Enjeux mathématiques et Statistiques du Big Data

Dimension: px
Commencer à balayer dès la page:

Download "Enjeux mathématiques et Statistiques du Big Data"

Transcription

1 Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

2 Des données numériques en croissance permanente Facebook La production de données numériques double tous les 3 ans, depuis Domaines: grande distribution, médical, industrie, astronomie... Que peut-on faire de ces données? A-t-on besoin d outils mathématiques pour les analyser? Quelles sont les difficultés? M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

3 Première application Big Data Etude de la grippe hivernale aux Etats-Unis, Quand les mots deviennent des données numériques... Google: 3 milliards de requètes par jour Etude de la fréquence des requêtes du moteur de recherche toux, fièvre, médicaments contre la toux et la fièvre... en relation avec la propagation de la grippe en espace et en temps Modèle Prédictif Google Modèles mathématiques (450 millions testés). final: combinaisons de la fréquence de 45 mots clefs Intérets: Modèle beaucoup plus réactif que l analyse des données collectées par les centres de santé. Repérer en temps réel des zones contaminées à partir des requêtes (H1N1) M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

4 Exemple de données collectées Données transactionnelles 17/02/ :02:25 fièvre toux ; grippe... Données analytiques agrégées: Fréquence d occurence de mots clefs M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

5 Un tableau à deux dimensions X 1 X 2... X j... X p 1 x x 1j x 1p 2... i x i1... x ij x ip... n x n1... x nj x np n observations (ligne), p variables (colonne) La Volumétrie -valeurs n, p- dépend de la méthode de collecte manuelle ou exhaustive des données. Structure identique dans des domaines variés: - Aéronautique: n vols d avions (altitude, vitesse,...) - Banque, Marketing: n clients (revenu, crédit,...) M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

6 Que peut-on faire de ces données? Deux types de problématiques sont distingués: Exploratoire, segmentation (X ) : Toutes les variables jouent un rôle identique Découvrir des relations entre les groupes d individus, Modèle prédictif: Y = F (X ) Une variable particulière (variable cible Y) est définie modèle de régression permettant de prédire Y sur de nouvelles données A partir des données disponibles X 1 X 2... X j... X p Y 1 x x 1j x 1p y 1... i x i1... x ij x ip y p... n x n1... x nj x np y n M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

7 Enjeux mathématiques et statistiques du big data Les données Les difficultés du Big Data: Segmentation: Fléau de la dimension Méthode prédictive: réduction de dimension Perspectives métiers, collaborations entre disciplines M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

8 Segmentation des données On considère deux observations (x i, x k ), x i R p, x k R p X 1 X 2... X j... X p 1 x x 1j x 1p... i x i1... x ij x ip... k x k1... x kj x kp... n x n1... x nj x np Distance euclidienne l 2 entre ces deux observations: p x i x k 2 = d=1 (x i(d) x k (d)) 2 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

9 Segmentation de données illustration 10 Observations matrice des distances Classification hiérarchique Clustering 3 classes M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

10 Etude de la distance euclidienne en fonction de la dimension p Illustrations: n = 100 observations, uniforme, en dimension 1, 2, 3,... Indicateur: max i j x i x k 2 min i j x i x k p = 1 p = 2 p = 3 Fléau de la dimension M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

11 Fléau de la dimension Illustration: n = 100 observations uniformes (K = 500 répétitions) Evolution du rapport max i j x i x j min i j x i x j en fonction de la dimension p La distance euclidienne perd sa capacité de discrimination en grande dimension lorsque p augmente Problématique pour la segmentation, la discrimination des observations M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

12 Segmentation de données Faible dimension p=2 Données Matrice Classification Classification des distances hiérarchique non supervisée Grande dimension p=20 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

13 Réduction de la dimension, sélection de variables Trouver de bonnes représentations des données initialement codées en grande dimension Features: Faible nombre de caractéristiques discriminantes (via l expertise métier) Compress Sensing: représentation parcimonieuse (S) de x comme combinaison linéaire de p vecteurs d une base données fonctionnelles. Estimation de variétés: On représente x dans un espace de basse dimension à l aide des vecteurs propres du Lapacien sur la variété, estimé à partir d un graphe de voisinages sur les exemples. outils mathématiques à l interface de l analyse harmonique, de la géométrie, des probabilités et des statistiques. M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

14 Enjeux mathématiques et statistiques du big data Les données Les difficultés: Segmentation: Fléau de la dimension Méthode prédictive: réduction de dimension Perspectives métiers, collaborations entre disciplines M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

15 Un tableau à deux dimensions Existence d une variable cible, Y X 1 X 2... X j... X p Y 1 x x 1j x 1p y i x i1... x ij x ip y p... n x n1... x nj x np y n Exemples: - Industrie:Y consommation de carburant, électrique, eau (variable quantitative) - Banque, Marketing: Y incident bancaire (0,1) - Médical: taux de glycémie, présence ou non d une maladie M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

16 Un modèle prédictif: le modèle linéaire p=2 modèle Ŷ = ˆβ 0 + ˆβ 1 X critère: i (Y i Ŷi ) 2 solution: ˆβ 1 = cov(x, Y )/var(x ) ˆβ 0 = Ȳ ˆβ 1 X p=3 modèle:ŷ = ˆβ 0 + ˆβ 2 X 1 + ˆβ 2 X 2 critère: i (Y i Ŷ i ) 2 solution: ˆβ =... M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

17 Le modèle linéaire classique Cadre classique - n > p: Nb d observations est supérieur au nombre de variables y 1 y 2 y n = x x 1p x n1... x np Thin matrix β 1 β 2 β p + ɛ - X T X inversible, pas de co linéarité entre les co-variables Solution Unique: ˆβ = (X T X ) 1 X T Y M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

18 Le modèle linéaire en grande dimension En grande dimension - n << p: Nb de variables est supérieur au nombre d obs. β 1 y 1 x x 1p β 2 y 2 = ɛ y n x n1... x np Fat matrix - X T X, NON inversible (ou forte colinéarité avec p < n). Infinité de solutions ˆβ.(Pseudo inverse: solution technique) Une solution unique nécessite des hypothèses sur β. β p M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

19 Le modèle linéaire en grande dimension La résolution du problème linéaire est obtenue en introduisant des contraintes sur les coefficients, β. Quelques exemples: l 0, Best subset : E(β, λ) = Y X β 2 + λσ j β j 0 solution complexe à calculer 2 p modèles à tester l 2, Ridge : Σ j β j 2 < S ˆβ ridge = (X T X + λi ) 1 X T Y l 1, Lasso : Σ j β j 1 < S solution parcimonieuse, faible nb. de coeff 0 M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

20 A la conquète du Big data Les enjeux sont: Mathématiques: modélisation statistique, optimisation,... Evolution: échantillonage etude exhaustive sur les données. Informatique: stockage, accès à des données volumineuses et traitement en un temps raisonnable (MapReduce, Hadoop) Complexité/Algorithmique: Adapter les méthodes de traitements traditionnels à des données volumineuses, à des environnements distribués. Ex: traitements sur clusters de processeurs, de BDD,... à des données non structurées: Extraction (rapide) d indicateurs clefs pour exploiter les données Twitter, commentaires faceboook, linkeln. Les 3 V : Volume, Variété, Vélocité M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

21 Appréhender le Big data Les formations aux Big Data se situent dans les domaines: Mathématiques, Informatique Droit: ex. problème juridique d exploitation de ces données Sociologie, psychologie... Mise en données (collecte des données de performances sportives...) Des données disponibles: Kaggle, concours en ligne sur des problématiques de Big Data Les Open Data: mise à disposition de BDD ± volumineuses Les opportunités métiers du futur: data scientist spécialiste de l exploration et de l analyse de grandes bases de données. Start-up: exploitation des données du web (gratuites) Imaginations & Technologies... M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

22 Classification automatique d images M. Mougeot (Paris Diderot) Mathe matiques en Mouvement 6 Juin / 23

23 Quelques Références Detecting Influenza Epidemics Using Serach Engine Queries, Nature 457, Big data : trois défis pour les Maths. David Larousserie, Le Monde, 27/01/2014 Le Data Scientist, un nouveau métier. David Larousserie, Le Monde, 27/01/2014 Kaggle, le site qui transforme le big data en or. Mathilde Damgé. Le monde Economist M. Mougeot (Paris Diderot) Mathématiques en Mouvement 6 Juin / 23

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Introduction data science

Introduction data science Introduction data science Data science Master 2 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON L analytique joue un rôle désormais primordial dans la réussite d une entreprise. Les pouvoirs qu elle délivre sont incontestables, cependant

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES Stages 2015-2016 Contact : Mme Lapedra, stage@isoft.fr ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET ANALYSE DE DONNEES ISoft est un concepteur-éditeur de logiciels spécialisé dans la recherche

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Big Data et Marketing : les competences attendues

Big Data et Marketing : les competences attendues Big Data et Marketing : les competences attendues Laurence Fiévet Responsable Marketing Corporate Oney Banque Accord LA DYNAMIQUE DU MARKETING Selon la définition de Kotler et Dubois, «Le marketing est

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014 Recherche et Diffusion de l Information dans les Réseaux Philippe Robert Le 8 avril 2014 Présentation Présentation Directeur de recherche à l INRIA Responsable de l équipe de recherche Réseaux, Algorithmes

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Pourquoi intégrer le Big Data à son organisa3on?

Pourquoi intégrer le Big Data à son organisa3on? Pourquoi intégrer le Big Data à son organisa3on? Yvan Robert, VP Affaires Stratégiques Emmanuel Faug, Resp. pra>que BI Colloque 2014 Big Data Agenda Qui sommes nous? L importance de l information Méthodes

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Data Mining et Big Data

Data Mining et Big Data Data Mining et Big Data Eric Rivals LIRMM & Inst. de Biologie Computationnelle CNRS et Univ. Montpellier 14 novembre 2015 E. Rivals (LIRMM & IBC) Big Data 14 novembre 2015 1 / 30 Introduction, contexte

Plus en détail

Cybermarché et analyse comportementale

Cybermarché et analyse comportementale Cybermarché et analyse comportementale Antoine-Eric Sammartino aesammartino@e-laser.fr Séminaire Data Mining - Educasoft Formations 18 juin 2001-1- MENU Le Groupe LaSer Le processus Data Mining L industrialisation

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Les humanités numériques à l ère du big data

Les humanités numériques à l ère du big data Les humanités numériques à l ère du big data D. A. ZIGHED djamel@zighed.com Journées Big data & visualisation Focus sur les humanités numériques ISH Lyon 18-19 juin 2015 Co-organisées par EGC AFIHM - SFdS

Plus en détail

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 Data Mining Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 2 Plan Data mining : définition, utilisations et concepts Wolfram Alpha : extraction de données d'un compte

Plus en détail

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Stéphanie Combes et Pauline Givord (DMCSI) INSEE-DMSCI 02/04/2015 Plan Qu'est-ce que le Big Data? Les

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Le numérique dans la stratégie de La Poste Les enjeux pour l immobilier d exploitation La transformation des métiers de Poste Immo

Le numérique dans la stratégie de La Poste Les enjeux pour l immobilier d exploitation La transformation des métiers de Poste Immo Table ronde du 3 mars 2015 L immeuble augmenté : ce que le numérique induit comme évolution dans l usage des bâtiments? Le numérique dans la stratégie de La Poste Les enjeux pour l immobilier d exploitation

Plus en détail

Les défis statistiques du Big Data

Les défis statistiques du Big Data Les défis statistiques du Big Data Anne-Sophie Charest Professeure adjointe au département de mathématiques et statistique, Université Laval 29 avril 2014 Colloque ITIS - Big Data et Open Data au cœur

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

La GRC ou comment mettre le client au coeur de l entreprise

La GRC ou comment mettre le client au coeur de l entreprise composantes Relation de la Relation relation 4 Les outils 4 Les 4-1 outils Les de bases la GRC de 4-1 données Les bases de données 4-2 Les logiciels et 5 Les de freins la GRC au La GRC ou comment mettre

Plus en détail

De la data à l information De l information à la connaissance Visualisation. Big Data Analytics. Alykis 2015 www.alykis.com

De la data à l information De l information à la connaissance Visualisation. Big Data Analytics. Alykis 2015 www.alykis.com Big Data Analytics Alykis 2015 www.alykis.com De la data à l information De l information à la connaissance Visualisation Big Data Analytics : la Statistique en grande dimension Big Data Analytics : la

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Cours Fouille de données avancée

Cours Fouille de données avancée Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique

Plus en détail

UN CHANGEMENT DE PARADIGME DANS LA PRÉPARATION DES DONNÉES

UN CHANGEMENT DE PARADIGME DANS LA PRÉPARATION DES DONNÉES UN CHANGEMENT DE PARADIGME DANS LA PRÉPARATION DES DONNÉES L ANALYSE VISUELLE ET LE BIG DATA Bernard Blais Directeur Principal Analytique Haute Performance CONTENU L ANALYSE VISUELLE ET LE BIG DATA Big

Plus en détail

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre Avant-propos 1. Objectif du livre 17 2. Illustrations des exemples de ce livre 18 2.1 Office 365 comme plateforme technologique pour une digital workplace 18 2.2 SharePoint et Yammer à l honneur 18 3.

Plus en détail

Mastère spécialisé Data science. La Data science vous offre des débouchés innovants et porteurs dans le domaine stratégique des Big DataS

Mastère spécialisé Data science. La Data science vous offre des débouchés innovants et porteurs dans le domaine stratégique des Big DataS Mastère spécialisé Data science La Data science vous offre des débouchés innovants et porteurs dans le domaine stratégique des Big DataS Le volume des informations et des données disponibles explose. Il

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015 L analyse des correspondances et ses applications en recherche marketing MONSUG mai 2015 Contenu Mise en contexte et exemple d application L analyse des correspondances multiples (ACM) L ACM et la segmentation

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail

La Décomposition de Domaine Appliquée à la réduction de bruit

La Décomposition de Domaine Appliquée à la réduction de bruit La Décomposition de Domaine Appliquée à la réduction de bruit Cadre général : réduction du bruit extérieur Panorama des difficultés et enjeux Un cahier des charges? isabelle.terrasse@eads.net eric.duceau@eads.net

Plus en détail

Utilisations des mathématiques à des fins opérationnelles

Utilisations des mathématiques à des fins opérationnelles Utilisations des mathématiques à des fins opérationnelles Michael Vandenbossche mvn@softcomputing.com Soft Computing 165 avenue de Bretagne 59000 Lille 1. Présentation 2. Indicateurs statistiques de base

Plus en détail

Performance de la planification > Optimisation des stocks, des prévisions et de la qualité de service

Performance de la planification > Optimisation des stocks, des prévisions et de la qualité de service Performance de la planification > Optimisation des stocks, des prévisions et de la qualité de service OPTIMISATION DES STOCKS, DES PRÉVISIONS ET DE LA QUALITÉ DE SERVICE Objectifs : Augmenter les performances

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL KEYWORDS : SYSTEMX, Transport, Multimodal, Simulation, Optimisation, Supervision CONTEXTE de l IRT SYSTEMX L IRT SystemX est un institut de

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction a la recherche d information Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département

Plus en détail

Big data* et marketing

Big data* et marketing Catherine Viot IAE de Bordeaux Maître de conférences HDR Responsable pédagogique du Master 2 Marketing Equipe de Recherche en Marketing - IRGO catherine.viot@u-bordeaux4.fr Big data* et marketing 2006

Plus en détail

Pour vos appels d offre OPTIMISATION DES STOCKS. Mars 2009. 2 e ÉDITION AZAP. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort

Pour vos appels d offre OPTIMISATION DES STOCKS. Mars 2009. 2 e ÉDITION AZAP. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort Mars 2009 Pour vos appels d offre OPTIMISATION DES STOCKS 2 e ÉDITION AZAP SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort QUESTIONNAIRE EDITEURS DE LOGICIELS D OPTIMISATION DES STOCKS

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

TOOLS GROUP OPTIMISATION DES STOCKS. Pour vos appels d offre. 2 e ÉDITION. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort

TOOLS GROUP OPTIMISATION DES STOCKS. Pour vos appels d offre. 2 e ÉDITION. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort Mars 2009 Pour vos appels d offre OPTIMISATION DES STOCKS 2 e ÉDITION TOOLS GROUP SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort QUESTIONNAIRE EDITEURS DE LOGICIELS D OPTIMISATION

Plus en détail

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Qui nous sommes Firme québécoise (bureaux à Québec et Montréal) Spécialisée

Plus en détail

ERP & Processus. lacreuse@unistra.fr

ERP & Processus. lacreuse@unistra.fr ERP & Processus Métiers lacreuse@unistra.fr Processus : «Système d activités qui utilise des ressources pour transformer des éléments d entrée en résultat» Iso9000 Approche par processus Axes de modélisation

Plus en détail

Crédit Bureaux. des PME. Alger, le 12 mars 2009 Margherita GALLARELLO

Crédit Bureaux. des PME. Alger, le 12 mars 2009 Margherita GALLARELLO Le rôle des Crédit Bureaux pour l accès au crédit des PME 2009 Agenda L activité des Crédit Bureaux Sujets critiques pour les PME Crédit Bureaux: quels avantages pour les PME? Exemple d évaluation Conclusion

Plus en détail

Définir un nouveau modèle économique Présentation de l axe 4

Définir un nouveau modèle économique Présentation de l axe 4 Définir un nouveau modèle économique Présentation de l axe 4 Le développement du numérique dans la sphère de l édition, les mutations induites par la dématérialisation des supports ont profondément influencé

Plus en détail

Vers l efficience énergétique : Mesures intelligentes et connexion du véhicule électrique au réseau

Vers l efficience énergétique : Mesures intelligentes et connexion du véhicule électrique au réseau S é m i n a i r e " M o b i l i t é s " Vers l efficience énergétique : Mesures intelligentes et connexion du véhicule électrique au réseau Laboratoire Modélisation, Intelligence, Processus et Systèmes

Plus en détail

Projet de création de SAFRAN ANALYTICS

Projet de création de SAFRAN ANALYTICS Projet de création de SAFRAN ANALYTICS Comité de Groupe 27 février 2015 SOMMAIRE Contexte Enjeux du Big Data pour Safran Projet Safran Analytics Calendrier prévisionnel 1 / CONFIDENTIEL / 27-02-2015 /

Plus en détail

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE L es utilisateurs du décisionnel réclament plus de souplesse. Les approches mixtes, classiques et liées aux Big Data, répondent

Plus en détail

Conception et réalisation d un tableau de bord sécurité

Conception et réalisation d un tableau de bord sécurité Conception et réalisation d un tableau de bord sécurité Une approche innovante www.conixsecurity.fr 1 Agenda Définir le «tableau de bord» : mission impossible? Le tableau de bord «sécurité» Notre démarche

Plus en détail

1 Les clés de lecture du livre

1 Les clés de lecture du livre 1 Les clés de lecture du livre 1 Les clés de lecture du livre La logique de notre ouvrage Cet ouvrage est destiné aux lecteurs ne connaissant pas l ingénierie système et qui veulent comprendre rapidement

Plus en détail

TRAVAUX DE RECHERCHE DANS LE

TRAVAUX DE RECHERCHE DANS LE TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

TABLE DES MATIÈRES CHAPITRE

TABLE DES MATIÈRES CHAPITRE TABLE DES MATIÈRES CHAPITRE 1 Le pilotage de la performance... 17 I. Du contrôle au pilotage de la performance... 17 A. Le contrôle de gestion traditionnel... 17 B. Le pilotage de la performance... 19

Plus en détail

Transformation digitale

Transformation digitale La plateforme bancaire internationale. Pour chaque métier. décembre 2015 Transformation digitale Les défis de la distribution bancaire Par Olivier Cruanès, Responsable Marketing SOMMAIRE 1 La révolution

Plus en détail

Solocal Group Solocal Group pilote ses audiences via un ensemble de tableaux de bord complètement automatisés grâce à l API AT Internet.

Solocal Group Solocal Group pilote ses audiences via un ensemble de tableaux de bord complètement automatisés grâce à l API AT Internet. Online Intelligence Solutions Solocal Group Solocal Group pilote ses audiences via un ensemble de tableaux de bord complètement automatisés grâce à l API AT Internet. Case study Case study INTRODUCTION

Plus en détail

TITRE : OPTIMISATION ROBUSTE : CREATION D UNE PLATEFORME ET

TITRE : OPTIMISATION ROBUSTE : CREATION D UNE PLATEFORME ET TITRE : OPTIMISATION ROBUSTE : CREATION D UNE PLATEFORME ET APPLICATIONS INDUSTRIELLES MOTS CLEFS : OPTIMISATION, ANALYSE DE SENSIBILITE, REDUCTION DE MODELES, FIABILITE, SYSTEMX CONTEXTE de l IRT SYSTEMX

Plus en détail

Visualisation : Besoin Industriels

Visualisation : Besoin Industriels Visualisation : Besoin Industriels Laurent Anné, DISTENE Campus Teratec, Bruyères-le-Châtel 27 juin 2012 A propos de DISTENE Représentant exclusif d EnSight en Europe du Sud EnSight est un logiciel de

Plus en détail

LICENCE. Mathématiques

LICENCE. Mathématiques LICENCE Mathématiques Que sont les mathématiques? Les mathématiques, par l étude d objets abstraits (nombres, figures géométriques...) et le recours au raisonnement logique, permettent de décrire et de

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Introduction & concepts Big Data Khamprasit LANPHOUTHACOUL, Responsable de Centre de Compétences OAB UFR IM²AG, St Martin d'hères le 22 octobre 2015

Introduction & concepts Big Data Khamprasit LANPHOUTHACOUL, Responsable de Centre de Compétences OAB UFR IM²AG, St Martin d'hères le 22 octobre 2015 Introduction & concepts Big Data Khamprasit LANPHOUTHACOUL, Responsable de Centre de Compétences OAB UFR IM²AG, St Martin d'hères le 22 octobre 2015 Et à propos des objectifs de cette présentation? 2 Big

Plus en détail

Caisse d Epargne Rhône Alpes Licence Econométrie Lyon 2

Caisse d Epargne Rhône Alpes Licence Econométrie Lyon 2 Caisse d Epargne Rhône Alpes Licence Econométrie Lyon 2 22 Novembre 2013 - Valérie Rousvoal Direction Etudes Commerciales Sommaire de la rencontre Présentation de la Caisse d épargne Rhône Alpes Présentation

Plus en détail

INTRODUCTION AU DATA MINING. Cina MOTAMED

INTRODUCTION AU DATA MINING. Cina MOTAMED INTRODUCTION AU DATA MINING Cina MOTAMED 2 Data Mining : contexte Âge numérique : explosion des volumes de données Transactions commerciales Opérations bancaires Navigation Internet Indicateurs démographiques

Plus en détail

ENTREPRISE CONTENT MANAGEMENT & RECORDS MANAGEMENT ECM & RM

ENTREPRISE CONTENT MANAGEMENT & RECORDS MANAGEMENT ECM & RM ENTREPRISE CONTENT MANAGEMENT & RECORDS MANAGEMENT PLAN Introduction Partie I : le records management Qu est ce que le RM? Les principes du RM Les objectifs du RM Les enjeux du RM Les étapes de la mise

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

PLAN 1. A PROPOS 2. EXPERTISE 3. NOS RÉFÉRENCES 4. TECHNOLOGIES 5. CONTACT

PLAN 1. A PROPOS 2. EXPERTISE 3. NOS RÉFÉRENCES 4. TECHNOLOGIES 5. CONTACT PLAN 1. A PROPOS 2. EXPERTISE 3. NOS RÉFÉRENCES 4. TECHNOLOGIES 5. CONTACT A PROPOS D EMENCIA QUI SOMMES NOUS? Emencia est une société de services en logiciels libres (SSLL) spécialisée dans l intégration

Plus en détail

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares

Plus en détail

Mesures DNS à l ère du Big Data : outils et défis. JCSA, 9 juillet 2015 Vincent Levigneron, Afnic

Mesures DNS à l ère du Big Data : outils et défis. JCSA, 9 juillet 2015 Vincent Levigneron, Afnic Mesures DNS à l ère du Big Data : outils et défis JCSA, 9 juillet 2015 Vincent Levigneron, Afnic Sommaire 1. Mesures DNS réalisées par l Afnic 2. Volumes et biais 3. Limitations 4. Pourquoi une approche

Plus en détail

Partie I Stratégies relationnelles et principes d organisation... 23

Partie I Stratégies relationnelles et principes d organisation... 23 Introduction......................................................................... 1 1. Définition........................................................................ 2 1.1 Le CRM comme processus

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

Big Data : Risques et contre-mesures

Big Data : Risques et contre-mesures 18 mars 2014 Big Data : Risques et contre-mesures Les fondamentaux pour bien démarrer Gérôme BILLOIS gerome.billois@solucom.fr Twitter : @gbillois Chadi HANTOUCHE chadi.hantouche@solucom.fr Twitter : @chadihantouche

Plus en détail

Les Mathématiques à Besançon

Les Mathématiques à Besançon Les Mathématiques à Besançon 5 équipes de recherche 45 enseignants-chercheurs 3 chercheurs CNRS 9 personnels techniques 25 doctorants 10 invités Que fait-on au laboratoire de math? de la recherche de l'enseignement

Plus en détail