Les Entrepôts de Données. (Data Warehouses)

Dimension: px
Commencer à balayer dès la page:

Download "Les Entrepôts de Données. (Data Warehouses)"

Transcription

1 Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage des données (Data warehousing) 1. ETL 2. Modélisation multidimensionnelle 3. L'analyse multidimensionnelle (OLAP) 1. Différentes approches OLAP 2. Opérateurs OLAP 1

2 Le décisionnel? Les entreprises passent à l'ère de l'information. Défi : Transformer une partie de leur système d'information qui avait une vocation de production à un SI décisionnel dont la vocation de pilotage devient majeure. Système d'info. de Production Flux de données externes Orientation : Gestion BD Fournisseurs BD Clients Système d'info. Décisionnel Orientation : Pilotage BD Compta BD DRH Entrepôt de Données BD Magasins Flux de données externes BD Marketing BD Produits 2

3 Le décisionnel? Un système d'information décisionnel (S.I.D.) est un ensemble de données organisé de façon spécifique, approprié à la prise de décision. Ø Connaître l'environnement dans lequel on évolue Ø Finalité d'un système décisionnel : pilotage de l'entreprise Le décisionnel? S.I.D. : pilotage de l'entreprise Outils : Data warehouse ; OLAP 3

4 4

5 5

6 Le décisionnel? Besoin accru de données d'horizons multiples et divers : réorganisation du SI è réactivité nécessaire Les systèmes de gestion sont dédiés aux métiers ; tandis que les systèmes décisionnels sont dédiés au pilotage de l'entreprise L'entreprise ne doit pas seulement avoir une vue verticale de ses métiers (Syst. de gestion) mais une vue transversale (Syst. Décisionnel) Les données peuvent être supportées par des outils spécialisés permettant le pilotage de l'entreprise Passage des données de production aux données décisionnelles Les bases de production : toutes les sources de données (légales, juridiques, fiscales, politiques, techniques, marketing ) Comment organiser ces différentes données dans un ensemble cohérent afin de procéder à toutes les analyses nécessaires pour construire les indicateurs indispensables au pilotage de l'entreprise? Par un processus d'entreposage de données (Data Warehousing) 6

7 Architecture Décisionnelle Entrepôt de données Data Mining E T L Méta données OLAP Analyses sta5s5ques Data Marts Bases de produc5on Administrateur OLAP Reporting Qu'est ce que l'entreposage des données? Phase ETL Phase Structuration Phase OLAP Entrepôt de données E T L Méta données OLAP Data Mining Bases de production Data Marts Analyses statistiques Administrateur OLAP Reporting 7

8 Qu'est ce que l'entreposage des données? Les différentes phases : Phase ETL Phase Structuration Phase OLAP Extraction Transformation Alimentation Administration Conception Modélisation Structuration Administration Analyse Restitution Administration v Phase ETL Travail technique. Extraction des données des différentes BD de production (internes ou externes) Nettoyage des données, règles d'homogénéisation des données sous formes de métadonnées. Techniques d'alimentation : û Chargement des données dans l'ed ; û Fréquences de rafraîchissement : ü par des applications sur les sources de données et l'ed ; ü par des serveurs de réplication du SGBD ou par des outils spécialisés. 8

9 v Phase Structuration Il s'agit de définir la finalité de l'ed : Cibler l'activité de l'entreprise à piloter ; Déterminer et recenser les données à entreposer ; Définir les aspects techniques de la réalisation ; Modèle de données ; Définir des démarches d'alimentation ; Arrêter des stratégies d'administration ; Définir des espaces d'analyse ; Choisir un mode de restitution v Phase (transversale) Administration Elle est constituée de plusieurs tâches pour assurer : la qualité et la pérennité des données aux différents applicatifs ; la maintenance ; la gestion de configuration ; les mises à jour ; l'organisation, l'optimisation du SID ; la mise en sécurité du SID. 9

10 v Phase OLAP C'est le but du processus d'entreposage des données. Elle conditionne le choix de l'architecture de l'ed et de sa construction. Elle doit permettre toutes les analyses nécessaires pour la construction des indicateurs recherchés. v OLAP OLAP (On-Line Analytical Processing) est défini comme étant «... le nom donné à l'analyse dynamique requise pour créer, manipuler, animer et synthétiser l'information par des modèles d'analyse de données exégétiques, contemplatifs et selon des formules» (Codd et al., 1993). En d'autres termes, il s'agit d'applications de modélisation descriptive et d'analyse exploratoire des données, conçues à des fins de prise de décision. 10

11 v OLAP Nigel Pendse auteur de OLAP Report (www.olapreport.com/fasmi.htm) récapitule la définition de l'olap en cinq mots : Fast Analysis of Shared Multidimensional Information (FASMI) traduit en français comme suit : ''Analyse Rapide d'information Multidimensionnelle Partagée'' (http://www.linux-france.org/prj/jargonf/f/fasmi.htm) Critères retenus pour simplifier les règles de Codd et faciliter l'évaluation des outils OLAP. v Phase OLAP Les combinaisons possibles des dimensions, avec les mesures qui en découlent, forment les faits. Il est possible d'appliquer des fonctions agrégatives (somme, moyenne, médiane, etc.) pour obtenir les mesures à partir des données transactionnelles ou de mesures de membres de niveau inférieur. Ainsi, on peut calculer une valeur pour un fait caractérisé par les membres d'une dimension du niveau hiérarchique inférieur qui s'agrègent vers un membre d'un niveau supérieur (ex. la population du Canada est la somme de la population de chacune de ses provinces). Un jeu de données multidimensionnelles est nommé «cube» ou «hypercube» l'organisation des faits selon des axes dimensionnels. 11

12 v Data warehouse : Définition (ou entrepôt de données) q Un ED est une structure informatique dans laquelle est centralisé un volume important de données consolidées à partir des différentes sources de renseignements d'une entreprise (notamment les BDs internes) et qui est conçue de manière que les personnes intéressées aient accès rapidement à l'information stratégique dont elles ont besoin. q Dans un ED, les données sont : sélectionnées et préparées (pour répondre aux questions vitales de l'entreprise), intégrées (à partir des différentes sources de renseignements) et datées (elles gardent la trace de leur origine). q Le terme entrepôt de données supplante ceux de dépôt de données et de centrale de données (se rapproche de magasin de données). v Data warehouse : Définition Bill Inmon a proposé les termes de : Entreprise Data warehouse (EDW) ou Corporate Information Factory (CIF) Ø Le DWH est orienté sujets : les données collectées doivent être orientées ''métier'' et donc triées par thème Ø Le DWH est composé de données intégrées : un ''nettoyage'' préalable des données est nécessaire dans un souci de rationalisation et de normalisation Ø Les données du DWH sont non volatiles : une donnée entrée dans l'entrepôt l'est pour de bon et n'a pas vocation à être supprimée ; Ø Les données du DWH doivent être historisées, donc datées 12

13 Qu'est ce qu'un Entrepôt de Données? D'après BILL Inmon : Un ED est une collection de données thématiques, intégrées, non volatiles et historisées, organisées pour la prise de décision. Thématiques : thèmes par activités majeures ; Intégrées : divers sources de données ; Non volatiles : ne pas supprimer les données du DW ; Historisées : trace des données, suivre l'évolution des indicateurs. Pb de volumétrie, de stockage, d'accès. Evolution des unités de volumétrie des données : Unité Symbole Valeur Observation Octet Octet 1 o représente un caractère d'imprimerie KiloOctet Ko (1024) 100 Ko : image num. basse résolution MegaOctet Mo 10 GigaOctet Go 10 TeraOctet To Mo à un CD-Rom 9 20 Go à un HD de PC To à la bibliothèque du Congrès Américaine PetaOctet Po Po à toute l'info. sur Internet ZettaOctet Zo : x Pas encore d'application 26 13

14 v Architecture de Data warehouse Sources Data Systems Data staging Area (Opera5onal Data Store) Data et Metadata Storage Area End User Presenta5on Tools DSc 1 DWH DSc 2 DSc 3 DSc4 DSc n O.D.S. DM 1 DM 3 DM2 v Architecture de Data warehouse Staging area : C'est une zone temporaire qui sert à stocker les données extraites des systèmes sources. C'est là que s'effectuent les différentes transformations : le nettoyage des données, le merge, la standardisation, le déduplication des données. Les données dans le staging area sont détruites une fois le chargement des data-marts terminé. Data warehouse : Les données du staging area sont transférées vers le DWH. Les métadatas sont aussi stockées dans le DWH. Ce dernier est central et devrait contenir toutes les données de l'entreprise. Zone présentation : A partir du DWH, les utilisateurs peuvent y accéder pour exécuter leurs requêtes ad hoc, programmer les rapports, analyser et visualiser l'information... 14

15 v Architecture de Data warehouse Architecture prônée par Bill Inmon L'ODS : est l'acronyme pour Operational Data Store ou (Magasin de données opérationnelles). Il joue deux rôles : 1. sert à stocker les données extraites des systèmes sources. 2. intègre les données sources dans le but de présenter toute l'information nécessaire à prendre des décisions tactiques. L'Entreprise Data warehouse : Les données de l'ods sont transférées vers le DWH. Ce dernier est central (d'où son appellation Entreprise Data Warehouse (EDW)). Il contient toutes les données de l'entreprise. Les data-marts dépendants : Ils peuvent être alimentés soit de L'EDW soit de l'ods. La zone présentation : Une fois les données chargées dans le Data warehouse et les data-marts dépendants, les utilisateurs peuvent y accéder pour exécuter leurs requêtes Ad hoc, programmer les rapports, analyser et visualiser l'information v Oparational Data Storage (ODS) Il est souvent mis en place pour répondre à au moins un des besoins suivants : - Intégrer les données provenant de plusieurs sources. Normalement ce genre d'intégration devrait être réalisé dans les systèmes sources, mais parce que cela peut couter cher ( temps, dispo. et rentabilité) : on met en place un ODS. - Fournir les données pour prendre des décisions tactiques (reporting) - Permettre de consolider les mises à jour communes aux systèmes sources. Un ODS peut servir de staging area pour alimenter un DW, cependant cela ne doit pas être sa raison d'être. 15

16 v Architecture de Data warehouse Sources Data Systems Data staging Area (Opera5onal Data Store) Bases mul5dimensionnelles End User Presenta5on Tools DSc 1 DSc 3 DSc 2 DSc4 DWH DM 1 DM 2 DM 3 DSc n O.D.S. Cubes OLAP v Approches de mise en place de DW Il existe plusieurs approches pour me>re en place un DW. Par contre seulement trois approches sont communes. il s'agit de l'approche "Top- Down" prônée par Inmon, l'approche "Bo4om- up" de Kimball et de l'approche "Hybride" qui dérivent des deux premières approches. 16

17 v Approches de mise en place de DW Top- Down de Bill Inmon et le CIF Caractéristiques majeures Ø L'emphase est mise sur le DW. Ø Commence par concevoir un modèle de DW au niveau de l'entreprise. Ø Déploies une architecture multi-tiers composée de staging area, de DW et des data- marts dépendants. Ø Le staging area est permanent. Ø Le DW est orienté entreprise; les data-marts sont orientés processus. Ø Le DW contient des données atomiques ; Les data-marts contiennent les données agrégées. Ø Le DW utilise un modèle de données normalisé de toute l'entreprise ; Les data-marts utilisent des modèles multidimensionnels orientés sujet. Ø Les utilisateurs peuvent effectuer des requêtes sur le DW et les data-marts. v Approches de mise en place de DW BoNom- Up de Ralph Kimball et le Bus Architecture Ø L'emphase est mise sur les data-marts. Ø Commence par concevoir un modèle multidimensionnel pour un data-mart. Ø Utilise une architecture qui consiste en un staging area et des data-marts. Ø Le staging area est en général non permanent, mais il peut devenir permanent pour implanter l'architecture en BUS ( Dimensions et faits conformes) Ø Les data-marts contiennent les données atomiques et les données agrégées. Ø Les data-marts peuvent fournir une vue entreprise ou processus. Ø Un data-mart consiste en un seul star schema physique. Ø Les data-marts sont implantés d'une façon incrémentale et intégrée en utilisant les dimensions conformes. Ø Les utilisateurs ne peuvent effectuer des requêtes sur le staging area. 17

18 v Approches de mise en place de DW Hybride Ø L'emphase est sur le DW et les data-marts ; utilise les deux approches top-down et bottom-up Ø Commence par concevoir un modèle de données de l'entreprise en même temps que les modèles spécifiques. Ø Crée un modèle normalisé d'entreprise de haut niveau ; génère les modèles des premiers data-marts. Ø Charge les data-marts avec les données atomiques en utilisant un staging area temporaire. Ø Les modèles des data-marts sont composés d'un ou plusieurs star schémas. Ø Utilise un outil ETL pour charger les data-marts et pour échanger les métadata avec ces derniers. Ø Charge le DW à partir des data-marts lorsqu'il y'a besoin de faire des requêtes à travers plusieurs data-marts en même temps. 18

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II 1ère génération 13 2ème génération : Entrepôt de données / Magasin de données 15 3ème génération OLAP 16 Références Bibliographiques 18 A. 1ère génération Infocentre Tableur Base de données Infocentre

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Les Entrepôts de Données. Le processus d'etl

Les Entrepôts de Données. Le processus d'etl Les Entrepôts de Données (Data Warehouses) Le processus d'etl 1 Les Entrepôts de Données 1. Généralités 2. Entreposage des données (Data warehousing) 2.1. : Phase d'etl 2.1.1. Extraction de données 2.1.2.

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

III. Entrepôts de. données. A. Définition. Définition. Orientées sujet. Intégrées, Variables dans le temps,

III. Entrepôts de. données. A. Définition. Définition. Orientées sujet. Intégrées, Variables dans le temps, Entrepôts de III - données III Définition 19 Architecture d'un entrepôt de données 20 Architecture ED avec magasins de données 22 Architecture basée sur des magasins de données indépendants 23 Fonctionnement

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Datawarehouse. C. Vangenot

Datawarehouse. C. Vangenot Datawarehouse C. Vangenot Plan Partie 1 : Introduction 1. Objectifs 2. Qu'est ce qu'un datawarehouse? 3. Pourquoi ne pas réutiliser les BD? Partie 2 : Implémentation d'un datawarehouse ROLAP MOLAP HOLAP

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II A. 1ère génération Infocentre L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes Définition L'infocentre est une collection de données orientées sujet, intégrées,

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Théories de la Business Intelligence

Théories de la Business Intelligence 25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Évolution de modèle dans les entrepôts de données : existant et perspectives

Évolution de modèle dans les entrepôts de données : existant et perspectives EDA'07 3èmes journées francophones sur les Entrepôts de Données et l'analyse en ligne Poitiers, 7 et 8 Juin 2007 Évolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre,

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

La place de la Géomatique Décisionnelle dans le processus de décision

La place de la Géomatique Décisionnelle dans le processus de décision Géomatique décisionnelle La place de la Géomatique Décisionnelle dans le processus de décision - Arnaud Van De Casteele Mines ParisTech - CRC Arnaud {dot} van_de_casteele {at} mines-paristech.fr Les rencontres

Plus en détail

Fiche de lecture OLAP

Fiche de lecture OLAP Fiche de lecture OLAP NFE107 Urbanisation des Systèmes d Information Karim Sekri Informatique décisionnelle BI, Business Intelligence Système interprétant des données complexes permettant aux dirigeants

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 1 UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 31 janvier 2012 Bordeaux Présentée par :Mme SABRI Aziza Encadrée par : Mme KJIRI Laila Plan 2 Contexte Problématique

Plus en détail

Rapport sur les Datamarts Projet DARTIES

Rapport sur les Datamarts Projet DARTIES 2010 /11 Rapport sur les Datamarts Rapport sur les Datamarts Projet DARTIES Projet tuteuré de 3ème année de l Ecole Polytechnique Universitaire de Lyon I Encadré par Mr Babé. Rédigé par : Laura Tournier,

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP CONSERVATOIRE NATIONAL DES ARTS ET METIERS CENTRE REGIONAL RHONE-ALPES CENTRE D'ENSEIGNEMENT DE GRENOBLE UE ENG111 - Epreuve TEST Travail d'etude et de Synthèse Technique en INFORMATIQUE CAPACITE CARTOGRAPHIQUE

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull BI Haute performance Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull Bull aujourd'hui - La seule expertise 100% européenne des infrastructures et des applications critiques - Une

Plus en détail

Vanilla. Open Source Business Intelligence. Présentation de la plateforme

Vanilla. Open Source Business Intelligence. Présentation de la plateforme Vanilla Open Source Business Intelligence Présentation de la plateforme Novembre 2008 Patrick Beaucamp BPM Conseil Contact : patrick.beaucamp@bpm-conseil.com Table des matières Introduction...3 Portail

Plus en détail

Plateforme SAS. Data & Information System

Plateforme SAS. Data & Information System Data & Information System SOMMAIRE Rédacteur : Ref: F.Barthelemy AXIO_1111_V1 PLATEFORME SAS PREREQUIS SAS GUIDE SAS WRS SAS PORTAL SAS MINER Une plateforme unique et modulable capable d exploiter l architecture

Plus en détail

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration

Plus en détail

Créer le modèle multidimensionnel

Créer le modèle multidimensionnel 231 Chapitre 6 Créer le modèle multidimensionnel 1. Présentation de SSAS multidimensionnel Créer le modèle multidimensionnel SSAS (SQL Server Analysis Services) multidimensionnel est un serveur de bases

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

Project Server 2013 Implémenter, administrer et utiliser la solution Microsoft de gestion de projets

Project Server 2013 Implémenter, administrer et utiliser la solution Microsoft de gestion de projets Introduction à Project Server 1. La gestion de projets par Microsoft 11 1.1 Une histoire liée à l'évolution des organisations 11 1.2 Fonctionnalités de Project Server 2013 14 2. Concepts et terminologie

Plus en détail

Partie I : Introduction

Partie I : Introduction Partie I : Introduction Chapitre I : Introduction et Problématique 1. Introduction A l ère contemporaine, beaucoup d entreprises se sont adaptées au virage de la technologie en informatisant plusieurs

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

Concepts de base. du décisionnel. A. Quelques définitions. Décision. Remarque. Comment prendre de bonnes décisions. Le décideur

Concepts de base. du décisionnel. A. Quelques définitions. Décision. Remarque. Comment prendre de bonnes décisions. Le décideur Concepts de base I - du décisionnel I Quelques définitions 7 Les Phases de la Prise de décision 8 Aide à la décision 8 Le système d'information décisionnel 9 Références Bibliographiques 11 A. Quelques

Plus en détail

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle Concepts Présentation de Business Objects Conception d un univers Business Objects Structure générale d une

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Troisième partie. Entrepôt de données

Troisième partie. Entrepôt de données Troisième partie Entrepôt de données 23 Chapitre 8 Architecture d un entrepôt de données 8.1 Systèmes décisionnels 8.1.1 Comparaison avec un système transactionnel Un système transactionnel est une base

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

Data Discovery Gouvernée. Pourquoi MicroStrategy réussit là où les autres échouent?

Data Discovery Gouvernée. Pourquoi MicroStrategy réussit là où les autres échouent? Data Discovery Gouvernée Pourquoi MicroStrategy réussit là où les autres échouent? Des objectifs différents au sein de l organisation Qui posent des soucis lors de l implémentation réelle d un SID VS Le

Plus en détail

Système OLAP Fresqueau

Système OLAP Fresqueau Système OLAP Fresqueau Kamal BOULIL Journées 20 mars Strasbourg Réunion plénière -Fresqueau 07-08 octobre 2013 1 Plan 1. Introduction 1. Projet ANR Fresqueau 2. Systèmes OLAP 2. Système OLAP Fresqueau

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Conception de systèmes d'information et d'entrepôts de données

Conception de systèmes d'information et d'entrepôts de données Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conception de systèmes d'information et d'entrepôts de données Vers des structures

Plus en détail

Introduction à Business Objects. J. Akoka I. Wattiau

Introduction à Business Objects. J. Akoka I. Wattiau Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Introduction. Division Moyennes et Grandes Entreprises - Direction Produits Page 2 / 7. Communiqué de lancement Sage HR Management V5.

Introduction. Division Moyennes et Grandes Entreprises - Direction Produits Page 2 / 7. Communiqué de lancement Sage HR Management V5. Division Moyennes et Grandes Entreprises Direction Produits Communiqué de lancement Sage HR Management Version 5.10 Nouveau module Décisionnel Bases de données Sage HR Management Version 5.10 MS SQL Server

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise En synthèse HVR pour garantir les échanges sensibles de l'entreprise Le logiciel HVR fournit des solutions pour résoudre les problèmes clés de l'entreprise dans les domaines suivants : Haute Disponibilité

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques Projet personnel Thème : «Etude exploratoire des systèmes d information géographique décisionnels (SIG décisionnels)

Plus en détail

Introduction au domaine du décisionnel et aux data warehouses

Introduction au domaine du décisionnel et aux data warehouses Data warehouse Introduction au domaine du décisionnel et aux data warehouses http://dwh.crzt.fr STÉPHANE CROZAT Paternité - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-sa/2.0/fr/

Plus en détail

Contexte général de l étude

Contexte général de l étude 1 2 Contexte général de l étude Les entrepôts de données associés à des outils d analyse On Line Analytical Processing (OLAP), représentent une solution effective pour l informatique décisionnelle (Immon,

Plus en détail

INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par

INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par Séminaire de formation INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par M. Dia Alioune Expert consultant BI OPEN SOURCE Directeur BADIA OA GROUP : OpenAfriki France Du 09 au 11

Plus en détail

III. Entrepôts de. données. Définition. Orientées sujet. Intégrées, Variables dans le temps, Non volatiles

III. Entrepôts de. données. Définition. Orientées sujet. Intégrées, Variables dans le temps, Non volatiles Entrepôts de III - données III Définition Un entrepôt de données est une collection de données orientées sujet, intégrées, variables dans le temps et non volatiles, en soutien au processus de prise de

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

Management Development International Institute

Management Development International Institute Comprendre l'environnement et élaborer la stratégie Connaître et utiliser les principaux outils et méthodes d'analyse stratégique et de prospective, Comprendre et évaluer le contexte culturel, économique

Plus en détail

Base de données clients outil de base du CRM

Base de données clients outil de base du CRM Base de données clients outil de base du CRM Introduction Objectifs SOMMAIRE Constitution de la base de données clients Alimentation Datamart et DataWarehouse Contenu Dimensions Exploitation de la base

Plus en détail

eframe pour optimiser les reportings métiers et réglementaires

eframe pour optimiser les reportings métiers et réglementaires eframe pour optimiser les reportings métiers et réglementaires TIME WINDOW DRIVEN REPORTING POUR DES ANALYSES ET DES RAPPORTS COMPLETS ET EXACTS, À TEMPS TOUT LE TEMPS www.secondfloor.com eframe pour optimiser

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Plan de Continuité d'activité Concepts et démarche pour passer du besoin à la mise en oeuvre du PCA

Plan de Continuité d'activité Concepts et démarche pour passer du besoin à la mise en oeuvre du PCA Qu est-ce que la Continuité d'activité? 1. Définition 11 2. Les objectifs et enjeux du PCA 12 2.1 Les objectifs 12 2.2 Les enjeux 13 3. Les contraintes et réglementations 14 3.1 Les contraintes légales

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures]

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures] Objectif Utiliser les techniques de gestion de la mise en cache pour contrôler et améliorer les performances des requêtes Définir des mesures simples et des mesures calculées pour une table de faits Créer

Plus en détail

Chapitre 1 Introduction

Chapitre 1 Introduction Les éléments à télécharger sont disponibles à l'adresse suivante : http://www.editions-eni.fr Saisissez la référence ENI de l'ouvrage SOBI10SHA dans la zone de recherche et validez. Cliquez sur le titre

Plus en détail

Bases de données multimédias Bases de données multidimensionnelles

Bases de données multimédias Bases de données multidimensionnelles Bases de données multimédias Bases de données multidimensionnelles Contenu BD Multimédia : Caractéristiques Modélisation Interrogation Architectures des SGBD multimédias BD Multidimensionnelles Motivations

Plus en détail

Devenir Responsable de la sécurité des systèmes d'information (RSSI)

Devenir Responsable de la sécurité des systèmes d'information (RSSI) Titre de la formation Devenir Responsable de la sécurité des systèmes d'information (RSSI) Date prévue de la formation Week-end : 31 Mars et 01 Avril, Milieu de semaine : 27 et 28 Mars Objectifs : 2 Jours

Plus en détail