STATISTIQUES. UE Modélisation pour la biologie

Dimension: px
Commencer à balayer dès la page:

Download "STATISTIQUES. UE Modélisation pour la biologie"

Transcription

1 STATISTIQUES UE Modélisation pour la biologie 2011

2 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres ε = (ε 1,..., ε n ) i.i.d., E(ε i ) = 0, V(ε i ) = σ 2. Objet Estimer θ, σ 2 Evaluer la qualité du modèle Comparer les modèles

3 Régression (U 1, U 2,..., U p ) variables explicatives, u i = (u 1 i, u2 i,..., up i ) Rp X = 1 u u p u 1 n... u p n θ = a b 1. b p y i = a + b 1 u 1 i b p u p i + ε i i = 1,..., n Y = a + b 1 U 1 + b 2 U b p U p + ε

4 Estimation Paramètres θ Par les Moindres Carrés Ordinaire (MCO): minimisation de Y Xθ 2 θ vérifie X X θ = X Y Système d équations normales θ = (X X) 1 X Y Valeurs prédites Ŷ = X θ Résidus (erreurs) ε i = y i ŷ i

5 Estimation Propriétés des estimateurs θ est sans biais E( θ) = θ la variance de θ est donnée par V( θ) = (X X) 1 σ 2 si ε i N (0, σ) alors θ N (θ, V( θ))

6 Estimation Variance résiduelle σ 2 ε = Y Ŷ, résidus E( ε ε) = (n p 1)σ 2. Estimateur de σ 2 σ 2 = 1 n p 1 ε ε Loi de l estimateur (n p 1) σ 2 χ 2 n p 1 σ 2

7 Tests sur les paramètres Test sur un paramètre H 0 : θ i = 0 contre H 1 : θ i 0 On rejette H 0 si θ i σ θi > t 1 α/2;n p 1 θi 2 =V ( θ)ii t 1 α/2;n p 1 quantile 1 α/2 de la loi de Student à n p 1 degrés de liberté.

8 Qualité du modèle Analyse des résidus moyenne nulle variance constante non corrélés normalité Qualité de l ajustement part de variabilité expliquée vraisemblance maximale Parcimonie

9 Critères de qualité Coefficient de détermination (y i ȳ) 2 = (y i ŷ i ) 2 i i } {{ } } {{ } SCT SCR + i R 2 = SCM SCT = 1 SCR SCT Coefficient de détermination ajusté R 2 adj = 1 SCR/(n p 1) SCT/(n 1) Akaike Information Criterion (AIC) AIC = 2 log(l) + 2p (ŷ i ȳ) 2 } {{ } SCM

10 Tests: modèles emboités M 1 gros modèle (beaucoup de paramètres) M 0 cas particulier de M 1 (moins de paramètres) H 0 : M 0 = M 1 H 1 : M 0 M 1 SCR k = i (y i ŷ k i )2, degrés de liberté : ν k k = 0, 1 F = (SCR 0 SCR 1 )/(ν 1 ν 0 ) SCR 1 /ν 1 F(ν 1 ν 0, ν 1 ) On rejette H 0 si Sous H 0, F 1 ; sous H 1, F > 1 f obs > f 1 α;ν1 ν 0 ;ν 1 ou P (F > f obs ) < α

11 Tests pour une régression M 0 modèle à q < p + 1 paramètres M 1 modèle à p + 1 paramètres H 0 : θ q+1 = θ q+2 =... = θ p+1 = 0 contre H 1 : i > q θ i 0 Choix des régresseurs à l aide du test des modèles emboités ou d un critère de qualité (R 2, AIC, C p,...) C p de Mallows C p = SCR 0 SCR 1 + 2q n Régression pas à pas (stepwise): procédure itérative ascendante ajout du meilleur régresseur parmi les absents descendante suppression du moins bon parmi les présents

12 Analyse de la variance à 1 facteur Analyse de la variance à 1 facteur La variable explicative n est pas continue numérique discrète finie qualitative X = I n1 I n1 0 0 I n2 0 I n I ni 0 0 I ni θ = µ α 1 α 2. α I µ : facteur y ij = µ + α i + ε ij i = 1,..., I j = 1,... n i

13 Analyse de la variance à 1 facteur X X n est pas inversible, il faut ajouter une contrainte Gθ = 0 Exemples: i α i = 0 α 1 = 0 (R) α I = 0 (SAS) Estimation θ = ( X X) 1 X Y X = ( X G ) si α i = 0 E( θ) = θ µ = y = y α i = y i y V( θ) = (G G) 1 X X(G G) 1 σ 2

14 Analyse de la variance à 1 facteur Variance résiduelle σ 2 ε = Y Ŷ, résidus E( ε ε) = (n I)σ 2. Estimateur de σ 2 σ 2 = 1 n I ε ε Loi de l estimateur (n I) σ 2 χ 2 n I σ 2

15 Tests : analyse de la variance à un facteur Analyse de la variance M 0 modèle à 1 paramètre E(Y i ) = µ M 1 modèle à I (I + 1) paramètres E(Y i ) = µ i (µ + α i ) contre H 0 : µ 1 = µ 2 =... = µ I ou α 1 = α 2 =... = α I = 0 H 1 : (i 1, i 2 ) µ i1 µ i2 ou i α i 0 SCR 1 = ij (y ij ȳ i ) 2, degrés de liberté :n I SCR 0 = ij (y ij ȳ) 2, degrés de liberté :n 1 F = (SCR 0 SCR 1 )/(I 1) SCR 1 /(n I) F(I 1, n I)

16 Tests de comparaison Test sur une combinaison linéaire θ = (c 1, c 2,..., c I+1 ), si i c i = 0, c est un contraste. On rejette H 0 si H 0 : cθ = 0 contre H 1 : cθ 0 c θ cv( θ)c > t 1 α/2;n I Comparaisons 2 à 2 Statistique de test H 0 : µ i = µ j H 1 : µ i µ j T = µ i µ j σ ni nj T (n I)

17 Tests de comparaison Comparaisons multiples H 0 : µ 1 = µ 2 =... = µ k H 1 : (i, j), i, j k, µ i µ j Erreur d Ensemble α = probabilité de commettre au moins une erreur de première espèce parmi toutes les comparaisons. Si α erreur de première espèce pour une comparaison Inégalité de Bonferroni :α kα Test de Bonferroni α = α k = α(ee) < α Conservateur : rejette trop souvent H 1

18 Types de facteurs Modèle croisé à deux facteurs A = (A 1,... A I ), B = (B 1,..., B J ): B 1 B 2 B 3 A 1 * * ** A 2 * ** Complet : si le nombre de répétitions n ij 1 est non nul pour tout couple (i, j) Avec répétitions : si n ij > 1 pour au moins un couple (i, j). Orthogonal : si n ij = n +jn i+ n ++. Equirépété : les n ij > 1 sont tous égaux = orthogonal.

19 Analyse de la variance : interaction Profils avec et sans interaction Profils: avec interaction Profils: sans interaction Y B1 B2 B3 Y B1 B2 B3 A1 A2 A3 A4 A1 A2 A3 A4 facteurs A facteurs A

20 Analyse de la variance : modèle Décomposition de la moyenne E(Y ij ) = µ + α i + β j + γ ij Contraintes : αi = β j = 0 Estimation i, j γ ij = i j γ ij = 0 µ = y α i = y i y β j = y j y γ ij = y ij y j y i + y

21 Analyse de la variance : sous-modèles M 3 : E(Y ij ) = µ + α i + β j + γ ij M 2 : E(Y ij ) = µ + α i + β j M 1 : E(Y ij ) = µ + α i M 1 : E(Y ij) = µ + β j M 0 : E(Y ij ) = µ

