STATISTIQUES. UE Modélisation pour la biologie

Dimension: px
Commencer à balayer dès la page:

Download "STATISTIQUES. UE Modélisation pour la biologie"

Transcription

1 STATISTIQUES UE Modélisation pour la biologie 2011

2 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres ε = (ε 1,..., ε n ) i.i.d., E(ε i ) = 0, V(ε i ) = σ 2. Objet Estimer θ, σ 2 Evaluer la qualité du modèle Comparer les modèles

3 Régression (U 1, U 2,..., U p ) variables explicatives, u i = (u 1 i, u2 i,..., up i ) Rp X = 1 u u p u 1 n... u p n θ = a b 1. b p y i = a + b 1 u 1 i b p u p i + ε i i = 1,..., n Y = a + b 1 U 1 + b 2 U b p U p + ε

4 Estimation Paramètres θ Par les Moindres Carrés Ordinaire (MCO): minimisation de Y Xθ 2 θ vérifie X X θ = X Y Système d équations normales θ = (X X) 1 X Y Valeurs prédites Ŷ = X θ Résidus (erreurs) ε i = y i ŷ i

5 Estimation Propriétés des estimateurs θ est sans biais E( θ) = θ la variance de θ est donnée par V( θ) = (X X) 1 σ 2 si ε i N (0, σ) alors θ N (θ, V( θ))

6 Estimation Variance résiduelle σ 2 ε = Y Ŷ, résidus E( ε ε) = (n p 1)σ 2. Estimateur de σ 2 σ 2 = 1 n p 1 ε ε Loi de l estimateur (n p 1) σ 2 χ 2 n p 1 σ 2

7 Tests sur les paramètres Test sur un paramètre H 0 : θ i = 0 contre H 1 : θ i 0 On rejette H 0 si θ i σ θi > t 1 α/2;n p 1 θi 2 =V ( θ)ii t 1 α/2;n p 1 quantile 1 α/2 de la loi de Student à n p 1 degrés de liberté.

8 Qualité du modèle Analyse des résidus moyenne nulle variance constante non corrélés normalité Qualité de l ajustement part de variabilité expliquée vraisemblance maximale Parcimonie

9 Critères de qualité Coefficient de détermination (y i ȳ) 2 = (y i ŷ i ) 2 i i } {{ } } {{ } SCT SCR + i R 2 = SCM SCT = 1 SCR SCT Coefficient de détermination ajusté R 2 adj = 1 SCR/(n p 1) SCT/(n 1) Akaike Information Criterion (AIC) AIC = 2 log(l) + 2p (ŷ i ȳ) 2 } {{ } SCM

10 Tests: modèles emboités M 1 gros modèle (beaucoup de paramètres) M 0 cas particulier de M 1 (moins de paramètres) H 0 : M 0 = M 1 H 1 : M 0 M 1 SCR k = i (y i ŷ k i )2, degrés de liberté : ν k k = 0, 1 F = (SCR 0 SCR 1 )/(ν 1 ν 0 ) SCR 1 /ν 1 F(ν 1 ν 0, ν 1 ) On rejette H 0 si Sous H 0, F 1 ; sous H 1, F > 1 f obs > f 1 α;ν1 ν 0 ;ν 1 ou P (F > f obs ) < α

11 Tests pour une régression M 0 modèle à q < p + 1 paramètres M 1 modèle à p + 1 paramètres H 0 : θ q+1 = θ q+2 =... = θ p+1 = 0 contre H 1 : i > q θ i 0 Choix des régresseurs à l aide du test des modèles emboités ou d un critère de qualité (R 2, AIC, C p,...) C p de Mallows C p = SCR 0 SCR 1 + 2q n Régression pas à pas (stepwise): procédure itérative ascendante ajout du meilleur régresseur parmi les absents descendante suppression du moins bon parmi les présents

12 Analyse de la variance à 1 facteur Analyse de la variance à 1 facteur La variable explicative n est pas continue numérique discrète finie qualitative X = I n1 I n1 0 0 I n2 0 I n I ni 0 0 I ni θ = µ α 1 α 2. α I µ : facteur y ij = µ + α i + ε ij i = 1,..., I j = 1,... n i

13 Analyse de la variance à 1 facteur X X n est pas inversible, il faut ajouter une contrainte Gθ = 0 Exemples: i α i = 0 α 1 = 0 (R) α I = 0 (SAS) Estimation θ = ( X X) 1 X Y X = ( X G ) si α i = 0 E( θ) = θ µ = y = y α i = y i y V( θ) = (G G) 1 X X(G G) 1 σ 2

14 Analyse de la variance à 1 facteur Variance résiduelle σ 2 ε = Y Ŷ, résidus E( ε ε) = (n I)σ 2. Estimateur de σ 2 σ 2 = 1 n I ε ε Loi de l estimateur (n I) σ 2 χ 2 n I σ 2

15 Tests : analyse de la variance à un facteur Analyse de la variance M 0 modèle à 1 paramètre E(Y i ) = µ M 1 modèle à I (I + 1) paramètres E(Y i ) = µ i (µ + α i ) contre H 0 : µ 1 = µ 2 =... = µ I ou α 1 = α 2 =... = α I = 0 H 1 : (i 1, i 2 ) µ i1 µ i2 ou i α i 0 SCR 1 = ij (y ij ȳ i ) 2, degrés de liberté :n I SCR 0 = ij (y ij ȳ) 2, degrés de liberté :n 1 F = (SCR 0 SCR 1 )/(I 1) SCR 1 /(n I) F(I 1, n I)

16 Tests de comparaison Test sur une combinaison linéaire θ = (c 1, c 2,..., c I+1 ), si i c i = 0, c est un contraste. On rejette H 0 si H 0 : cθ = 0 contre H 1 : cθ 0 c θ cv( θ)c > t 1 α/2;n I Comparaisons 2 à 2 Statistique de test H 0 : µ i = µ j H 1 : µ i µ j T = µ i µ j σ ni nj T (n I)

17 Tests de comparaison Comparaisons multiples H 0 : µ 1 = µ 2 =... = µ k H 1 : (i, j), i, j k, µ i µ j Erreur d Ensemble α = probabilité de commettre au moins une erreur de première espèce parmi toutes les comparaisons. Si α erreur de première espèce pour une comparaison Inégalité de Bonferroni :α kα Test de Bonferroni α = α k = α(ee) < α Conservateur : rejette trop souvent H 1

18 Types de facteurs Modèle croisé à deux facteurs A = (A 1,... A I ), B = (B 1,..., B J ): B 1 B 2 B 3 A 1 * * ** A 2 * ** Complet : si le nombre de répétitions n ij 1 est non nul pour tout couple (i, j) Avec répétitions : si n ij > 1 pour au moins un couple (i, j). Orthogonal : si n ij = n +jn i+ n ++. Equirépété : les n ij > 1 sont tous égaux = orthogonal.

19 Analyse de la variance : interaction Profils avec et sans interaction Profils: avec interaction Profils: sans interaction Y B1 B2 B3 Y B1 B2 B3 A1 A2 A3 A4 A1 A2 A3 A4 facteurs A facteurs A

20 Analyse de la variance : modèle Décomposition de la moyenne E(Y ij ) = µ + α i + β j + γ ij Contraintes : αi = β j = 0 Estimation i, j γ ij = i j γ ij = 0 µ = y α i = y i y β j = y j y γ ij = y ij y j y i + y

21 Analyse de la variance : sous-modèles M 3 : E(Y ij ) = µ + α i + β j + γ ij M 2 : E(Y ij ) = µ + α i + β j M 1 : E(Y ij ) = µ + α i M 1 : E(Y ij) = µ + β j M 0 : E(Y ij ) = µ

22 Analyse de la variance : somme des carrés Cas équilibré Décomposition de la somme des carrés SCT = SCR + SCM = SCR + SCA + SCB + SCI avec Somme des Carrés Expression Degré de liberté SCA i n i++(y i y ) 2 I 1 SCB j n +j+(y j y ) 2 J 1 SCI ij n ij(y ij y ) 2 (I 1)(J 1)

23 Analyse de la variance : tests Tests sur les effets H 0 : E(Y ij ) = H 1 : E(Y ij ) = statistique de test Loi sous H 0 µ + α i + β j µ + α i + β j + γ ij SCI/(I 1)(J 1) SCR/n IJ µ + β i + γ ij µ + α i + β j + γ ij SCA/(I 1) SCR/n IJ µ + α i + γ ij µ + α i + β j + γ ij SCB/(J 1) SCR/n IJ µ + β i µ + α i + β j SCA/(I 1) (SCR+SCI)/(n I J+1) µ + α i µ + α i + β j SCB/(J 1) (SCR+SCI)/(n I J+1) F (I 1)(J 1),n IJ F (I 1),n IJ F (J 1),n IJ F (I 1),(n I J+1) F (J 1),(n I J+1)

24 Analyse de la variance : réduction Si les expériences ne sont pas équirépétées ( données manquantes, dispositif expérimental trop lourd...) Il n y a plus additivité des sommes de carrés Réduction R(c/µ, a, b): diminution de la somme de carrés résiduelle lorsque l on passe du modèle comportant les effets a et b au modèle comportant a,b,c. Sommes de type I, II, III Type I Type II Type III facteur 1 α R(α/µ) R(α/µ, β) R(α/µ, β, γ) facteur 2 β R(β/µ, α) R(β/µ, α) R(β/µ, α, γ) interaction γ R(γ/µ, α, β) R(γ/µ, α, β) R(γ/µ, α, β)

25 Analyse de la variance : moyennes ajustées Dans le cas non équirépété les moyennes des effets ne sont pas comparables parce que calculées sur des bases différentes. Moyennes ajustées : µ i = 1 E(Y ijk ) = µ + α i + 1 β j + 1 J J J j µi = µ + α i + 1 β j + 1 J J j j j γ ij j γ ij

26 Analyse de la Covariance Modèle linéaire avec au moins un facteur qualitatif A une variable quantitative X Dispositif orthogonal la variable quantitative prend les mêmes valeurs pour chaque niveau de la variable qualitative Intérêt pour le facteur A: la covariable permet de décrire des hétérogénéités individuelles et de réduire la variance résiduelle. le facteur et la covariable simultanément.

27 Analyse de la Covariance : modèle Modèle général (avec interaction) Y ij = a i + b i x ij + ε ij décomposition des effets Y ij = µ + α i + (β + γ i )x ij + ε ij Modèle sans interaction Y ij = a i + bx ij + ε ij ou Y ij = µ + α i + βx ij + ε ij

28 Analyse de la Covariance : estimation Modèle général régulier bi = (y ij y i )(x ij x i ) j (x ij x i ) 2 i â i = y i b i x i σ 2 = 1 n 2I ij (y ij y i ) 2 i bi (x ij x i ) 2 j

29 Analyse de la Covariance : tests M 3 : E(Y ij ) = µ + α i + (β + γ i )x ij M 2 : E(Y ij ) = µ + α i + βx ij M 1 : E(Y ij ) = µ + α i M 1 : E(Y ij) = µ + βx ij M 0 : E(Y ij ) = µ

30 Analyse de la Covariance : tests Somme de carrés de type I SCM = R(α, β, γ/µ) = R(α/µ) + R(β/µ, α) + R(γ/µ, α, β) Test absence d interaction: F = R(γ/µ, α, β)/(i 1) σ 2 M 3 Test sur l effet du facteur F = R(α/µ)/(I 1) σ 2 M 2 Test sur la covariable F = R(β/µ, α) σ 2 M 2

31 Analyse de la Covariance : comparaison des traitements Moyennes classiques Moyennes ajustées µ i = µ + α i + ( β + γ i )x i µi = µ + α i + ( β + γ i )x Compare l effet du facteur à conditions égales

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Exemples d application

Exemples d application Institut National Agronomique Paris - Grignon Exemples d application du modèle linéaire E Lebarbier, S Robin Département OMIP 12 février 2007 Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations

Plus en détail

Exemples d application

Exemples d application AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif

Plus en détail

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse M1 IMAT, Année 2009-2010 MODELES LINEAIRES C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse Table des matières 1 Préambule 1 1.1 Démarche statistique...................................

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

Le Modèle Linéaire par l exemple :

Le Modèle Linéaire par l exemple : Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Analyses de la variance

Analyses de la variance Analyses de la variance Frédéric Bertrand et Myriam Maumy 1 Université de Strasbourg Institut de Recherche Mathématique Avancée 19 juin 011 1. Courriel : fbertran@math.unistra.fr et mmaumy@math.unistra.fr.

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Notes de cours Économétrie 1 Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Année 2013-2014 Chapitre 1 Introduction Qu est-ce que l économétrie? À quoi sert -

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

R i = a 0 +b 0 B i +ε i, R = Xβ +ε,

R i = a 0 +b 0 B i +ε i, R = Xβ +ε, Statistiques 2010-2011 TP sur le Modèle linéaire gaussien avec R 1 Les exercices Vous traiterez les exercices suivants avec le logiciel R. Exercice 1 Des photographies aériennes de champs d orge sont analysées

Plus en détail

Données qualitatives, modèles probit et logit

Données qualitatives, modèles probit et logit Données qualitatives, modèles probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours de Christophe Hurlin. On est confronté à des données qualitatives en micro-économie

Plus en détail

y i = αx i + β + u i,

y i = αx i + β + u i, I.1 ) TD1 L3 Econométrie Rappel : L estimateur ˆα (resp. ˆβ)estaussinotéa (resp. b). 160 150 consommation Y 140 130 10 (x i, ŷ i ) e i 110 100 110 10 130 140 150 160 170 180 )a). Sous forme exacte y i

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

IBM SPSS Advanced Statistics 20

IBM SPSS Advanced Statistics 20 IBM SPSS Advanced Statistics 20 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 177. Cette version s applique à IBM

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

L analyse de variance à deux critère de classification

L analyse de variance à deux critère de classification L analyse de variance à deux critère de classification Objectif : comparer l influence de chaque facteur sur la moyenne de plusieurs (k) groupes indépendants d observations La méthode détaillée ci-dessous

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Analyses de variance et covariance

Analyses de variance et covariance Résumé Introduction au modèle linéaire et modèle linéaire général : analyse de variance et covariance. Retour au plan du cours. 1 Introduction Les techniques dites d analyse de variance sont des outils

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

IBM SPSS Regression 21

IBM SPSS Regression 21 IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics

Plus en détail

Sélection- validation de modèles

Sélection- validation de modèles Sélection- validation de modèles L. Rouvière laurent.rouviere@univ-rennes2.fr JANVIER 2015 L. Rouvière (Rennes 2) 1 / 77 1 Quelques jeux de données 2 Sélection-choix de modèles Critères de choix de modèles

Plus en détail

ECONOMETRIE (*) Hélène Hamisultane

ECONOMETRIE (*) Hélène Hamisultane ECONOMERIE (*) Hélène Hamisultane I/ QU ES CE QUE L ECONOMERIE? II/ LE MODELE DE REGRESSION SIMPLE II/ Méthode d estimation des Moindres Carrés Ordinaires (MCO) II/ Hypothèses et propriétés des estimateurs

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

L analyse de variance à un critère de classification (ANOVA)

L analyse de variance à un critère de classification (ANOVA) Bio 041 L analyse de variance à un critère de classification (ANOVA) Pierre Legendre & Daniel Borcard, Université de Montréal Référence: Scherrer (007), section 14.1.1.1 et 14.1. 1 - Introduction Objectif:

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Le modèle linéaire généralisé avec R : fonction glm()

Le modèle linéaire généralisé avec R : fonction glm() SEMIN- Le modèle linéaire généralisé avec R : fonction glm() Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Ecole Normale Supérieure 46 rue d'ulm F-75230 Paris Cedex 05 sebastien.ballesteros@biologie.ens.fr

Plus en détail

Régression linéaire simple

Régression linéaire simple Résumé Ce chapitre introduit la notion de modèle linéaire par la version la plus élémentaire : epliquer Y par une fonction affine de X. Après avoir epliciter les hypothèses nécessaires et les termes du

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Application des modèles linéaires généralisés mixtes à un problème forestier

Application des modèles linéaires généralisés mixtes à un problème forestier Application des modèles linéaires généralisés mixtes à un problème forestier Présenté par Oumar Samba LY Sous la direction de Christian GENEST Et la codirection de Michèle BERNIER-CARDOU REMERCIEMENTS

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Analyse des données longitudinales

Analyse des données longitudinales Analyse des données longitudinales EA Sauleau SémStat 03/10/2006 Table des matières 1 Introduction 2 1.1 Généralités 2 1.2 La structure des données.. 3 1.3 Exemple.. 4 1.4 Des impasses.. 4 2 (M)ANOVA 4

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Introduction à l Econométrie. MOSEF Partie 5

Introduction à l Econométrie. MOSEF Partie 5 Introduction à l Econométrie MOSEF Partie 5 Qualité d ajustement (R et R ajusté) chaque observation est constituée de la part expliquée et inexpliquée. y i = yˆ + uˆ Nous définissons : ( yi y) ( yˆ y)

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Série statistique double à l aide d un exemple

Série statistique double à l aide d un exemple Série statistique double à l aide d un exemple Série statistique double: exemple... 2 Série statistique double: questions posées... 3 Calcul de la covariance sur la base de l'exemple... 4 Calcul du coefficient

Plus en détail

ANOVA : analyse de variance univariée

ANOVA : analyse de variance univariée Résumé Le chapitre 3 est consacré aux plans factoriels. Il s agit de l appellation appropriée, bien qu assez peu employée, de l analyse de variance, appelée par les anglo-saxons ANalysis Of VAriance et,

Plus en détail

La régression logistique PLS

La régression logistique PLS La régression logistique PLS Michel Tenenhaus Groupe HEC, 78351 Jouy-en-Josas 1 Introduction La régression PLS permet de relier une ou plusieurs variables de réponse y àun ensemble de variables prédictives

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Pratique de la Modélisation Statistique

Pratique de la Modélisation Statistique Publications du Laboratoire de Statistique et Probabilités Pratique de la Modélisation Statistique Philippe BESSE Version juin 2000 Laboratoire de Statistique et Probabilités UMR CNRS C5583 Université

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Pratique de la modélisation Statistique

Pratique de la modélisation Statistique PUBLICATIONS DU LABORATOIRE DE STATISTIQUE ET PROBABILITÉS Pratique de la modélisation Statistique PHILIPPE BESSE Version janvier 2003 mises à jour : www.lsp.ups-tlse.fr/besse Laboratoire de Statistique

Plus en détail

Sélection de modèles avec l AIC et critères d information dérivés

Sélection de modèles avec l AIC et critères d information dérivés Sélection de modèles avec l AIC et critères d information dérivés Renaud LANCELOT et Matthieu LESNOFF Version 3, Novembre 2005 Ceci n est pas une revue exhaustive mais une courte introduction sur l'utilisation

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

IBM SPSS Regression 20

IBM SPSS Regression 20 IBM SPSS Regression 20 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics

Plus en détail

Atelier d économétrie

Atelier d économétrie Atelier d économétrie Chapitre 4 : Le problème de la multicolinéarité : application sous SAS Vincent Bouvatier Université de Paris Ouest - Nanterre La Défense Bâtiment G, bureau 308A vbouvatier@u-paris10.fr

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE Annexe MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE L enseignement des mathématiques au collège et au lycée a pour but de donner à chaque

Plus en détail

Méthodes d apprentissage :

Méthodes d apprentissage : Méthodes d apprentissage : application au tri de complexes protéines-protéines Jérôme Azé Apprentissage: tâches Apprentissage non supervisé (Eisen, ) Apprentissage supervisé (arbres de décision, k-ppv,

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

AIDE MÉMOIRE DU PACKAGE NLME DE R

AIDE MÉMOIRE DU PACKAGE NLME DE R AIDE MÉMOIRE DU PACKAGE NLME DE R D. CONCORDET R est un logiciel de statistique professionnel qui permet d'eectuer un grand nombre d'analyses. Il est composé d'un c ur qui est capable d'interpréter et

Plus en détail

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Stéphanie Combes et Pauline Givord (DMCSI) INSEE-DMSCI 02/04/2015 Plan Qu'est-ce que le Big Data? Les

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31 1/31 Mémoire de n d'étude: Etudes statistiques Nicolas Sutton-Charani Université Montpellier 1 Plan Rappels de cours La base La Statistique Types des variables Outils mathématiques Statistiques descriptives

Plus en détail

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE LES DONNEES OBS KW SURFACE PERS PAVILLON AGE VOL SBAINS 1 4805 130 4 1 65 410 1 2 3783 123 4 1 5 307 2 3 2689 98 3 0 18 254 1 4 5683 178 6 1 77 570 3 5 3750

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : Applied Multivariate Statistical Analysis»,

Plus en détail

Econométrie. février 2008. Boutin, Rathelot

Econométrie. février 2008. Boutin, Rathelot 5ème séance Xavier Boutin Roland Rathelot Supélec février 2008 Plan Variables binaires La question y = β 0 + β 1 x 1 +...β k x k + u Que se passe-t-il lorsque y est une variable {0, 1} et non plus une

Plus en détail

ECONOMETRIE LINEAIRE. Bruno Crépon

ECONOMETRIE LINEAIRE. Bruno Crépon ECONOMETRIE LINEAIRE Bruno Crépon Novembre 25 ii Table des matières 1 Introduction 1 1.1 Lemodèle... 1 1.2 D oùvientlemodèle?-1delathéorieéconomique... 1 1.3 Lesdonnées... 3 1.4 L estimation... 4 1.5 Pourquoiestimerlemodèle?...

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

L Econométrie des Données de Panel

L Econométrie des Données de Panel Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire

Plus en détail

IBM SPSS Advanced Statistics

IBM SPSS Advanced Statistics IBM SPSS Statistics 19 IBM SPSS Advanced Statistics Une analyse plus précise des relations complexes Avantages commerciaux Allez au-delà de l'analyse de base Créez des modèles flexibles grâce aux multiples

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail