Enjeux mathématiques et Statistiques du Big Data

Dimension: px
Commencer à balayer dès la page:

Download "Enjeux mathématiques et Statistiques du Big Data"

Transcription

1 Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

2 Des données numériques en croissance permanente Facebook La production de données numériques double tous les 3 ans, depuis Domaines: grande distribution, médical, industrie, astronomie... Que peut-on faire de ces données? A-t-on besoin d outils mathématiques pour les analyser? Quelles sont les difficultés? M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

3 Première application Big Data Etude de la grippe hivernale aux Etats-Unis, Quand les mots deviennent des données numériques... Google: 3 milliards de requètes par jour Etude de la fréquence des requêtes du moteur de recherche toux, fièvre, médicaments contre la toux et la fièvre... en relation avec la propagation de la grippe en espace et en temps Modèle Prédictif Google Modèles mathématiques (450 millions testés). final: combinaisons de la fréquence de 45 mots clefs Intérets: Modèle beaucoup plus réactif que l analyse des données collectées par les centres de santé. Repérer en temps réel des zones contaminées à partir des requêtes (H1N1) M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

4 Exemple de données collectées Données transactionnelles 17/02/ :02:25 fièvre toux ; grippe... Données analytiques agrégées: Fréquence d occurence de mots clefs M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

5 Un tableau à deux dimensions X 1 X 2... X j... X p 1 x x 1j x 1p 2... i x i1... x ij x ip... n x n1... x nj x np n observations (ligne), p variables (colonne) La Volumétrie -valeurs n, p- dépend de la méthode de collecte manuelle ou exhaustive des données. Structure identique dans des domaines variés: - Aéronautique: n vols d avions (altitude, vitesse,...) - Banque, Marketing: n clients (revenu, crédit,...) M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

6 Que peut-on faire de ces données? Deux types de problématiques sont distingués: Exploratoire, segmentation (X ) : Toutes les variables jouent un rôle identique Découvrir des relations entre les groupes d individus, Modèle prédictif: Y = F (X ) Une variable particulière (variable cible Y) est définie modèle de régression permettant de prédire Y sur de nouvelles données A partir des données disponibles X 1 X 2... X j... X p Y 1 x x 1j x 1p y 1... i x i1... x ij x ip y p... n x n1... x nj x np y n M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

7 Enjeux mathématiques et statistiques du big data Les données Les difficultés du Big Data: Segmentation: Fléau de la dimension Méthode prédictive: réduction de dimension Perspectives métiers, collaborations entre disciplines M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

8 Segmentation des données On considère deux observations (x i, x k ), x i R p, x k R p X 1 X 2... X j... X p 1 x x 1j x 1p... i x i1... x ij x ip... k x k1... x kj x kp... n x n1... x nj x np Distance euclidienne l 2 entre ces deux observations: p x i x k 2 = d=1 (x i(d) x k (d)) 2 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

9 Segmentation de données illustration 10 Observations matrice des distances Classification hiérarchique Clustering 3 classes M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

10 Etude de la distance euclidienne en fonction de la dimension p Illustrations: n = 100 observations, uniforme, en dimension 1, 2, 3,... Indicateur: max i j x i x k 2 min i j x i x k p = 1 p = 2 p = 3 Fléau de la dimension M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

11 Fléau de la dimension Illustration: n = 100 observations uniformes (K = 500 répétitions) Evolution du rapport max i j x i x j min i j x i x j en fonction de la dimension p La distance euclidienne perd sa capacité de discrimination en grande dimension lorsque p augmente Problématique pour la segmentation, la discrimination des observations M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

12 Segmentation de données Faible dimension p=2 Données Matrice Classification Classification des distances hiérarchique non supervisée Grande dimension p=20 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

13 Réduction de la dimension, sélection de variables Trouver de bonnes représentations des données initialement codées en grande dimension Features: Faible nombre de caractéristiques discriminantes (via l expertise métier) Compress Sensing: représentation parcimonieuse (S) de x comme combinaison linéaire de p vecteurs d une base données fonctionnelles. Estimation de variétés: On représente x dans un espace de basse dimension à l aide des vecteurs propres du Lapacien sur la variété, estimé à partir d un graphe de voisinages sur les exemples. outils mathématiques à l interface de l analyse harmonique, de la géométrie, des probabilités et des statistiques. M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

14 Enjeux mathématiques et statistiques du big data Les données Les difficultés: Segmentation: Fléau de la dimension Méthode prédictive: réduction de dimension Perspectives métiers, collaborations entre disciplines M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

15 Un tableau à deux dimensions Existence d une variable cible, Y X 1 X 2... X j... X p Y 1 x x 1j x 1p y i x i1... x ij x ip y p... n x n1... x nj x np y n Exemples: - Industrie:Y consommation de carburant, électrique, eau (variable quantitative) - Banque, Marketing: Y incident bancaire (0,1) - Médical: taux de glycémie, présence ou non d une maladie M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

16 Un modèle prédictif: le modèle linéaire p=2 modèle Ŷ = ˆβ 0 + ˆβ 1 X critère: i (Y i Ŷi ) 2 solution: ˆβ 1 = cov(x, Y )/var(x ) ˆβ 0 = Ȳ ˆβ 1 X p=3 modèle:ŷ = ˆβ 0 + ˆβ 2 X 1 + ˆβ 2 X 2 critère: i (Y i Ŷ i ) 2 solution: ˆβ =... M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

17 Le modèle linéaire classique Cadre classique - n > p: Nb d observations est supérieur au nombre de variables y 1 y 2 y n = x x 1p x n1... x np Thin matrix β 1 β 2 β p + ɛ - X T X inversible, pas de co linéarité entre les co-variables Solution Unique: ˆβ = (X T X ) 1 X T Y M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

18 Le modèle linéaire en grande dimension En grande dimension - n << p: Nb de variables est supérieur au nombre d obs. β 1 y 1 x x 1p β 2 y 2 = ɛ y n x n1... x np Fat matrix - X T X, NON inversible (ou forte colinéarité avec p < n). Infinité de solutions ˆβ.(Pseudo inverse: solution technique) Une solution unique nécessite des hypothèses sur β. β p M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

19 Le modèle linéaire en grande dimension La résolution du problème linéaire est obtenue en introduisant des contraintes sur les coefficients, β. Quelques exemples: l 0, Best subset : E(β, λ) = Y X β 2 + λσ j β j 0 solution complexe à calculer 2 p modèles à tester l 2, Ridge : Σ j β j 2 < S ˆβ ridge = (X T X + λi ) 1 X T Y l 1, Lasso : Σ j β j 1 < S solution parcimonieuse, faible nb. de coeff 0 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

20 A la conquète du Big data Les enjeux sont: Mathématiques: modélisation statistique, optimisation,... Evolution: échantillonage etude exhaustive sur les données. Informatique: stockage, accès à des données volumineuses et traitement en un temps raisonnable (MapReduce, Hadoop) Complexité/Algorithmique: Adapter les méthodes de traitements traditionnels à des données volumineuses, à des environnements distribués. Ex: traitements sur clusters de processeurs, de BDD,... à des données non structurées: Extraction (rapide) d indicateurs clefs pour exploiter les données Twitter, commentaires faceboook, linkeln. Les 3 V : Volume, Variété, Vélocité M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

21 Appréhender le Big data Les formations aux Big Data se situent dans les domaines: Mathématiques, Informatique Droit: ex. problème juridique d exploitation de ces données Sociologie, psychologie... Mise en données (collecte des données de performances sportives...) Des données disponibles: Kaggle, concours en ligne sur des problématiques de Big Data Les Open Data: mise à disposition de BDD ± volumineuses Les opportunités métiers du futur: data scientist spécialiste de l exploration et de l analyse de grandes bases de données. Start-up: exploitation des données du web (gratuites) Imaginations & Technologies... M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

22 Classification automatique d images M. Mougeot (Paris Diderot) Mathe matiques en Mouvement 6 Juin / 23

23 Quelques Références Detecting Influenza Epidemics Using Serach Engine Queries, Nature 457, Big data : trois défis pour les Maths. David Larousserie, Le Monde, 27/01/2014 Le Data Scientist, un nouveau métier. David Larousserie, Le Monde, 27/01/2014 Kaggle, le site qui transforme le big data en or. Mathilde Damgé. Le monde Economist M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

Data Mining et Big Data

Data Mining et Big Data Data Mining et Big Data Eric Rivals LIRMM & Inst. de Biologie Computationnelle CNRS et Univ. Montpellier 14 novembre 2015 E. Rivals (LIRMM & IBC) Big Data 14 novembre 2015 1 / 30 Introduction, contexte

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Formation continue. Ensae-Ensai Formation Continue (Cepe)

Formation continue. Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist Formation continue Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist La demande de data scientists est croissante mais peu de formations existent. Ce certificat

Plus en détail

Les humanités numériques à l ère du big data

Les humanités numériques à l ère du big data Les humanités numériques à l ère du big data D. A. ZIGHED djamel@zighed.com Journées Big data & visualisation Focus sur les humanités numériques ISH Lyon 18-19 juin 2015 Co-organisées par EGC AFIHM - SFdS

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

UN CHANGEMENT DE PARADIGME DANS LA PRÉPARATION DES DONNÉES

UN CHANGEMENT DE PARADIGME DANS LA PRÉPARATION DES DONNÉES UN CHANGEMENT DE PARADIGME DANS LA PRÉPARATION DES DONNÉES L ANALYSE VISUELLE ET LE BIG DATA Bernard Blais Directeur Principal Analytique Haute Performance CONTENU L ANALYSE VISUELLE ET LE BIG DATA Big

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014 Recherche et Diffusion de l Information dans les Réseaux Philippe Robert Le 8 avril 2014 Présentation Présentation Directeur de recherche à l INRIA Responsable de l équipe de recherche Réseaux, Algorithmes

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009 Le Data Mining Techniques pour exploiter l information Auteur : Dan Noël Date : 24.04.2009 Agenda de la présentation du 26.03.2009 Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Stéphanie Combes et Pauline Givord (DMCSI) INSEE-DMSCI 02/04/2015 Plan Qu'est-ce que le Big Data? Les

Plus en détail

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données 1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

Les défis statistiques du Big Data

Les défis statistiques du Big Data Les défis statistiques du Big Data Anne-Sophie Charest Professeure adjointe au département de mathématiques et statistique, Université Laval 29 avril 2014 Colloque ITIS - Big Data et Open Data au cœur

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre Avant-propos 1. Objectif du livre 17 2. Illustrations des exemples de ce livre 18 2.1 Office 365 comme plateforme technologique pour une digital workplace 18 2.2 SharePoint et Yammer à l honneur 18 3.

Plus en détail

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 Data Mining Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 2 Plan Data mining : définition, utilisations et concepts Wolfram Alpha : extraction de données d'un compte

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Conception et réalisation d un tableau de bord sécurité

Conception et réalisation d un tableau de bord sécurité Conception et réalisation d un tableau de bord sécurité Une approche innovante www.conixsecurity.fr 1 Agenda Définir le «tableau de bord» : mission impossible? Le tableau de bord «sécurité» Notre démarche

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015 L analyse des correspondances et ses applications en recherche marketing MONSUG mai 2015 Contenu Mise en contexte et exemple d application L analyse des correspondances multiples (ACM) L ACM et la segmentation

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES Stages 2015-2016 Contact : Mme Lapedra, stage@isoft.fr ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET ANALYSE DE DONNEES ISoft est un concepteur-éditeur de logiciels spécialisé dans la recherche

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

SAS Visual Analytics. Fiche solution A quoi sert SAS Visual Analytics? Avantages

SAS Visual Analytics. Fiche solution A quoi sert SAS Visual Analytics? Avantages Fiche solution A quoi sert SAS Visual Analytics? SAS Visual Analytics est une plate-forme complète pour l exploration et la visualisation des données qui met en évidence les schémas et relations non perceptibles.

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP SFR en quelques chiffres Le Dataware Client GP de SFR en août 2011 150 applications

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Big data* et marketing

Big data* et marketing Catherine Viot IAE de Bordeaux Maître de conférences HDR Responsable pédagogique du Master 2 Marketing Equipe de Recherche en Marketing - IRGO catherine.viot@u-bordeaux4.fr Big data* et marketing 2006

Plus en détail

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout)

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) 1 Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) C est quoi? Regroupement (Clustering): construire une collection d objets Similaires au sein d un même groupe Dissimilaires

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

Méthodes de projection

Méthodes de projection Chapitre 11 Méthodes de projection Contenu 11.1 Analyse en composantes principales........ 138 11.1.1 L Analyse en Composantes Principales........ 139 11.1.2 La (grande) famille des ACP............. 151

Plus en détail

TRAVAUX DE RECHERCHE DANS LE

TRAVAUX DE RECHERCHE DANS LE TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

Le géomarketing - Page 1 sur 7

Le géomarketing - Page 1 sur 7 Le géomarketing - Page 1 sur 7 LES DOSSIERS MADWATCH.net méthodes Le Géomarketing Novembre 2003 Nb de pages : 7 Le géomarketing - Page 2 sur 7 Créé dans les années 80, la plupart des applications du géomarketing

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big data le Buzz Le Big Data? Tout le monde en parle sans trop savoir ce qu il signifie. Les médias high-tech en font la nouvelle panacée,

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Big Data et Marketing : les competences attendues

Big Data et Marketing : les competences attendues Big Data et Marketing : les competences attendues Laurence Fiévet Responsable Marketing Corporate Oney Banque Accord LA DYNAMIQUE DU MARKETING Selon la définition de Kotler et Dubois, «Le marketing est

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

Cybermarché et analyse comportementale

Cybermarché et analyse comportementale Cybermarché et analyse comportementale Antoine-Eric Sammartino aesammartino@e-laser.fr Séminaire Data Mining - Educasoft Formations 18 juin 2001-1- MENU Le Groupe LaSer Le processus Data Mining L industrialisation

Plus en détail

Big Data : Risques et contre-mesures

Big Data : Risques et contre-mesures 18 mars 2014 Big Data : Risques et contre-mesures Les fondamentaux pour bien démarrer Gérôme BILLOIS gerome.billois@solucom.fr Twitter : @gbillois Chadi HANTOUCHE chadi.hantouche@solucom.fr Twitter : @chadihantouche

Plus en détail

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

Fouille de données et sémantique : des techniques pour donner du sens aux données

Fouille de données et sémantique : des techniques pour donner du sens aux données Fouille de données et sémantique : des techniques pour donner du sens aux données Nathalie Aussenac-Gilles (IRIT) co-animatrice avec M. Boughanem de l axe masse de données et calcul http://www.irit.fr/-masses-de-donnees-et-calcul,677-?lang=fr

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

SÉRIE NOUVELLES ARCHITECTURES

SÉRIE NOUVELLES ARCHITECTURES SÉRIE NOUVELLES ARCHITECTURES Alerte au tsunami des données : les entreprises doivent prendre la vague maintenant! Quels sont les faits qui sous-tendent cette réalité? Quelles entreprises sont aujourd

Plus en détail

Présentation Société Actulligence Consulting

Présentation Société Actulligence Consulting Présentation Société Actulligence Consulting Conseil et Accompagnement Intelligence économique Veille stratégique e-réputation Actulligence Consulting : Présentation Frédéric Martinet, Consultant indépendant

Plus en détail

" # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! "##$ % &!

 # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! ##$ % &! "# $ %%& ' ( )*+, '()*+,'+''-++.+/0112134+1.50*406 "##$ %& 8CC "#$%& ' ( )* +,-./ 0 123 456+7 3 7-55-89.*/ 0 +3 *+:3 ;< =3 3-3 8 0 23 >-8-3 >5? //*/*0;* @A: *53,,3 / * $/ >B+? - 5, 2 34*56 7 /+#** //8

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

Stages 2013-2014 ISOFT : UNE SOCIETE INNOVANTE. ISoft : +33 1 69 35 37 37 www.isoft.fr 21 Chemin de Moulon 91190 Gif sur Yvette France

Stages 2013-2014 ISOFT : UNE SOCIETE INNOVANTE. ISoft : +33 1 69 35 37 37 www.isoft.fr 21 Chemin de Moulon 91190 Gif sur Yvette France Stages 2013-2014 ISOFT : UNE SOCIETE INNOVANTE Contact : Mme Lapedra, stage@isoft.fr ISoft, éditeur de logiciels, est spécialisé dans l informatique décisionnelle et l analyse de données. Son expertise

Plus en détail

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Qui nous sommes Firme québécoise (bureaux à Québec et Montréal) Spécialisée

Plus en détail

Introduction aux bases de données NoSQL

Introduction aux bases de données NoSQL Introduction aux bases de données NoSQL Khaled Tannir ets@khaledtannir.net Montréal - 23 Juillet 2015 Qui suis-je? Khaled TANNIR Big Data Architect Lead 20 ans d expérience ets@khaledtannir.net @khaled_tannir

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

LES APPLICATIONS DU BIG DATA DANS LE MARKETING RELATIONNEL : RETARGETING ET REMARKETING MULTICANAL, DISPLAY CIBLÉ, DMP

LES APPLICATIONS DU BIG DATA DANS LE MARKETING RELATIONNEL : RETARGETING ET REMARKETING MULTICANAL, DISPLAY CIBLÉ, DMP LES APPLICATIONS DU BIG DATA DANS LE MARKETING RELATIONNEL : RETARGETING ET REMARKETING MULTICANAL, DISPLAY CIBLÉ, DMP 2 ENJEUX MEDIAPOST COMMUNICATION ÊTRE LE LEADER DE L INTELLIGENCE CLIENT À TRAVERS

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Préface Dunod Toute reproduction non autorisée est un délit. Les raisons de l émergence du Big Data sont bien connues. Elles sont d abord économiques et technologiques. La chute exponentielle des coûts

Plus en détail

Vision prospective et obstacles à surmonter pour les assureurs

Vision prospective et obstacles à surmonter pour les assureurs smart solutions for smart leaders Le «Big Data» assurément Rédigé par Pascal STERN Architecte d Entreprise Vision prospective et obstacles à surmonter pour les assureurs Un avis rendu par la cour de justice

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Panorama des problématiques de traitement de l information. Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle

Panorama des problématiques de traitement de l information. Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle Panorama des problématiques de traitement de l information Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle Conduite d une étude statistique Larbi Aït Hennani, maître de conférences en mathématiques

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail