABLE: Empirical power (in %) of the standard and modified versions of the BP test for the above weak ARMA(2,1) model and α 1 = 0. m = 1 m = 2 m = 3 Length n 500 1, , , 000 BPSN BPFRZ BP S n.a. n.a. n.a. n.a m = 4 m = 6 m = 10 Length n 500 1, , , 000 BPSN BPFRZ BP S

32 ILLUSTRATIONS NUMÉRIQUES PUISSANCE EMPIRIQUE, ARMA(2,1) PUISSANCE EMPIRIQUE DES TESTS PORTMANTEAU : CAS FAIBLE Les observations sont générées par le modèle ARMA(2,1) : X t = X t 1 0.2X t 2 + ɛ t + 0.8ɛ t 1, où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). On teste si le modèle est un ARMA(1,1). TABLE: Empirical power (in %) of the standard and modified versions of the BP test for the above weak ARMA(2,1) model and α 1 = 0.4. m = 1 m = 2 m = 3 Length n 500 1, , , 000 BPSN BPFRZ BP S n.a. n.a. n.a. n.a m = 4 m = 6 m = 10 Length n 500 1, , , 000 BPSN BPFRZ BP S

33 ILLUSTRATIONS NUMÉRIQUES DONNÉES RÉELLES-INDICES BOURSIERS PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

34 ILLUSTRATIONS NUMÉRIQUES DONNÉES RÉELLES-INDICES BOURSIERS RENDEMENT CAC40 TABLE: α = 5% Standard and modified versions of portmanteau tests to check the null hypothesis that the CAC40 returns is a white noise (α = 5%). Lag m p BP SN p BP FRZ p BP S CONCLUSION Cette série n est donc pas issue d un bruit blanc fort mais pourrait provenir d un bruit blanc faible.

35 ILLUSTRATIONS NUMÉRIQUES DONNÉES RÉELLES-INDICES BOURSIERS CARRÉ DU RENDEMENT DU CAC40 TABLE: Standard and modified versions of portmanteau tests to check the null hypothesis that the CAC40 squared returns follow an ARMA(1,1) model (α = 5%). Lag m p BP p BP p BP SN FRZ S n.a. n.a Lag m p BP p BP p BP SN FRZ S CONCLUSION L hypothèse d un modèle ARMA(1;1) fort est rejetée ; L hypothèse d un modèle ARMA(1;1) faible n est pas rejetée. On obtient le modèle X t = X t 1 + ɛ t ɛ t 1, avec Var(ɛ t ) = , compatible avec la modélisation par un GARCH(1,1).

36 ILLUSTRATIONS NUMÉRIQUES CONCLUSION PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion

37 ILLUSTRATIONS NUMÉRIQUES CONCLUSION CONCLUSION Les versions modifiées des tests portmanteau sont plus faciles à implémenter que celles existantes dans la littérature car leurs valeurs critiques ne sont plus calculées à partir des données. Confirmation de la non validité des versions standards en présence de dépendance temporelle. Les résultats numériques confirment bien qu en présence ou non de dépendance temporelle, les tests proposés donnent des résultats très satisfaisants.

38 ILLUSTRATIONS NUMÉRIQUES CONCLUSION Merci de votre attention

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

1 Définition de la non stationnarité

1 Définition de la non stationnarité Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles

Plus en détail

IFT3245. Simulation et modèles

IFT3245. Simulation et modèles IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

COURS DE STATISTIQUE APPLIQUÉE

COURS DE STATISTIQUE APPLIQUÉE UNIVERSITE PROTESTANTE AU CONGO CENTRE CONGOLAIS-ALLEMAND DE MICROFINANCE COURS DE STATISTIQUE APPLIQUÉE Professeur Daniel MUKOKO Samba daniel_mukoko@yahoo.fr Quelques références Droesbeke, Jean-Jacques,

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

MODELE A CORRECTION D ERREUR ET APPLICATIONS

MODELE A CORRECTION D ERREUR ET APPLICATIONS MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38 Table des matières I Séries chronologiques 3 I.1 Introduction................................... 3 I.1.1 Motivations et objectifs......................... 3 I.1.2 Exemples de séries temporelles.....................

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Économetrie non paramétrique I. Estimation d une densité

Économetrie non paramétrique I. Estimation d une densité Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Econométrie pour la Finance

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Econométrie pour la Finance MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Université d Orléans Econométrie pour la Finance Modèles ARCH - GARCH Applications à la VaR Christophe Hurlin Documents et Supports Année Universitaire

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Notes de cours Économétrie 1 Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Année 2013-2014 Chapitre 1 Introduction Qu est-ce que l économétrie? À quoi sert -

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Chapitre 2. Les Processus Aléatoires Non Stationnaires 1. Chapitre 2. Tests de Non Stationnarité et Processus Aléatoires Non Stationnaires

Chapitre 2. Les Processus Aléatoires Non Stationnaires 1. Chapitre 2. Tests de Non Stationnarité et Processus Aléatoires Non Stationnaires Chapitre 2. Les Processus Aléatoires Non Stationnaires 1 Chapitre 2 Tests de Non Stationnarité et Processus Aléatoires Non Stationnaires Chapitre 2. Les Processus Aléatoires Non Stationnaires 2 Dans le

Plus en détail

Séries chronologiques

Séries chronologiques Université Paris-Sud Master Ingénierie Mathématiques, deuxième année Année scolaire 2010 2011 Séries chronologiques Volume 1: cours et exercices Responsable des cours: Michel Prenat Responsables des travaux

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Stéphane Chrétien & Franck Corset Université de Franche-Comté, UMR6623, Département Mathématiques 16 route

Plus en détail

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Paramètre de longue mémoire d une série temporelle : le cas non linéaire Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Notion de longue mémoire Les valeurs d une série temporelle X = (X l )

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

ENSIL Troisième Année ELT

ENSIL Troisième Année ELT IFORMATIQUE APPLIQUEE TD1 Dans le cadre de ces TD, nous procédons à la simulation d'un système de télécommunication numérique. Cette opération va nous permettre d'étudier la performance du système sous

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

CHAPITRE 2. Michel LUBRANO. Avril 2011. 1 Introduction 3

CHAPITRE 2. Michel LUBRANO. Avril 2011. 1 Introduction 3 CHAPITRE 2 Modélisation de la volatilité: Modèles MIDAS et données de haute fréquence Michel LUBRANO Avril 2011 Contents 1 Introduction 3 2 Rappels 3 2.1 Stationnarité..................................

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Débouchés professionnels

Débouchés professionnels Master Domaine Droit, Economie, Gestion Mention : Monnaie, Banque, Finance, Assurance Spécialité : Risque, Assurance, Décision Année universitaire 2014/2015 DIRECTEUR de la spécialité : Monsieur Kouroche

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Commande auto-adaptative par auto-séquencement, avec application à un avion instable

Commande auto-adaptative par auto-séquencement, avec application à un avion instable Commande auto-adaptative par auto-séquencement, avec application à un avion instable Patrice ANTOINETTE 1 2 Gilles FERRERES 1 1 ONERA-DCSD, Toulouse 2 ISAE, Toulouse GT MOSAR, 4 juin 2009 Plan Introduction

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Le modèle de régression linéaire

Le modèle de régression linéaire Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Econométrie de la Finance

Econométrie de la Finance Econométrie de la Finance Florian Ielpo 1 24 février 2008 1 Dexia Group, 7/11 Quai André Citroën, 75015 Paris, Centre d Economie de la Sorbonne - Antenne de Cachan, Avenue du Président Wilson, 94230 Cachan.

Plus en détail

Séries Temporelles Avancées Polycopié de Cours

Séries Temporelles Avancées Polycopié de Cours 1 Université Paris Ouest Nanterre Master EIPMC Séries Temporelles Avancées Polycopié de Cours Laurent FERRARA 1 1 EconomiX - Université Paris Ouest Nanterre et Banque de France. Email : laurent.ferrara@u

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Théorie de l information et codage pour les canaux de Rayleigh MIMO

Théorie de l information et codage pour les canaux de Rayleigh MIMO Théorie de l information et codage pour les canaux de Rayleigh MIMO Philippe Ciblat École Nationale Supérieure des Télécommunications, Paris, France Plan 1 Canal de Rayleigh Modèle Diversité Système MIMO

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Gestion de Portefeuilles

Gestion de Portefeuilles Université Paris Dauphine Mathématiques de la Modélisation et de la Décision - M1MMD Gestion de Portefeuilles responsable du cours : Imen Ben Tahar imen@ceremade.dauphine.fr 2010-2011 2 Introduction Ce

Plus en détail

Théorie de l estimation et de la décision statistique

Théorie de l estimation et de la décision statistique Théorie de l estimation et de la décision statistique Paul Honeine en collaboration avec Régis Lengellé Université de technologie de Troyes 2013-2014 Quelques références Decision and estimation theory

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Le Modèle Linéaire par l exemple :

Le Modèle Linéaire par l exemple : Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.

FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012. FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE

Plus en détail

Le jeu de Marienbad. 1 Écriture binaire d un entier

Le jeu de Marienbad. 1 Écriture binaire d un entier MPSI Option Informatique Année 2002, Quatrième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Le jeu de Marienbad Dans le film d Ala Resnais «L année dernière à Marienbad» (1961), l un des personnages,

Plus en détail