22 Analyse de la variance : somme des carrés Cas équilibré Décomposition de la somme des carrés SCT = SCR + SCM = SCR + SCA + SCB + SCI avec Somme des Carrés Expression Degré de liberté SCA i n i++(y i y ) 2 I 1 SCB j n +j+(y j y ) 2 J 1 SCI ij n ij(y ij y ) 2 (I 1)(J 1)

23 Analyse de la variance : tests Tests sur les effets H 0 : E(Y ij ) = H 1 : E(Y ij ) = statistique de test Loi sous H 0 µ + α i + β j µ + α i + β j + γ ij SCI/(I 1)(J 1) SCR/n IJ µ + β i + γ ij µ + α i + β j + γ ij SCA/(I 1) SCR/n IJ µ + α i + γ ij µ + α i + β j + γ ij SCB/(J 1) SCR/n IJ µ + β i µ + α i + β j SCA/(I 1) (SCR+SCI)/(n I J+1) µ + α i µ + α i + β j SCB/(J 1) (SCR+SCI)/(n I J+1) F (I 1)(J 1),n IJ F (I 1),n IJ F (J 1),n IJ F (I 1),(n I J+1) F (J 1),(n I J+1)

24 Analyse de la variance : réduction Si les expériences ne sont pas équirépétées ( données manquantes, dispositif expérimental trop lourd...) Il n y a plus additivité des sommes de carrés Réduction R(c/µ, a, b): diminution de la somme de carrés résiduelle lorsque l on passe du modèle comportant les effets a et b au modèle comportant a,b,c. Sommes de type I, II, III Type I Type II Type III facteur 1 α R(α/µ) R(α/µ, β) R(α/µ, β, γ) facteur 2 β R(β/µ, α) R(β/µ, α) R(β/µ, α, γ) interaction γ R(γ/µ, α, β) R(γ/µ, α, β) R(γ/µ, α, β)

25 Analyse de la variance : moyennes ajustées Dans le cas non équirépété les moyennes des effets ne sont pas comparables parce que calculées sur des bases différentes. Moyennes ajustées : µ i = 1 E(Y ijk ) = µ + α i + 1 β j + 1 J J J j µi = µ + α i + 1 β j + 1 J J j j j γ ij j γ ij

26 Analyse de la Covariance Modèle linéaire avec au moins un facteur qualitatif A une variable quantitative X Dispositif orthogonal la variable quantitative prend les mêmes valeurs pour chaque niveau de la variable qualitative Intérêt pour le facteur A: la covariable permet de décrire des hétérogénéités individuelles et de réduire la variance résiduelle. le facteur et la covariable simultanément.

27 Analyse de la Covariance : modèle Modèle général (avec interaction) Y ij = a i + b i x ij + ε ij décomposition des effets Y ij = µ + α i + (β + γ i )x ij + ε ij Modèle sans interaction Y ij = a i + bx ij + ε ij ou Y ij = µ + α i + βx ij + ε ij

28 Analyse de la Covariance : estimation Modèle général régulier bi = (y ij y i )(x ij x i ) j (x ij x i ) 2 i â i = y i b i x i σ 2 = 1 n 2I ij (y ij y i ) 2 i bi (x ij x i ) 2 j

29 Analyse de la Covariance : tests M 3 : E(Y ij ) = µ + α i + (β + γ i )x ij M 2 : E(Y ij ) = µ + α i + βx ij M 1 : E(Y ij ) = µ + α i M 1 : E(Y ij) = µ + βx ij M 0 : E(Y ij ) = µ

30 Analyse de la Covariance : tests Somme de carrés de type I SCM = R(α, β, γ/µ) = R(α/µ) + R(β/µ, α) + R(γ/µ, α, β) Test absence d interaction: F = R(γ/µ, α, β)/(i 1) σ 2 M 3 Test sur l effet du facteur F = R(α/µ)/(I 1) σ 2 M 2 Test sur la covariable F = R(β/µ, α) σ 2 M 2

31 Analyse de la Covariance : comparaison des traitements Moyennes classiques Moyennes ajustées µ i = µ + α i + ( β + γ i )x i µi = µ + α i + ( β + γ i )x Compare l effet du facteur à conditions égales

Bases du Modèle Linéaire

Bases du Modèle Linéaire AgroParisTech Bases du Modèle Linéaire J.J. Daudin, E. Lebarbier, C. Vuillet Table des matières 1 Introduction 3 2 Estimation des paramètres 5 2.1 Estimation des paramètres de l espérance......................

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Exemples d application

Exemples d application Institut National Agronomique Paris - Grignon Exemples d application du modèle linéaire E Lebarbier, S Robin Département OMIP 12 février 2007 Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Analyse de la variance à deux facteurs : dispositif équilibré

Analyse de la variance à deux facteurs : dispositif équilibré Analyse des données - Méthodes explicatives (STA102) Analyse de la variance à deux facteurs : dispositif équilibré Giorgio Russolillo Departement IMATH CNAM giorgio.russolillo@cnam.fr Introduction Giorgio

Plus en détail

Exemples d application

Exemples d application AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse M1 IMAT, Année 2009-2010 MODELES LINEAIRES C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse Table des matières 1 Préambule 1 1.1 Démarche statistique...................................

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

L analyse de variance à deux critère de classification

L analyse de variance à deux critère de classification L analyse de variance à deux critère de classification Objectif : comparer l influence de chaque facteur sur la moyenne de plusieurs (k) groupes indépendants d observations La méthode détaillée ci-dessous

Plus en détail

Le Modèle Linéaire par l exemple :

Le Modèle Linéaire par l exemple : Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Analyses de la variance

Analyses de la variance Analyses de la variance Frédéric Bertrand et Myriam Maumy 1 Université de Strasbourg Institut de Recherche Mathématique Avancée 19 juin 011 1. Courriel : fbertran@math.unistra.fr et mmaumy@math.unistra.fr.

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

IBM SPSS Advanced Statistics 20

IBM SPSS Advanced Statistics 20 IBM SPSS Advanced Statistics 20 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 177. Cette version s applique à IBM

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Régression sur variables qualitatives - Analyse de la variance

Régression sur variables qualitatives - Analyse de la variance Régression sur variables qualitatives Analyse de la variance ENSAI Deuxième année - Modèles de régression 2010-2011 Introduction Dans ce chapitre, on étudie des cas particuliers de régression linéaire

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

y i = αx i + β + u i,

y i = αx i + β + u i, I.1 ) TD1 L3 Econométrie Rappel : L estimateur ˆα (resp. ˆβ)estaussinotéa (resp. b). 160 150 consommation Y 140 130 10 (x i, ŷ i ) e i 110 100 110 10 130 140 150 160 170 180 )a). Sous forme exacte y i

Plus en détail

L analyse de variance à un critère de classification (ANOVA)

L analyse de variance à un critère de classification (ANOVA) Bio 041 L analyse de variance à un critère de classification (ANOVA) Pierre Legendre & Daniel Borcard, Université de Montréal Référence: Scherrer (007), section 14.1.1.1 et 14.1. 1 - Introduction Objectif:

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

R i = a 0 +b 0 B i +ε i, R = Xβ +ε,

R i = a 0 +b 0 B i +ε i, R = Xβ +ε, Statistiques 2010-2011 TP sur le Modèle linéaire gaussien avec R 1 Les exercices Vous traiterez les exercices suivants avec le logiciel R. Exercice 1 Des photographies aériennes de champs d orge sont analysées

Plus en détail

Données qualitatives, modèles probit et logit

Données qualitatives, modèles probit et logit Données qualitatives, modèles probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours de Christophe Hurlin. On est confronté à des données qualitatives en micro-économie

Plus en détail

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Notes de cours Économétrie 1 Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Année 2013-2014 Chapitre 1 Introduction Qu est-ce que l économétrie? À quoi sert -

Plus en détail

Régression linéaire simple

Régression linéaire simple Résumé Ce chapitre introduit la notion de modèle linéaire par la version la plus élémentaire : epliquer Y par une fonction affine de X. Après avoir epliciter les hypothèses nécessaires et les termes du

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

ANOVA : analyse de variance univariée

ANOVA : analyse de variance univariée Résumé Le chapitre 3 est consacré aux plans factoriels. Il s agit de l appellation appropriée, bien qu assez peu employée, de l analyse de variance, appelée par les anglo-saxons ANalysis Of VAriance et,

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

Analyses de variance et covariance

Analyses de variance et covariance Résumé Introduction au modèle linéaire et modèle linéaire général : analyse de variance et covariance. Retour au plan du cours. 1 Introduction Les techniques dites d analyse de variance sont des outils

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Atelier d économétrie

Atelier d économétrie Atelier d économétrie Chapitre 4 : Le problème de la multicolinéarité : application sous SAS Vincent Bouvatier Université de Paris Ouest - Nanterre La Défense Bâtiment G, bureau 308A vbouvatier@u-paris10.fr

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Sélection- validation de modèles

Sélection- validation de modèles Sélection- validation de modèles L. Rouvière laurent.rouviere@univ-rennes2.fr JANVIER 2015 L. Rouvière (Rennes 2) 1 / 77 1 Quelques jeux de données 2 Sélection-choix de modèles Critères de choix de modèles

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

ECONOMETRIE (*) Hélène Hamisultane

ECONOMETRIE (*) Hélène Hamisultane ECONOMERIE (*) Hélène Hamisultane I/ QU ES CE QUE L ECONOMERIE? II/ LE MODELE DE REGRESSION SIMPLE II/ Méthode d estimation des Moindres Carrés Ordinaires (MCO) II/ Hypothèses et propriétés des estimateurs

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Économétrie. Francesco Quatraro M1 EFM 2010/2011

Économétrie. Francesco Quatraro M1 EFM 2010/2011 Francesco Quatraro M1 EFM 2010/2011 1 La violation des hypothèses Le modèle des MCO considère que les hypothèses suivantes sont toutes respectées: H1: le modèle est linéaire en x i,t H2: les valeurs x

Plus en détail

Application des modèles linéaires généralisés mixtes à un problème forestier

Application des modèles linéaires généralisés mixtes à un problème forestier Application des modèles linéaires généralisés mixtes à un problème forestier Présenté par Oumar Samba LY Sous la direction de Christian GENEST Et la codirection de Michèle BERNIER-CARDOU REMERCIEMENTS

Plus en détail

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves

Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves Modèle 1 (modèle vide) : GET FILE='C:\Users\Desktop\donnees stats\soutien.sav'. DATASET ACTIVATE Ensemble_de_données2.

Plus en détail

Le modèle linéaire généralisé avec R : fonction glm()

Le modèle linéaire généralisé avec R : fonction glm() SEMIN- Le modèle linéaire généralisé avec R : fonction glm() Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Ecole Normale Supérieure 46 rue d'ulm F-75230 Paris Cedex 05 sebastien.ballesteros@biologie.ens.fr

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE LES DONNEES OBS KW SURFACE PERS PAVILLON AGE VOL SBAINS 1 4805 130 4 1 65 410 1 2 3783 123 4 1 5 307 2 3 2689 98 3 0 18 254 1 4 5683 178 6 1 77 570 3 5 3750

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Pratique de la Modélisation Statistique

Pratique de la Modélisation Statistique Publications du Laboratoire de Statistique et Probabilités Pratique de la Modélisation Statistique Philippe BESSE Version juin 2000 Laboratoire de Statistique et Probabilités UMR CNRS C5583 Université

Plus en détail

L Econométrie des Données de Panel

L Econométrie des Données de Panel Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire

Plus en détail

Résumé du Cours de Modèles de Régression. Yves Tillé

Résumé du Cours de Modèles de Régression. Yves Tillé Résumé du Cours de Modèles de Régression Yves Tillé 0 janvier 20 Chapitre Régression bivariée Série statistique bivariée On s intéresse à deux variables x et y Ces deux variables sont mesurées sur les

Plus en détail

Module d'analyse des données

Module d'analyse des données *** Année 2007 *** Module d'analyse des données P.L. Toutain, A. Bousquet-Mélou UMR 181 de Physiopathologie et Toxicologie Expérimentales INRA/ENVT Ecole Nationale Vétérinaire de Toulouse 24/04/2007 Avant

Plus en détail

Série statistique double à l aide d un exemple

Série statistique double à l aide d un exemple Série statistique double à l aide d un exemple Série statistique double: exemple... 2 Série statistique double: questions posées... 3 Calcul de la covariance sur la base de l'exemple... 4 Calcul du coefficient

Plus en détail

Exercices de travaux dirigés Cours d économétrie Maîtrise d économétrie

Exercices de travaux dirigés Cours d économétrie Maîtrise d économétrie Exercices de travaux dirigés Cours d économétrie Maîtrise d économétrie September 21, 2004 1 Le modèle linéaire - Rendements d une fonction de production Cobb-Douglas Présentation du problème: On considère

Plus en détail

téléphone sur l'exposition de la tête»

téléphone sur l'exposition de la tête» «Analyse statistique de l'influence de la position du téléphone sur l'exposition de la tête» A.Ghanmi 1,2,3 J.Wiart 1,2, O.Picon 3 1 Orange Labs R&D 2 WHIST LAB (http://whist.institut-telecom.fr), 3 Paris

Plus en détail

Analyse des données longitudinales

Analyse des données longitudinales Analyse des données longitudinales EA Sauleau SémStat 03/10/2006 Table des matières 1 Introduction 2 1.1 Généralités 2 1.2 La structure des données.. 3 1.3 Exemple.. 4 1.4 Des impasses.. 4 2 (M)ANOVA 4

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

Econométrie. février 2008. Boutin, Rathelot

Econométrie. février 2008. Boutin, Rathelot 5ème séance Xavier Boutin Roland Rathelot Supélec février 2008 Plan Variables binaires La question y = β 0 + β 1 x 1 +...β k x k + u Que se passe-t-il lorsque y est une variable {0, 1} et non plus une

Plus en détail

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Stéphanie Combes et Pauline Givord (DMCSI) INSEE-DMSCI 02/04/2015 Plan Qu'est-ce que le Big Data? Les

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Introduction à l Econométrie. MOSEF Partie 5

Introduction à l Econométrie. MOSEF Partie 5 Introduction à l Econométrie MOSEF Partie 5 Qualité d ajustement (R et R ajusté) chaque observation est constituée de la part expliquée et inexpliquée. y i = yˆ + uˆ Nous définissons : ( yi y) ( yˆ y)

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Pratique de la modélisation Statistique

Pratique de la modélisation Statistique PUBLICATIONS DU LABORATOIRE DE STATISTIQUE ET PROBABILITÉS Pratique de la modélisation Statistique PHILIPPE BESSE Version janvier 2003 mises à jour : www.lsp.ups-tlse.fr/besse Laboratoire de Statistique

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

La régression linéaire simple

La régression linéaire simple Chapitre 1 La régression linéaire simple Si l état décide d accentuer les mesures contre l alcool au volant, quel en sera l effet sur la sécurité routière? Réduire la taille des classes à l école primaire

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : Applied Multivariate Statistical Analysis»,

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

Analyse de la Variance pour Plans à Mesures Répétées

Analyse de la Variance pour Plans à Mesures Répétées Analyse de la Variance pour Plans à Mesures Répétées Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr/

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail