BIG DATA et DONNéES SEO

Dimension: px
Commencer à balayer dès la page:

Download "BIG DATA et DONNéES SEO"

Transcription

1 BIG DATA et DONNéES SEO Vincent 2012 Affini-Tech - Diffusion restreinte 1

2 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte 2

3 Société 2012 Affini-Tech - Diffusion restreinte 3

4 3 Piliers Méthodes projets Outils de reporting & Datavisualisation Business & Analyses BigData Modélisation Hadoop Technos Sciences Statistiques (R) NoSQL Machine Learning Cloud Intégration, Mise en Oeuvre, Conseil et Formation Une démarche intégrée de bout en bout 2013 Affini-Tech - Diffusion restreinte 4

5 Collecter Stocker Traiter Analyser Valoriser Présenter Organiser BigData Data- Science Data-Viz Votre infrastructure Notre Cloud 2012 Affini-Tech - Diffusion restreinte 5

6 Partenaires sectoriels Mktg & Ventes Finance Métiers Production Stats Applications Apps Data-Viz Infrastructures Partenaires technologiques 2012 Affini-Tech - Diffusion restreinte 6

7 Opportunité Bigdata Métiers Applications Infrastructures Data-Mining Applications Data-visualisations Hybridation Infrastructures 2012 Affini-Tech - Diffusion restreinte 7

8 Agile Data Code Code Code POC Sprint Sprint 2012 Affini-Tech - Diffusion restreinte 8

9 COLLECTER STOCKER ANALYSER PARTAGER D3.j s 2013 Affini-Tech - Diffusion restreinte

10 SEO? 2012 Affini-Tech - Diffusion restreinte 10

11 Obtenir les meilleures positions dans la page de Définir quels éléments du site sont à forte valeur réponse de Google. Les promouvoir vers les moteurs de recherches (linking, etc...) Mesurer et étudier le positionnement du site sur des recherches vis à vis de sa concurrence 2013 Affini-Tech - Diffusion restreinte 11

12 CRAWL et VISITES Organiser le contenu des pages (Pagerank) Faire Crawler les pages par Google Augmentation directe du trafic 2013 Affini-Tech - Diffusion restreinte 12

13 Cercle VERTUEUX de la DATA Mesurer Collecter Produire Analyser 2013 Affini-Tech - Diffusion restreinte 13

14 RésUltats 2013 Affini-Tech - Diffusion restreinte 14

15 Application 2012 Affini-Tech - Diffusion restreinte 15

16 ANNUAIRE 2000 Professions Communes 100 M de requêtes par mois Small data : SEO = env 100 Go /an 2013 Affini-Tech - Diffusion restreinte 16

17 Combien? 10 visites SEO (hors marque) 30 visites SEO (marque) 90 visites non SEO 20 crawl x7 à x10 au total (pages + ressources) Nécessité de filtrer à la source 2013 Affini-Tech - Diffusion restreinte 17

18 TROUVER 400K NOUVELLES URLS À PROMOUVOIR PARMI 84M? Similarités et Classifications Recommandation & intelligence collective OpenData 2012 Affini-Tech - Diffusion restreinte 18

19 Professions Grandes catégories, segments et moyennes Analyse à la granularité la plus fine Communes 2013 Affini-Tech - Diffusion restreinte 19

20 Professions RECOMMANDATIONS Communes 2013 Affini-Tech - Diffusion restreinte 20

21 AUGMENTER LA DONNÉE Data + Insee + Opendata a b c a b c m n n a b c m n n x y z ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~ ~ ~ ~~~ ~~~ ~~~ ~ ~ ~ ~ ~ ~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~ ~ ~ ~~~ ~~~ ~~~ ~ ~ ~ ~ ~ ~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~ ~ ~ ~~~ ~~~ ~~~ ~ ~ ~ ~ ~ ~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~ ~ ~ ~~~ ~~~ ~~~ ~ ~ ~ ~ ~ ~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~ ~ ~ ~~~ ~~~ ~~~ ~ ~ ~ ~ ~ ~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~ ~ ~ ~~~ ~~~ ~~~ ~ ~ ~ ~ ~ ~ Une information plus riche Un ciblage plus pertinent 2013 Affini-Tech - Diffusion restreinte

22 OUTILS Collecter Traiter Analyser Pig 2013 Affini-Tech - Diffusion restreinte 22

23 TYPES de REQUETES Analyse par zones de géographique Données socio-économiques Recherches de similarités Analyse au niveau Url (granularité fine) Impact du Crawl sur les visites 2013 Affini-Tech - Diffusion restreinte 23

24 Pipeline Insee Data géo-éco Logs Visites seo Similarit. Urls. Crawl seo 2013 Affini-Tech - Diffusion restreinte 24

25 Long TAIL Très grosses concentrations d activités sur certaines localités. Map/Reduce!! PIG Skewed joins 1: : : : : : Affini-Tech - Diffusion restreinte 25

26 HEATMAPS Départements (96) Activités (10500) Volume de visites 2013 Affini-Tech - Diffusion restreinte 26

27 MEsurer : Rankings Collecte des réponses Google (30x par recherche = dizaines de millions par mois) Forte croissance de la volumétrie Classifier et Segmenter par produit, par thématiques Affini-Tech - Diffusion restreinte 27

28 2013 Affini-Tech - Diffusion restreinte 28

29 OUTILS Collecter Traiter Stocker Visualiser Pig D3.js Analyser 2012 Affini-Tech - Diffusion restreinte 29

30 GENERALISATION 2012 Affini-Tech - Diffusion restreinte 31

31 Applicable à toute transaction Des données brutes Augmenter la donnée Similarités et Classifications Recommandations 2013 Affini-Tech - Diffusion restreinte 32

32 DAta-PIPELINE Opendata Data- Visualisation Lecture Nettoyage Agrégation Croisement Machine Learning 2013 Affini-Tech - Diffusion restreinte 33

33 : ETL & DW Non-Structuré Transactionnel ETL & DW DataMarts BI Applications 2013 Affini-Tech - Diffusion restreinte 34

34 : EDW Non-Structuré Transactionnel ETL & DW & DataMarts BI Applications 2013 Affini-Tech - Diffusion restreinte 35

35 Applications & Machine Learning Opendata Visualisations Tableau & JS Plateformes 2013 Affini-Tech - Diffusion restreinte 36

36 "With data collection, 'the sooner the better' is always the best answer" Marissa Mayer, Yahoo CEO 2013 Affini-Tech - Diffusion restreinte 37

37 Merci! Vincent Heuschling Gsm : Web : Twitter Affini-Tech - Diffusion restreinte 38

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Mesures DNS à l ère du Big Data : outils et défis. JCSA, 9 juillet 2015 Vincent Levigneron, Afnic

Mesures DNS à l ère du Big Data : outils et défis. JCSA, 9 juillet 2015 Vincent Levigneron, Afnic Mesures DNS à l ère du Big Data : outils et défis JCSA, 9 juillet 2015 Vincent Levigneron, Afnic Sommaire 1. Mesures DNS réalisées par l Afnic 2. Volumes et biais 3. Limitations 4. Pourquoi une approche

Plus en détail

BI SWISS FORUM (ecom / SITB)

BI SWISS FORUM (ecom / SITB) 2015 04 21 - GENEVA BI SWISS FORUM (ecom / SITB) LE BIG DATA A L ASSAUT DES ZONES DE CONFORT TECH ET BUSINESS WWW.CROSS-SYSTEMS.CH GROUPE MICROPOLE 1100 COLLABORATEURS DONT 130 EN SUISSE +800 CLIENTS 27

Plus en détail

Business Intelligence

Business Intelligence Business Intelligence Enjeux, Projets, Données, Indicateurs Gilles FONTANINI g.fontanini@decision-network.eu +33 (0)6 11 21 24 53 2? Gilles Fontanini Consultant et Administrateur d un GIE d experts en

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Trends. Médias sociaux et SEO - la force du contenu

Trends. Médias sociaux et SEO - la force du contenu Trends Médias sociaux et SEO - la force du contenu Problématique Quel est le rôle du contenu dans son projet d optimisation de son site web? SEO : Search Engine Optimization L'optimisation pour les moteurs

Plus en détail

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables DocForum 18 Juin 2015 Réussites d un projet Big Data Les incontournables Vos interlocuteurs Mick LEVY Directeur Innovation Business mick.levy@businessdecision.com 06.50.87.13.26 @mick_levy 2 Business &

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

Plateforme SAS. Data & Information System

Plateforme SAS. Data & Information System Data & Information System SOMMAIRE Rédacteur : Ref: F.Barthelemy AXIO_1111_V1 PLATEFORME SAS PREREQUIS SAS GUIDE SAS WRS SAS PORTAL SAS MINER Une plateforme unique et modulable capable d exploiter l architecture

Plus en détail

Open Data. François Bancilhon twitter.com/fbancilhon www.data-publica.com. Printemps de la recherche EDF R&D 28/9/12

Open Data. François Bancilhon twitter.com/fbancilhon www.data-publica.com. Printemps de la recherche EDF R&D 28/9/12 Open Data François Bancilhon twitter.com/fbancilhon www.data-publica.com Printemps de la recherche EDF R&D 28/9/12 Plan Open data Que faire des données de l open data? Eco-système de la données Data Publica

Plus en détail

Introduction data science

Introduction data science Introduction data science Data science Master 2 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail

_On-Site SEO: Les 10 commandements d'une structure optimisée_. Vos questions sur notre compte Twitter: @virtua_gfx #ECOM15 - #SITB15 - #SMARC15

_On-Site SEO: Les 10 commandements d'une structure optimisée_. Vos questions sur notre compte Twitter: @virtua_gfx #ECOM15 - #SITB15 - #SMARC15 _On-Site SEO: Les 10 commandements d'une structure optimisée_ Vos questions sur notre compte Twitter: @virtua_gfx _ #ECOM15 - #SITB15 - #SMARC15 _1_ _QUI SOMMES-NOUS? _2_ _ 3 PILIERS DU SEO_ 1 2 3 ON-PAGE

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Mappy en Chiffre Filiale du groupe Solocal 10M de visiteurs uniques 300M visites annuelles 100 collaborateurs dont 60% technique 3,7 Md de dalles

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

Cognit Ive Cas d utilisation

Cognit Ive Cas d utilisation Cognit Ive Cas d utilisation 96-98, rue de Montreuil - 75011 Paris _ opicot@ _ + 33 (0)1 40 09 71 55 Sommaire Présentation de la plateforme Cognit Ive SemanticMail : Traitement sémantique des mails Projets

Plus en détail

«ET SI ON INDEXAIT LES DONNÉES?» Tentative de déconstruction du paradigme métadatique. Guillaume SUEUR Rencontres DecryptaGeo 2015

«ET SI ON INDEXAIT LES DONNÉES?» Tentative de déconstruction du paradigme métadatique. Guillaume SUEUR Rencontres DecryptaGeo 2015 «ET SI ON INDEXAIT LES DONNÉES?» Tentative de déconstruction du paradigme métadatique. Guillaume SUEUR Rencontres DecryptaGeo 2015 ETUDE DE CAS Françoise a très envie de réaliser une carte précise d un

Plus en détail

Avant-propos 7. CHAPITRE 1 Les défis de l architecture de l information 13. CHAPITRE 2 Construire un site les niveaux de Garrett 25

Avant-propos 7. CHAPITRE 1 Les défis de l architecture de l information 13. CHAPITRE 2 Construire un site les niveaux de Garrett 25 Sommaire 5 Avant-propos 7 Remerciements 9 Mode d emploi 11 CHAPITRE 1 Les défis de l architecture de l information 13 Jean-michel Salaün, Christine Dufour, Audrey Laplante 1. Une expertise nouvelle 13

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Le nouveau visage de la Dataviz dans MicroStrategy 10

Le nouveau visage de la Dataviz dans MicroStrategy 10 Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités

Plus en détail

Présentation Société Actulligence Consulting

Présentation Société Actulligence Consulting Présentation Société Actulligence Consulting Conseil et Accompagnement Intelligence économique Veille stratégique e-réputation Actulligence Consulting : Présentation Frédéric Martinet, Consultant indépendant

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Pourquoi une stratégie de sites dédiés? Laurent-Pierre GILLIARD AEC 14/06/2007 Vincent MOREAU SYSTONIC 09/06/2006

Pourquoi une stratégie de sites dédiés? Laurent-Pierre GILLIARD AEC 14/06/2007 Vincent MOREAU SYSTONIC 09/06/2006 Pourquoi une stratégie de sites dédiés? Laurent-Pierre GILLIARD AEC 14/06/2007 Vincent MOREAU SYSTONIC 09/06/2006 Pour répondre précisément aux attentes de vos publics cibles Pour répondre aux contraintes

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

We make your. Data Smart. Data Smart

We make your. Data Smart. Data Smart We make your We make your Data Smart Data Smart Une société Une société du du groupe Le groupe NP6 SPECIALISTE LEADER SECTEURS EFFECTIFS SaaS Marketing : 50% Data intelligence : 50% 15 sociétés du CAC

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Gestion des Donnés Métier de Référence

Gestion des Donnés Métier de Référence Gestion des Donnés Métier de Référence (Master Data Management - MDM) Michel Bruley Directeur Marketing Teradata Western Europe Définitions Données Métier de Référence elles permettent d identifier et

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données 1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

AGENCE WEB 360 acteur du web depuis 8 ans en collaboration avec ses partenaires, déploie son. offre SEO

AGENCE WEB 360 acteur du web depuis 8 ans en collaboration avec ses partenaires, déploie son. offre SEO AGENCE WEB 360 acteur du web depuis 8 ans en collaboration avec ses partenaires, déploie son offre SEO «chroniques de votre succès annoncé» en 4 étapes : NetLinking Community Management Référencement publicitaire

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

For Fun and Profit Datasio 2012

For Fun and Profit Datasio 2012 For Fun and Profit Datasio 2012 130 Nouveaux acteurs Big Data depuis 2009 1 2 3 Agenda Hadoop, poids lourd du Big Data Stats Web avec Hive chez Scoop.it Profession: Data Scientist Agenda 1 Hadoop, poids

Plus en détail

Malgré la crise, Le décisionnel en croissance en France

Malgré la crise, Le décisionnel en croissance en France Malgré la crise, Le décisionnel en croissance en France 11 juin 2009 www.idc.com Cyril Meunier IDC France Consulting Manager Copyright 2009 IDC. Reproduction is forbidden unless authorized. All rights

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail

Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le

Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le Partie I BI 2.0 Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le SI classique avec l intégration de la

Plus en détail

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP SFR en quelques chiffres Le Dataware Client GP de SFR en août 2011 150 applications

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Open Data. Enjeux et perspectives dans les télécommunications

Open Data. Enjeux et perspectives dans les télécommunications Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

1 Avant-Propos 5 Remerciements. 9 Usages, contraintes et opportunités du mobile. 33 Site ou application : quelle solution choisir? Table des matières

1 Avant-Propos 5 Remerciements. 9 Usages, contraintes et opportunités du mobile. 33 Site ou application : quelle solution choisir? Table des matières IX Table des matières 1 Avant-Propos 5 Remerciements Partie 1 7 Stratégie et conception des sites et applications mobiles Chapitre 1 9 Usages, contraintes et opportunités du mobile 11 Les usages spécifiques

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Business Intelligence

Business Intelligence avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD Mo3: Big Data, Web & (Cyber)security Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD 23/04/2013 Dassault Systèmes EXALEAD «Information Intelligence» Search & Discovery Entreprise Web «ii»

Plus en détail

Dailymotion: La performance dans le cloud

Dailymotion: La performance dans le cloud Dailymotion: La performance dans le cloud CRiP Thématique Services IT dans le Cloud 06/11/14 Dailymotion en quelques chiffres? 130 millions visiteurs uniques par mois 3 milliards de vidéos vues par mois

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein Analyses croisées de sites Web pour détecter les sites de contrefaçon Prof. Dr. Olivier Biberstein Division of Computer Science 14 Novembre 2013 Plan 1. Présentation générale 2. Projet 3. Travaux futurs

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Responsable du stage : Nabil Belcaid Le Guyader Chef de projet : Ali Belcaid Déroulement du stage

Plus en détail

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA SI 2.0 DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA REF : SICL001 DUREE : 4 JOURS TARIF : 2 695 HT Public Analystes de données, business analysts, développeurs et administrateurs.

Plus en détail

Synodiance. 10 tendances SEO & SEA 19/02/2014

Synodiance. 10 tendances SEO & SEA 19/02/2014 Synodiance 10 tendances SEO & SEA 19/02/2014 Présentation Synodiance Synodiance Spécialiste du référencement naturel Agence indépendante créée en 1999 Search, Link et Performance 35 collaborateurs + de

Plus en détail

David BEDOUET, WebSchool Orleans. Cosmina TRIFAN, WebSchool Orleans

David BEDOUET, WebSchool Orleans. Cosmina TRIFAN, WebSchool Orleans David BEDOUET, WebSchool Orleans Cosmina TRIFAN, WebSchool Orleans INTRODUCTION LE REFERENCEMENT NATUREL (SEO) La stratégie du referencement naturel L optimisation On page L optimisation Off Page LE REFERENCEMENT

Plus en détail

Hébergement MMI SEMESTRE 4

Hébergement MMI SEMESTRE 4 Hébergement MMI SEMESTRE 4 24/03/2015 Hébergement pour le Web Serveurs Mutualités Serveurs Dédiés Serveurs VPS Auto-Hébergement Cloud Serveurs Mutualités Chaque Serveur héberge plusieurs sites Les ressources

Plus en détail

Fouille de données et aide à la décision.

Fouille de données et aide à la décision. Fouille de données et aide à la décision. Introduction au datamining. Anne-Claire Haury M2 Informatique Université Denis Diderot Second semestre 2014-2015 1 Introduction 2 Outline 1 Peut-on faire dire

Plus en détail

Solutions IT pour libérer le potentiel de votre Business

Solutions IT pour libérer le potentiel de votre Business Solutions IT pour libérer le potentiel de votre Business Stop Guessing Décisionnel & Pilotage Get the Attitude Gestion de la Relation Client Go Paperless Gestion Electronique de Documents DECIZIA, Déjà

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Les compétences clés en 2015 La révolution du Big Data souffle sur les métiers du commerce et du marketing

Les compétences clés en 2015 La révolution du Big Data souffle sur les métiers du commerce et du marketing Communiqué de presse Les compétences clés en 2015 La révolution du Big Data souffle sur les métiers du commerce et du marketing Paris, le 7 avril 2015 A la recherche de leviers permettant de soutenir le

Plus en détail

SMALL DATA DANS LA VEILLE

SMALL DATA DANS LA VEILLE SMALL DATA DANS LA VEILLE Collecte et valorisation de l information stratégique dans l entreprise OCP El Jadida 25 Septembre 2014 25 Septembre 2014 OCP - El Jadida 2 Ordre du jour Définitions Etat de la

Plus en détail

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

POURQUOI LES DEPARTEMENTS INFORMATIQUES NE PEUVENT PAS SE PASSER DE QLIKVIEW

POURQUOI LES DEPARTEMENTS INFORMATIQUES NE PEUVENT PAS SE PASSER DE QLIKVIEW POURQUOI LES DEPARTEMENTS INFORMATIQUES NE PEUVENT PAS SE PASSER DE QLIKVIEW Livre blanc QlikView Mars 2014 qlik.com Sommaire Libérez la richesse qui sommeille dans votre entrepôt de données 3 Redevenir

Plus en détail

Outils pour réaliser une Etude de Marché en ligne et rédiger le Business Plan

Outils pour réaliser une Etude de Marché en ligne et rédiger le Business Plan Outils pour réaliser une Etude de Marché en ligne et rédiger le Business Plan 26 mai 2011 Vous pouvez diffuser librement ce document sur un support numérique : site web, blog, lettre d information Vous

Plus en détail

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr BI Open Source Octobre 2012 Alioune Dia, Consultant BI alioune.dia@openbridge.fr 1 Le groupe, en bref 2004 Date de création +7M * Chiffre d affaires 2012 +80 Collaborateurs au 06/2011 35% Croissance chiffre

Plus en détail

Si vous écoutez tout, vous n entendrez rien! Cas de Generali Assurances

Si vous écoutez tout, vous n entendrez rien! Cas de Generali Assurances Si vous écoutez tout, vous n entendrez rien! Cas de Generali Assurances Processus d engagement sur les médias sociaux Stratégie Social Media 2 Social Media Research Social Media Optimisation Community

Plus en détail

Bachelor Responsable de Communication Bachelor 3

Bachelor Responsable de Communication Bachelor 3 Bachelor Responsable de Communication Bachelor 3 Avril 2015 REFERENCEMENT ET WEBANALYTICS SYSB501 Semestre 5 Nombre heures 20 Nombre crédits 2 Langue d enseignement Français ou anglais Département académique

Plus en détail

Enjeux du Référencement naturel

Enjeux du Référencement naturel Enjeux du référencement naturel Enjeux du référencement naturel > Chiffres clés de la recherche, en France Volume de requêtes : Nombre de recherches 1 milliards de recherches / mois Top 5 des moteurs de

Plus en détail

DEMARREZ RAPIDEMENT VOTRE EVALUATION

DEMARREZ RAPIDEMENT VOTRE EVALUATION Pentaho Webinar 30 pour 30 DEMARREZ RAPIDEMENT VOTRE EVALUATION Resources & Conseils Sébastien Cognet Ingénieur avant-vente 1 Vous venez de télécharger une plateforme moderne d intégration et d analyses

Plus en détail

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Thierry Badard, PhD, ing. jr Centre de Recherche en Géoma6que Conférence ITIS - Big Data et Open Data au coeur

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail