1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données

Dimension: px
Commencer à balayer dès la page:

Download "1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données"

Transcription

1 1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données

2 Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l EPF et l ESCP (06) /04/2015 Etat de l Art du Big data

3 Agenda 1. Data Science, Big Data & analyse des données 2. Cas d usage 3. Zoom sur la Data Science 4. Organisation et Méthodologie 5. Conclusion 3 01/04/2015 Etat de l'art Big Data

4 Business & Decision aujourd hui Multi specialiste Une expertise forte Reconnu sur ses marchés Multi technologies Multi secteurs Maîtrisant les business processes Mondial Local 4 01/04/2015 Etat de l'art du Big data

5 Une présence dans le Monde, un maillage important en France 5 01/04/2015 Etat de l'art du Big data

6 Faits marquants sur des données abonnement de mobiles dans le monde utilisateurs Facebook connexions mobiles à Facebook chaque mois x300 est le taux de croissance des données numériques prévu de 2005 à 2020 au niveau mondial 53 Go est le trafic annuel prévu par IP par habitant en 2016 (19 Go en 2011) est le nombre de tweets par jour (soit presque par seconde) 80 % des données ont été générées dans les deux dernières années 6

7 Pourquoi la Data Science et le Big Data Passage à la vitesse supérieure pour des besoins mal ou non couverts par la BI Capacité et nécessité, désormais, du fait du contexte de Big Data, d exploiter un grand volume de données qu il faut faire parler différemment et réussir à exploiter convenablement Les données de l entreprise sont désormais la plupart du temps accessibles via des entrepôts de données La puissance de calcul est devenue abordable Les méthodes et outils traditionnels atteignent leurs limites devant la multiplication des données et des besoins 1er Avril 2015 Etat de l'art Big Data 7

8 Le Big Data fonctionne avec des données Le stockage de données fournit à une organisation une mémoire (interne et externe) L analytique fournit à l'entreprise l'intelligence et l agilité 8 8

9 Le Big Data dans les entreprises des entreprises ont ou vont investir dans le Big Data dans les 2 ans à venir des entreprises ont déjà déployé des solutions Big Data Sept /10/2014 Etat de l'art du Big data 9

10 La (mauvaise) Définition du Big Data : les 5 V V comme Volume : en augmentation annuelle de plus 50%, le volume de données disponibles croit de manière exponentielle. Le croisement de ces données entre elles étant à la base de pertinence de l information générée, la volumétrie des données est explosive. V comme Variété : à la diversité des sources et des formats (Texte, Photo, Vidéo, Son, Log technique,..) s ajoute une grande variété de fournisseurs internes et externes, objets ou personnes... V comme Vitesse : À l obsolescence rapide d une partie de ces données issues du temps réel et des médias sociaux (données comportementales ou données exprimant un sentiment), s ajoute la nécessité d intégrer au plus vite d autres données pour générer une information de première fraîcheur. V comme Valeur : les données créatrices de valeur sont les plus intéressantes. La difficulté vient du fait que croiser plusieurs données apparemment sans valeur peut créer des données qui auront une grande valeur par la suite. V comme Véracité : Les données doivent avoir un certain niveau de fiabilité pour être exploitables

11 Les (bons) Principaux concepts en Data Science et Big Data Analytique Data Science Descriptif Avancé Big Data Exploration DataViz Explicatif et prédictif BI Architecture Infrastructure traditionnelle 11

12 Positionnement de l Advanced Analytic Advanced Analytic Combinaisons de modèles Analyse supervisée Analyse multivariée Statistique très simple (Moyenne, totaux, ) 12

13 La matière première : La Donnée Définition de donnée Ce qui est donné (ou admis), connu (ou reconnu), déterminé dans l énoncé d un problème, et qui sert de base à un raisonnement, de point de départ pour la recherche de l inconnu Il en ressort que : La notion de donnée est liée à la notion de connaissance et de savoir Mais la donnée n est qu un morceau de connaissance ou d information partielle, voire extrêmement partielle (Une donnée prise seule et isolément ne sert à rien) Il peut servir de base à la reconstitution de la connaissance un peu à la manière d un puzzle ou de l information via la comparaison ces données Elle se positionne dans un contexte, et par rapport à un objectif Ne pas confondre informatique et information, support et données Chaque donnée prise dans son contexte peut être notée sur une échelle de justesse et de certitude 13

14 Les 3 disciplines de l Analyse de données Data Discovery Data Science Dataviz L analyse des données pour tous Apporter de l intelligence aux données Présenter les données pour mieux les partager - Outils dédiés à l analyse des données - Outils issus du monde du Datamining - Capacités graphiques avancées et innovantes - Facilité d utilisation pour tous les utilisateurs de la donnée - Dédiés à des utilisateurs statisticiens / data- Scientists - Support du Data- Storytelling ou des infographies - Fonctionnalités de Dataviz - Apport d une très forte valeur ajoutée sur les données - Présentation dynamique ou statique 1er Avril 2015 Etat de l'art Big Data 14

15 Discipline Data Discovery L analyse des données pour tous La discipline qui demande le moins de compétences aux utilisateurs Une forte maîtrise des données manipulées est nécessaire mais pas de compétence informatique ou mathématique nécessaire Data Discovery Discipline à la croisée des chemins Fonctionnalités de présentation avancées (Dataviz) Fonctionnalités de manipulation complexe des données L apport d intelligence sur ces outils est limitée et des traitements avancés prendront du temps à être réalisés Principales solutions : Acteurs traditionnels : Qlik, Tableau, Tibco Nouveaux acteurs nés du Big Data : Datameer, ZoomData Open- source Apache Elastic Search Kibana 1er Avril 2015 Etat de l'art Big Data 15

16 Discipline Data Science Apporter de l intelligence aux données La discipline des spécialistes (statisticiens, dataminers, data- Scientists) Data Science Une forte maîtrise des données manipulées est nécessaire Des connaissances avancées en statistiques sont nécessaires Les outils de Data- Science sont complexes à prendre en main (langage, interfaces utilisateurs limitées ) Par l élaboration de modèles avancés basés sur des combinaisons d algorithmes ces outils permettent de réaliser du Prédictif La majeure partie du temps de projets de Data Science est à consacrer à la préparation des données (recueil, nettoyage, tri, modélisation ), et à la caractérisation Principales solutions : Acteurs traditionnels : SAS, IBM SPSS, Dell Statistica, SAP Infinite Insight (ex KXEN), SPAD Open- source : R, KNIME, Rapid Miner 1er Avril 2015 Etat de l'art Big Data 16

17 Discipline Data Visualisation Présenter les données complexes de façon simple juste et attractive Cette discipline se concentre sur la présentation des données, le design des représentations Après avoir donné beaucoup d intelligence aux données, il faut un mode de représentation simple Pour véhiculer les bons messages ou donner les bons outils permettant d exploiter l intelligence apportée à des non- sachants Support du Data- Storytelling Dataviz Les fonctionnalités à rechercher sont : Modes de représentations innovants Dynamisme, capacité à interagir sur les informations présentées Principales solutions du marché : Librairies JavaScript : D3.js, CanvasJS, Highcharts Outils de la Data Discovery : Qlik, Tableau, Tibco Outils d infographisme : Adobe Photoshop, InDesign 1er Avril 2015 Etat de l'art Big Data 17

18 Exemple de Dataviz : l importance de l aspect visuel des Indicateurs 18

19 Agenda 1. Data Science, Big Data & analyse des données 2. Cas d usage 3. Zoom sur la Data Science 4. Organisation et Méthodologie 5. Conclusion 19

20 Le Big data pour optimiser l éco- conduite Véhiposte est l opérateur de la flotte de véhicules du Groupe La Poste Quelques chiffres véhicules actifs (4 roues) Données détaillées au trajet (entre 2 arrêts) pour les véhicules électriques immobilisations de véhicules d'au moins 1 journée sur les 4 dernières années Données des capteurs des véhicules électriques + Données déclaratives des véhicules thermiques Utiliser les techniques de l Advanced Analytics pour optimiser l éco- conduite Traitements de calculs avancés sur Hadoop (en Map/Reduce) Dataviz sur QlikView 1er Avril 2015 Etat de l'art Big Data Nov BIG DATA - Etat de l'art 20

21 Projet «Le Smart Watering» En France, 25% de l eau injectée sur le réseau est perdue en fuites et fraudes Le manque à gagner pour les citoyens s élève à 2,4 milliards d euros par an. (Source SIA Conseil) Les canaux numériques et l Internet des objets ouvrent de nouvelles opportunités pour collecter/exploiter les données, et les mettre à disposition de tous Les Gains : Informations en temps réel sur les débits et la qualité de l eau Services à valeur ajoutée pour les consommateurs et les collectivités Détection au plus tôt des problèmes sur le réseau et en bout de chaine Engagement commun au principe de consommation responsable Automatisation du processus de collecte de la consommation 21 01/04/2015 Etat de l'art du Big data

22 Agenda 1. Data Science, Big Data & analyse des données 2. Cas d usage 3. Zoom sur la Data Science 4. Organisation et Méthodologie 5. Conclusion 22

23 Qu est ce que la Data Science? La Data Science propose plusieurs niveaux : De l analyse descriptive : Vise à identifier les causes d une situation donnée De la projection : Vise à projeter sur le futur les éléments du passé De l analyse prédictive : Vise à anticiper au plus juste ce qu il va se passer en basant sur des paramètres contextuels (Contraintes, variables, hypothèses, ) De l analyse prescriptive (Ou optimale) : Vise à identifier et anticiper les actions /décisions les plus optimales à prendre pour arriver à la situation voulue 23

24 Focus sur le prédictif L'analyse prédictive n'est pas nouvelle : Les entreprises emploient déjà la modélisation et le Data Mining depuis des années, notamment sur les métiers de la R&D Les fondements des statistiques ont été inventés dans les années 50 La discipline, connaît cependant un essor sans précédent grâce au marketing digital et au Big Data L analyse prédictive ou quantitative s appuie sur: D importants volumes de données Des méthodes statistiques Des hypothèses de fond Méthodes statistiques Les analyses prédictives et prescriptives reposent sur la capture des liens entre les variables explicatives et la variable à prédire Ces liens sont ensuite utilisés pour déterminer les valeurs de la variable à prédire sur les individus pour lesquels on ne dispose que des variables explicatives Données Hypothèses 24

25 Principaux concepts en Data Science et analytique avancé Data Science Descriptif Approche linéaire : Statistique Explicatif et prédictif Approche non linéaire : Machine learning 25

26 Analytique descriptif, explicatif et prédictif Approche descriptive : Lorsqu on recense les données disponibles, qu on analyse leur qualité, leur complétude, qu on essaye d identifier des indices de comportements (passés), des interactions entre différentes parties, quand on classifie, qu on établit des liens possibles, on est dans une approche descriptive. Approche explicative ou prédictive : Lorsqu on essaye d établir un lien entre des données passés ou présentes et des évènements, des comportements, des risques on est dans une approche explicative ou prédictive. Explicative si on cherche a expliquer une situation existante Prédictive, si elle n existe pas encore Evènements passés Evènements présents Evènements futurs Risques passés Risques présents Risques futurs Passé Présent Futur temps Descriptif Explicatif Prédictif 26

27 Analytique descriptif, explicatif et prédictif Descriptif Variables explicatives Analyse Informations et Connaissance Exemples : segmentation, typologie, classification, analyse dimensionnelle Explicatif et prédictif Variables explicatives Modèle Variable à prédire Exemple : ciblage de campagne, scoring 27

28 Lien entre données et raisonnement Les données et le raisonnement ont une relation étroite avec le savoir et la connaissance Les données sont la base de cette connaissance : Données justes + Raisonnement juste = Connaissance Données fausses + Raisonnement juste = Ignorance Données justes + Raisonnement faux = Ignorance Données fausses + Raisonnement faux = Ignorance 28

29 Très important : Corrélation ne vaut pas cause! Cause et l'effet (Hume, 1748) La cause et l'effet doit se produire dans une continuité de temps (contiguïté) La cause doit se produire avant l effet L'effet ne devrait jamais se produire sans présence de la cause. Condition d élimination (moulin, 1865) Un effet devrait être présent quand la cause est présente Quand la cause est absente l'effet devrait être absente également. Conditions du contrôle : la cause est absente. 29

30 Egalement très important : signaux Forts et signaux faibles Dans les bases de données il existe plusieurs sortes d information : Les signaux forts Ils sont repérables par le fait qu ils induisent des corrélations fortes Ils sont relativement constant sur une longue période de temps Ils peuvent évoluer sur le long terme mais ne se démentent pas Ils ont en quelque sorte valeur de «Loi» On parle aussi de données froides Exemple : le champ magnétique terrestre Les signaux faibles Ils sont beaucoup moins repérables et sont volatiles Ils induisent des corrélations faibles, parfois pas de corrélation du tout Ils évoluent très vite dans le temps Ils ont une durée de vie beaucoup plus courte On parle aussi de données chaudes Exemple : la détection du passage d un chasseur sur un radar La règle : il faut commencer par analyser les signaux forts avant d analyser les signaux faibles! 30

31 Data Mining et modes de raisonnement Nous nous basons sur trois modes de raisonnement principaux : Le raisonnement intuitif : Utile mais on ne peut pas se baser dessus pour prouver et démontrer Le raisonnement déductif : Mode usuel dans la vie courante Utile en particulier en «analyse descriptive» Le but est de représenter les données observées de sorte qu'on puisse les comprendre facilement, d'une manière synthétique : tables, graphiques Le raisonnement inductif : Mode utilisé en particulier en recherche scientifique et en Data Mining Généraliser dans certaines conditions les conclusions obtenues sur un aspect des données. Cette phase dépend d hypothèses, de leur vérification, et d un calcul de risque (erreur) qui peut être évalué. 31

32 Notions clés en Data Science Les deux indicateurs clés en statistique La robustesse du modèle : Aussi nommé «Sig» ou «P- Value» Est égal au pourcentage de chance que le modèle soit du au hasard (donc faux) Un modèle est dit acceptable si son «sig» ou sa p- value est inférieur(e) à 0,05 soit 5 %. La précision : Elle indique les pourcentage de la base expliqué par le modèle Une précision est considérée comme «bonne» à partir de 70 % (0,7). 32

33 Panorama des méthodes en Data Science 33

34 Agenda 1. Data Science, Big Data & analyse des données 2. Cas d usage 3. Zoom sur la Data Science 4. Organisation et Méthodologie 5. Conclusion 34

35 La démarche Data Mining CRISP- DM (1996) CRoss Industry Standard Process for Data Mining Compréhension de la problématique opérationnelle : Définir les objectifs et les prérequis en termes business et les traduire en problématique technique Datamining Compréhension des données Collecter des données, audit de qualité Préparation des données Construction des tables d analyse Modélisation Sélection du meilleur modèle sur des critères statistiques Evaluation Evaluation de la pertinence du modèle par rapports aux objectifs business initiaux Déploiement 35

36 CRISP- DM 36

37 Profils pour un projet d Analytique avancé Comme pour les autres projets basés sur les données, plusieurs acteurs sont à réunir pour le succès du projet : 37

38 Data Scientiste : de multiples dénominations Quel est le titre qui correspond le mieux à vos fonctions? Enquête REXER Advanced Analytics 2013 Ces multiples dénominations donnent à chaque fois un poids renforcé à l une ou l autre des 4 composantes du Data Scientist mais ont une composante commune, celle des Mathématiques et Statistiques 38

39 Constituer une Data Science Team Face à la pénurie de profils et à l incapacité d avoir l homme providentiel en interne, nous conseillons plutôt une approche «Data Science Team» Cette «Data Science Team» sera composée de profils complémentaires permettant de centraliser en un même lieu toutes les compétences pour l Advanced Analytics Cette Data Science Team devra tenir compte des différents métiers : Décideurs, AMOA, AMOE et Utilisateurs finaux! Le point commun des membres de l équipe : Connaissance de la Donnée Approche centrée sur l objectif à atteindre 39

40 Agenda 1. Data Science, Big Data & analyse des données 2. Cas d usage 3. Zoom sur la Data Science 4. Organisation et Méthodologie 5. Conclusion 40

41 Analyse des données : les 6 points clés à retenir 1. Deux phases : la phase de modélisation, et la phase d industrialisation 2. Les points de vigilance en phase de modélisation : a) Corrélation ne vaut pas cause b) Traitement différencié des signaux forts et des signaux faibles c) Le mode de raisonnement est essentiellement de type «inductif» 3. Importance d avoir un objectif : un objectif général vaut mieux que pas d objectif 4. La méthodologie dépend : a) Des Data b) De l infrastructure c) Des outils de modélisation utilisés 5. Les méthodes de machine learning et les méthodes statistiques marchent mieux ensemble 6. La méthodologie doit suite la méthode CRISP, qui est une démarche exploratoire 41

42 BIG DATA Des Questions? Didier Gaultier :

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares

Plus en détail

Les solutions SAS pour les Petites et Moyennes Entreprises

Les solutions SAS pour les Petites et Moyennes Entreprises BROCHURE SOLUTION Les solutions SAS pour les Petites et Moyennes Entreprises Sur un marché aussi compétitif que celui des Petites et Moyennes Entreprises, le temps et l efficacité sont deux valeurs prioritaires

Plus en détail

We make your. Data Smart. Data Smart

We make your. Data Smart. Data Smart We make your We make your Data Smart Data Smart Une société Une société du du groupe Le groupe NP6 SPECIALISTE LEADER SECTEURS EFFECTIFS SaaS Marketing : 50% Data intelligence : 50% 15 sociétés du CAC

Plus en détail

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables DocForum 18 Juin 2015 Réussites d un projet Big Data Les incontournables Vos interlocuteurs Mick LEVY Directeur Innovation Business mick.levy@businessdecision.com 06.50.87.13.26 @mick_levy 2 Business &

Plus en détail

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON L analytique joue un rôle désormais primordial dans la réussite d une entreprise. Les pouvoirs qu elle délivre sont incontestables, cependant

Plus en détail

Big Data -Comment exploiter les données et les transformer en prise de décisions?

Big Data -Comment exploiter les données et les transformer en prise de décisions? IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance

Plus en détail

De la captation de données à la Datavisualisation

De la captation de données à la Datavisualisation De la captation de données à la Datavisualisation [Synopsis de l événement] Objets connectés : générateurs de données à visualiser! «En fait de calculs et de proportion, le plus sûr moyen de frapper l

Plus en détail

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES Stages 2015-2016 Contact : Mme Lapedra, stage@isoft.fr ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET ANALYSE DE DONNEES ISoft est un concepteur-éditeur de logiciels spécialisé dans la recherche

Plus en détail

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com Le Web, l'entreprise et le consommateur Françoise Soulié Fogelman francoise@kxen.com Forum "Quel futur pour le Web" Lyon, mardi 21 septembre 2010 THE DATA MINING AUTOMATION COMPANY TM Agenda Le Web un

Plus en détail

Leçon 4 : Typologie des SI

Leçon 4 : Typologie des SI Leçon 4 : Typologie des SI Typologie des SI Système formel Système informel Typologie des SI Chaque jour au sein d une organisation Le système d info stocke, traie ou restitue des quantités importantes

Plus en détail

NEXITY. Nexity développe une stratégie d E-reputation à 360 sur la base des données sociales fournies par BuzzWatcher. CASE STUDY

NEXITY. Nexity développe une stratégie d E-reputation à 360 sur la base des données sociales fournies par BuzzWatcher. CASE STUDY Online Intelligence Solutions NEXITY développe une stratégie d E-reputation à 360 sur la base des données sociales fournies par BuzzWatcher. CASE STUDY CASE STUDY INTRODUCTION Client Industrie Immobilier

Plus en détail

Comment maximiser le ROI de la chaîne logistique Web

Comment maximiser le ROI de la chaîne logistique Web Comment maximiser le ROI de la chaîne logistique Web Pourquoi une gestion Lean et unifiée du cloud, des performances Web et des analytiques favorise la croissance des entreprises. 1 La chaîne logistique

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Le «data mining», une démarche pour améliorer le ciblage des contrôles

Le «data mining», une démarche pour améliorer le ciblage des contrôles MINISTERE DE L ECONOMIE ET DES FINANCES Le «data mining», une démarche pour améliorer le ciblage des contrôles La lutte contre la fraude aux finances publiques a été renforcée ces dernières années et a

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail

QLIKVIEW POUR SALESFORCE

QLIKVIEW POUR SALESFORCE QLIKVIEW POUR SALESFORCE Exploiter rapidement et facilement les données issues de votre CRM QlikView simplifie l intégration de la Business Discovery à une Plate-forme PaaS (Platform as a Service) éprouvée

Plus en détail

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox Des données à la connaissance client A la découverte de la plateforme de connaissance client knowlbox Livre blanc mai 2013 A l heure du Big Data, les entreprises s interrogent davantage sur leurs données.

Plus en détail

Libérez votre intuition

Libérez votre intuition Présentation de Qlik Sense Libérez votre intuition Qlik Sense est une application nouvelle génération de visualisation de données en libre-service qui permet à chacun de créer facilement des visualisations

Plus en détail

Le consommateur est infidèle et chasseur de primes! Business Analytics software

Le consommateur est infidèle et chasseur de primes! Business Analytics software Connaissance client et analyse prédictive Julien Moreschetti Technical sales B.A. - SPSS Le consommateur est infidèle et chasseur de primes! Business Analytics software Il y a une explosion des points

Plus en détail

Canon Business Services. Gestion des impressions

Canon Business Services. Gestion des impressions Canon Business Services Gestion des impressions 2 Gestion des impressions Aperçu du marché Le saviez-vous? Selon une étude IDC réalisée en 2012, la dépense globale en marketing et communication ne progressera

Plus en détail

Partie I Stratégies relationnelles et principes d organisation... 23

Partie I Stratégies relationnelles et principes d organisation... 23 Introduction......................................................................... 1 1. Définition........................................................................ 2 1.1 Le CRM comme processus

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC

Plus en détail

INTELLIGENCE MARKETING ETUDES DE MARCHE - DATA MINING - CONSEIL EN MARKETING - SYSTEMES D INFORMATION MARKETING

INTELLIGENCE MARKETING ETUDES DE MARCHE - DATA MINING - CONSEIL EN MARKETING - SYSTEMES D INFORMATION MARKETING ETUDES DE MARCHE - DATA MINING - CONSEIL EN - SYSTEMES D INFORMATION Notre mission Des études de marché au data mining Cinq sur Cinq est un institut d intelligence marketing. Notre métier : collecter,

Plus en détail

LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS

LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS LIVRE BLANC LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS Une collaboration entre homme et machine LIVRE BLANC LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS 2 A PROPOS Les hommes

Plus en détail

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009 Le Data Mining Techniques pour exploiter l information Auteur : Dan Noël Date : 24.04.2009 Agenda de la présentation du 26.03.2009 Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

TOP. année promet d être BIG (Business Intelligence Growth) PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013

TOP. année promet d être BIG (Business Intelligence Growth) PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013 0 Cette TOP 10 PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013 année promet d être BIG (Business Intelligence Growth) Quel est le bilan de l année 2012 en matière de solutions décisionnelles?

Plus en détail

La fonction Conformité dans l assurance

La fonction Conformité dans l assurance La fonction Conformité dans l assurance L approche par les risques L exemple de la lutte contre le blanchiment Présentation pour : Faculté d Orléans Intervenant(s) : Laurent GUEREL AG2R LA MONDIALE 1/19

Plus en détail

Dispositifs. Évaluation. Des informations clés pour évaluer l impact de chaque session et piloter l offre de formation

Dispositifs. Évaluation. Des informations clés pour évaluer l impact de chaque session et piloter l offre de formation Dispositifs d Évaluation Des informations clés pour évaluer l impact de chaque session et piloter l offre de formation > Innovant : une technologie SaaS simple et adaptable dotée d une interface intuitive

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE L es utilisateurs du décisionnel réclament plus de souplesse. Les approches mixtes, classiques et liées aux Big Data, répondent

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

D après FD X50-176 Management des processus (2005) AC X50-178 Management des processus, Bonnes pratiques et retours d expérience (2002)

D après FD X50-176 Management des processus (2005) AC X50-178 Management des processus, Bonnes pratiques et retours d expérience (2002) L'approche processus D après FD X50-176 Management des processus (2005) AC X50-178 Management des processus, Bonnes pratiques et retours d expérience (2002) Diaporama : Marie-Hélène Gentil (Maître de Conférences,

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

Big Data et Marketing : les competences attendues

Big Data et Marketing : les competences attendues Big Data et Marketing : les competences attendues Laurence Fiévet Responsable Marketing Corporate Oney Banque Accord LA DYNAMIQUE DU MARKETING Selon la définition de Kotler et Dubois, «Le marketing est

Plus en détail

Pourquoi intégrer le Big Data à son organisa3on?

Pourquoi intégrer le Big Data à son organisa3on? Pourquoi intégrer le Big Data à son organisa3on? Yvan Robert, VP Affaires Stratégiques Emmanuel Faug, Resp. pra>que BI Colloque 2014 Big Data Agenda Qui sommes nous? L importance de l information Méthodes

Plus en détail

Créer de la valeur avec l Open Data

Créer de la valeur avec l Open Data Créer de la valeur avec l Open Data Des enjeux économiques majeurs Entre 106 et 141 par personne et par an Entre 387 et 640 par personne et par an (~les intérêts de la dette en France) Leviers pour créer

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

PLATEFORME MÉTIER DÉDIÉE À LA PERFORMANCE DES INSTALLATIONS DE PRODUCTION

PLATEFORME MÉTIER DÉDIÉE À LA PERFORMANCE DES INSTALLATIONS DE PRODUCTION PLATEFORME MÉTIER DÉDIÉE À LA PERFORMANCE DES INSTALLATIONS DE PRODUCTION KEOPS Automation Espace Performance 2B, rue du Professeur Jean Rouxel BP 30747 44481 CARQUEFOU Cedex Tel. +33 (0)2 28 232 555 -

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Introduction data science

Introduction data science Introduction data science Data science Master 2 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Transformation IT de l entreprise COMMENT PROTÉGER VOS DONNÉES ET APPLICATIONS À L ÈRE DE LA MOBILITÉ?

Transformation IT de l entreprise COMMENT PROTÉGER VOS DONNÉES ET APPLICATIONS À L ÈRE DE LA MOBILITÉ? Transformation IT de l entreprise COMMENT PROTÉGER VOS DONNÉES ET APPLICATIONS À L ÈRE DE LA MOBILITÉ? L a montée en puissance des fuites de données en tout genre et l explosion des volumes de données

Plus en détail

Moteurs de recommandations & pertinence de la conversation. Hervé Mignot herve.mignot@equancy.com 24 Mai 2011

Moteurs de recommandations & pertinence de la conversation. Hervé Mignot herve.mignot@equancy.com 24 Mai 2011 Moteurs de recommandations & pertinence de la conversation Hervé Mignot herve.mignot@equancy.com 24 Mai 2011 Equancy en quelques mots Un cabinet de conseil spécialisé en marketing et communication. Une

Plus en détail

Le métier de Chargé(e) d Etudes Statistiques

Le métier de Chargé(e) d Etudes Statistiques Le métier de Chargé(e) d Etudes Statistiques Nicolas Cabaj Sommaire Présentation du chargé d études statistiques 3 exemples de missions réalisées: Le scoring, illustré par un outil de détection des fraudes

Plus en détail

Dossier Spécial ECUEILS À ÉVITER DANS LES PROJETS BIG DATA

Dossier Spécial ECUEILS À ÉVITER DANS LES PROJETS BIG DATA Dossier Spécial ECUEILS À ÉVITER DANS LES PROJETS BIG DATA L e Big Data est une opportunité à saisir à laquelle la technologie Hadoop répond bien. Reste à éviter les écueils, souvent plus culturels que

Plus en détail

Le Search Analytics Comment optimiser votre stratégie Search grâce au Multitouch Analytics?

Le Search Analytics Comment optimiser votre stratégie Search grâce au Multitouch Analytics? Livre blanc Le Search Analytics Comment optimiser votre stratégie Search grâce au Multitouch Analytics? Nos partenaires: Sommaire Présentation de Mazeberry Introduction au Search Analytics Le Search Engine

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

Transformation IT de l entreprise OBTENIR ENFIN UNE VUE FIABLE ET UNIFIÉE DE VOS DONNÉES, TOUT EN ALLIANT SÉCURITÉ ET AGILITÉ

Transformation IT de l entreprise OBTENIR ENFIN UNE VUE FIABLE ET UNIFIÉE DE VOS DONNÉES, TOUT EN ALLIANT SÉCURITÉ ET AGILITÉ Transformation IT de l entreprise OBTENIR ENFIN UNE VUE FIABLE ET UNIFIÉE DE VOS DONNÉES, TOUT EN ALLIANT SÉCURITÉ ET AGILITÉ L a multiplication des données représente une grande opportunité, encore faut-il

Plus en détail

Sage CRM. La solution complète de Gestion des Relations Clients pour PME. Précision et efficacité à portée de mains!

Sage CRM. La solution complète de Gestion des Relations Clients pour PME. Précision et efficacité à portée de mains! Sage CRM Précision et efficacité à portée de mains! La solution complète de Gestion des Relations Clients pour PME Alliant l innovation pragmatique, la souplesse d utilisation et l efficacité Living Your

Plus en détail

R a p p o r t A n n u e l 2 0 0 5 w w w. t h e m a r k e t i n g r o u p. c o m

R a p p o r t A n n u e l 2 0 0 5 w w w. t h e m a r k e t i n g r o u p. c o m Rapport Annuel 2005 w w w. t h e m a r k e t i n g r o u p. c o m ... The Marketingroup La relation client est aujourd hui plurimédia. Pour leurs actions de conquête et de fidélisation, les marques doivent

Plus en détail

Cinq raisons d aller encore plus loin avec votre environnement de virtualisation

Cinq raisons d aller encore plus loin avec votre environnement de virtualisation Cinq raisons d aller encore plus loin avec votre environnement de virtualisation Selon une étude, l ajout de puissantes fonctions de gestion améliorerait de 20 à 40 % les mesures de performances clés.

Plus en détail

Appel à candidature pour une prestation de service en régie de consultant décisionnel expert sous Qlikview.

Appel à candidature pour une prestation de service en régie de consultant décisionnel expert sous Qlikview. Page 1 Appel à candidature pour une prestation de service en régie de consultant décisionnel expert en développement sous Qlikview à l Observatoire des Sciences et des Techniques (OST) 13 décembre 2013

Plus en détail

Pour une entreprise plus performante

Pour une entreprise plus performante Pour une entreprise plus performante Smart Technology Services Raison Sociale - Smart Technology Services llc Pôle d activités - Service et conseil dans la technologie de l information Pôle d activités

Plus en détail

BI SWISS FORUM (ecom / SITB)

BI SWISS FORUM (ecom / SITB) 2015 04 21 - GENEVA BI SWISS FORUM (ecom / SITB) LE BIG DATA A L ASSAUT DES ZONES DE CONFORT TECH ET BUSINESS WWW.CROSS-SYSTEMS.CH GROUPE MICROPOLE 1100 COLLABORATEURS DONT 130 EN SUISSE +800 CLIENTS 27

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

SOMMAIRE. 2.Maîtriser les Processus : Qu est-ce que ça apporte? 15. 3.Comment maîtriser vos Processus? 19

SOMMAIRE. 2.Maîtriser les Processus : Qu est-ce que ça apporte? 15. 3.Comment maîtriser vos Processus? 19 1.Introduction 5 1.1 A qui s adresse ce petit cahier? 6 1.2 Comment utiliser ce petit cahier? 7 1.3 Dans quel contexte utiliser ce petit cahier? 8 1.4 Les Processus, c est quoi? 9 2.Maîtriser les Processus

Plus en détail

CONFERENCE TECHNOM AIDE IBM

CONFERENCE TECHNOM AIDE IBM Conférence Big Data CONFERENCE TECHNOM AIDE IBM Le BIG DATA : le nouveau pétrole de la société. En présence de : Christophe MENICHETTI (spécialiste BIG DATA chez IBM) JN. SCHNEIDER et F. WEYGAND (professeurs

Plus en détail

6ème édition du Baromètre des investissements informatiques en France

6ème édition du Baromètre des investissements informatiques en France 6ème édition du Baromètre des investissements informatiques en France Objectifs Baromètre des investissements informatiques en France avec pour objectifs : de suivre l évolution de l opinion des responsables

Plus en détail

DOCUMENT D INFORMATION D IDC

DOCUMENT D INFORMATION D IDC DOCUMENT D INFORMATION D IDC Comment Big Data transforme la protection et le stockage des données Août 2012 Écrit par Carla Arend Sponsorisé par CommVault Introduction : Comment Big Data transforme le

Plus en détail

CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER

CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER Tirer pleinement profit de l ETL d Informatica à l aide d une plate-forme de Business Discovery rapide et flexible De plus en plus d entreprises exploitent

Plus en détail

Analyse des coûts projetés de la plate-forme SAP HANA

Analyse des coûts projetés de la plate-forme SAP HANA Étude Total Economic Impact réalisée par Forrester Pour SAP Directrice du projet : Shaheen Parks Avril 2014 Analyse des coûts projetés de SAP HANA Économies réalisables en migrant vers SAP HANA Synthèse

Plus en détail

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Sylvie Dalbin Assistance & Techniques Documentaires DocForum, Le 17 Novembre 2005 Déroulé de l'intervention (1) 1. Définition

Plus en détail

Alphonse Carlier, Intelligence Économique et Knowledge Management, AFNOR Éditions, 2012.

Alphonse Carlier, Intelligence Économique et Knowledge Management, AFNOR Éditions, 2012. 1 Du même auteur chez le même éditeur Alphonse Carlier, Intelligence Économique et Knowledge Management, AFNOR Éditions, 2012. AFNOR 2013 Couverture : création AFNOR Éditions Crédit photo 2011 Fotolia

Plus en détail

Qui sommes-nous? Expertises. Chiffres clé. Premier intégrateur mondial des technologies Microsoft. Références. 2015 Avanade Inc. All Rights Reserved.

Qui sommes-nous? Expertises. Chiffres clé. Premier intégrateur mondial des technologies Microsoft. Références. 2015 Avanade Inc. All Rights Reserved. Qui sommes-nous? Chiffres clé Expertises Premier intégrateur mondial des technologies Microsoft Références 2015 Avanade Inc. All Rights Reserved. 1 Avanade en quelques chiffres Plus de 25 000 collaborateurs

Plus en détail

Business Intelligence

Business Intelligence Business Intelligence Enjeux, Projets, Données, Indicateurs Gilles FONTANINI g.fontanini@decision-network.eu +33 (0)6 11 21 24 53 2? Gilles Fontanini Consultant et Administrateur d un GIE d experts en

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

L approche processus c est quoi?

L approche processus c est quoi? L approche processus c est quoi? D après FD X50-176 Management des processus (2005) AC X50-178 Management des processus, Bonnes pratiques et retours d expérience (2002) Introduction Termes et définitions

Plus en détail

Livre Blanc. Construire un système d information collaboratif de pilotage de l action publique. Mai 2010

Livre Blanc. Construire un système d information collaboratif de pilotage de l action publique. Mai 2010 Livre Blanc Construire un système d information collaboratif de pilotage de l action publique Mai 2010 Un livre blanc édité par : NQI - Network Quality Intelligence Tél. : +33 4 92 96 24 90 E-mail : info@nqicorp.com

Plus en détail

Intelligence Inventive & Mapping des réseaux de Recherche. Expernova & Active Innovation Management GFII 5 Mars 2015

Intelligence Inventive & Mapping des réseaux de Recherche. Expernova & Active Innovation Management GFII 5 Mars 2015 Intelligence Inventive & Mapping des réseaux de Recherche Expernova & Active Innovation Management GFII 5 Mars 2015 Identification d experts & Mapping des Réseaux de Recherche [ expernova, qui sommes nous?]

Plus en détail

Système d information : démystification, facteur de croissance et conduite du changement

Système d information : démystification, facteur de croissance et conduite du changement Système d information : démystification, facteur de croissance et conduite du changement Patrick CONVERTY Directeur Commercial www.cibeo-consulting.com Approche globale de la performance Stratégie Système

Plus en détail

Comment créer de la valeur ajoutée sur les territoires. Des nouvelles chaînes de valeur Véhicule Vert serviciel (exemple 1) Télé travail (exemple 2)

Comment créer de la valeur ajoutée sur les territoires. Des nouvelles chaînes de valeur Véhicule Vert serviciel (exemple 1) Télé travail (exemple 2) Comment créer de la valeur ajoutée sur les territoires Des nouvelles chaînes de valeur Véhicule Vert serviciel (exemple 1) Télé travail (exemple 2) Les 4 modes de création de valeur ajoutée sur un territoire

Plus en détail

d e l a s s urance g r â ce a u «C u s t omer

d e l a s s urance g r â ce a u «C u s t omer Siège mondial : 5 Speen Street Framingham, MA 01701 États-Unis P.508.620.5533 F.508.988.6761 www.idc-fi.com Créer de la valeur dans le secteur d e l a s s urance g r â ce a u «C u s t omer Analytics» L

Plus en détail

deno DATA ENGINEERING AND OPERATIONAL WISDOM PERFORMANCE DES FLUX D INFORMATIONS, VALEUR DES SAVOIR-FAIRE

deno DATA ENGINEERING AND OPERATIONAL WISDOM PERFORMANCE DES FLUX D INFORMATIONS, VALEUR DES SAVOIR-FAIRE Que la stratégie soit belle est un fait, mais n oubliez pas de regarder le résultat. Winston Churchill PERFORMANCE DES FLUX D INFORMATIONS, VALEUR DES SAVOIR-FAIRE Conseil en Organisation, stratégie opérationnelle

Plus en détail

W3MS Web, Marketeur, Manager de Médias sociaux

W3MS Web, Marketeur, Manager de Médias sociaux W3MS Web, Marketeur, Manager de Médias sociaux Nouvelles modes de consommations des biens et des services, Nouvelles formes de communication dans le B2B, dans le B2C, dans le B2B2C, le C2C, Nouvelles compétences

Plus en détail

IBM Content Analytics Libérer l Information

IBM Content Analytics Libérer l Information IBM Content Analytics Libérer l Information Patrick HOFLEITNER patrick_hofleitner@fr.ibm.com Août 2011 TABLE DES MATIERES RESUME...3 INTRODUCTION...4 LA PROBLEMATIQUE...5 1 L EXPLOSION DU CONTENU NON-STRUCTURE...5

Plus en détail

pour réussir Conseils vos projets de de dématérialisation de documents et processus Démarrez

pour réussir Conseils vos projets de de dématérialisation de documents et processus Démarrez pour réussir vos projets de de dématérialisation de documents et processus Conseils Démarrez 10 conseils pour réussir son projet 2 1. Faire une étude d opportunité 2. Définir le cadre de son projet 3.

Plus en détail

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Qui nous sommes Firme québécoise (bureaux à Québec et Montréal) Spécialisée

Plus en détail

Gouvernance et qualité des données sous Solvabilité II Grégoire VUARLOT

Gouvernance et qualité des données sous Solvabilité II Grégoire VUARLOT Gouvernance et qualité des données sous Solvabilité II Grégoire VUARLOT Directeur adjoint, Contrôles spécialisés et transversaux en assurance Autorité de contrôle prudentiel et de résolution 01/04/2015

Plus en détail

CRM Service. Exemples de secteurs concernés. Fonctionnalités clés. Gestion de l activité quotidienne. Gestion complète de la force de vente

CRM Service. Exemples de secteurs concernés. Fonctionnalités clés. Gestion de l activité quotidienne. Gestion complète de la force de vente CRM Service Exemples de secteurs concernés Société de commerce et de négoce Société de services informatiques Cabinet de formation Cabinet de recrutement Société de sécurité et de nettoyage Société de

Plus en détail

Location Analytics. Astrid GLADYS Thierry BABELAERE Pierre TEYSSENDIER. SIG 2013 Conférence Francophone 2 & 3 Octobre Versailles Atelier Technique

Location Analytics. Astrid GLADYS Thierry BABELAERE Pierre TEYSSENDIER. SIG 2013 Conférence Francophone 2 & 3 Octobre Versailles Atelier Technique SIG 2013 Conférence Francophone 2 & 3 Octobre Versailles Atelier Technique Astrid GLADYS Thierry BABELAERE Pierre TEYSSENDIER Plan de session La solution Focus Esri Maps for Cognos Focus Esri Maps for

Plus en détail

Projet de création de SAFRAN ANALYTICS

Projet de création de SAFRAN ANALYTICS Projet de création de SAFRAN ANALYTICS Comité de Groupe 27 février 2015 SOMMAIRE Contexte Enjeux du Big Data pour Safran Projet Safran Analytics Calendrier prévisionnel 1 / CONFIDENTIEL / 27-02-2015 /

Plus en détail

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVER SON CAPITAL CLIENTS, RECRUTER, FIDÉLISER ET RÉCOLTER DU ROI! La société Base Plus cultive depuis

Plus en détail

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités

Plus en détail

Hardis Group Jeudi 28 mai 2015

Hardis Group Jeudi 28 mai 2015 Hardis Group Jeudi 28 mai 2015 L univers d HARDIS GROUP ACTEUR DE L IT, DEPUIS 30 ANS AU SERVICE DE LA TRANSFORMATION ET DE LA PERFORMANCE DES ENTREPRISES_ CHIFFRES CLEFS 670 collaborateurs 5 agences en

Plus en détail

Retour d'expérience sur la mise en place d'un laboratoire de Data Science à la CNP Assurances

Retour d'expérience sur la mise en place d'un laboratoire de Data Science à la CNP Assurances Retour d'expérience sur la mise en place d'un laboratoire de Data Science à la CNP Assurances Atelier animé par Anani OLYMPIO Actuaire certifié Institut des Actuaires, Expert ERM CERA Responsable R&D et

Plus en détail

Dossier Spécial BIG DATA, DÉMARRAGE À RISQUES

Dossier Spécial BIG DATA, DÉMARRAGE À RISQUES Dossier Spécial BIG DATA, DÉMARRAGE À RISQUES L es projets Big Data peuvent buter sur des difficultés, manque de compétences sur le marché, financements réduits... HP propose des solutions pour lever tous

Plus en détail

Une solution PLM efficace pour les entreprises de taille moyenne : Personnalisée, agile et souple

Une solution PLM efficace pour les entreprises de taille moyenne : Personnalisée, agile et souple cenitspin Une solution PLM efficace pour les entreprises de taille moyenne : Personnalisée, agile et souple CONFIGURE YOUR PLM STANDARD www.cenit.com/fr/cenitspin Tout à portée de main grâce au PLM Desktop.

Plus en détail

Sélectionner la bonne base de données de gestion de configurations pour mettre en place une plate-forme efficace de gestion de services.

Sélectionner la bonne base de données de gestion de configurations pour mettre en place une plate-forme efficace de gestion de services. Solutions de Service Management Guide d achat Sélectionner la bonne base de données de gestion de configurations pour mettre en place une plate-forme efficace de gestion de services. Aujourd hui, toutes

Plus en détail

IFR GfK Le Big Data : Comprendre les Consommateurs, Accroitre la Valeur des Etudes Marketing

IFR GfK Le Big Data : Comprendre les Consommateurs, Accroitre la Valeur des Etudes Marketing IFR GfK Le Big Data : Comprendre les Consommateurs, Accroitre la Valeur des Etudes Marketing GfK IFR Fabrice@Benaut.com CIO IFR Group, CIL GfK IBM Patrice Poiraud Directeur Big Data & Analytics, IBM France

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

«Nous vous proposons l équipe et les solutions clé en main qui vont doper les performances de votre entreprise.»

«Nous vous proposons l équipe et les solutions clé en main qui vont doper les performances de votre entreprise.» «Nous vous proposons l équipe et les solutions clé en main qui vont doper les performances de votre entreprise.» Conseil en systèmes et logiciels informatiques FBCOM est une société de conseil en systèmes

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

4ème édition du Baromètre des investissements informatiques en France

4ème édition du Baromètre des investissements informatiques en France 4ème édition du Baromètre des investissements informatiques en France Accenture 01 Business et Technologies * * La Haute Performance. Réalisée. Méthodologie 109 entretiens téléphoniques réalisés auprès

Plus en détail