Bases de Données Avancées

Dimension: px
Commencer à balayer dès la page:

Download "Bases de Données Avancées"

Transcription

1 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin, F Bobigny cedex Tél. : , Fax. : INFO2 BDA

2 2/26 Les entrepôts de données/data Warehouses La majeure partie des applications Bases de Données reposent aujourd hui sur trois couches : La couche la plus externe est celle de qui permet de présenter les données aux utilisateurs. Elle est appelée Graphical User Interfaces GUI. La couche application intermédiaire inclut le programme de l application Elle même et ne stocke pas les données. La couche la plus interne gère le stockage des données. Elle est appelée la couche Base de Données.

3 3/26 Les applications interrogent les données avec, par exemple, le langage SQL (Select) et les mettent à jour par l intermédiaire des opérations Insert, Update et Delete qui constituent des transactions. Celles-ci doivent avoir certaines propriétés ACID (Atomicité, Cohérence, Isolation et Durabilité) Ce type d application est appelé On-Line Transaction Processing OLTP.

4 4/26 Couche Présentation Graphical User Interfaces GUI GUI Couche Application OLTP Application OLTP Application Decision support System Insert, Update, Delete Read, Select Couche Base de Données BD1 BD2 Ressources externes (file system, ftp, www,...)

5 5/26 Données volumineuses & Besoins nouveaux Systèmes d Information Décisionnel Systèmes d Aide à la Décision : Rapports, Etats, Tableaux de Bord, Graphiques, Synthèses, Groupement, Agrégat, Résumé... (Reporting Tools, Management Information System, Executive Information System, Decision Support System DSS)

6 6/26 Remarques Contrairement aux applications OLTP, qui consultent et mettent à jour les données des BD opérationnelles, les DSS lisent les données seulement pour avoir de nouvelles informations à partir des données sources Bénéfice de cette approche : seules les BD opérationnelles ont à être créées et maintenues Un ensemble de méta-données est utilisés pour les 2 systèmes. Les DSS ne nécessitent que des travaux supplémentaires mineurs.

7 7/26 Remarques Cependant, plusieurs désavantages : (quand le DSS et les application OLTP se partagent les mêmes BD) Le DSS ne peut utiliser que les données actuellement stockées dans les BD donc les analyses historiques sont souvent impossibles à cause des opérations de mises à jour qui changent les données historiques L utilisation des BD en mode multi-utilisateurs ce qui implique des opérations de verrouillage des données (Locking operations) et donc des problèmes de performances car les requêtes analytiques demandent l accès à de très grands nombre de tuples.

8 8/26 La solution est de séparer la BD orientée Transaction de la BD orientée Aide à la Décision d où la naissance du concept Entrepôt de Données = Data Warehouse. Les DWH sont physiquement séparés des SGBD opérationnels (BD opérationnelles)

9 9/26 Définitions Définitions (Inmon 1996) Orienté Sujet : Le but des DWH est d améliorer la prise de décision, de planification, et le contrôle des sujets majeurs de l entreprise comme les relations entre les marchants, les produits, les régions contrairement des applications OLTP qui sont organisées autour des flux de données de l entreprise

10 10/26 Définitions Définitions (Inmon 1996) Données Intégrées : Les données dans un DWH sont chargées de differentes sources contenant des données sur différents formats. Les données doivent être vérifiées, triées et tranformées dans un format unifié afin de faciliter et accélérer l accès.

11 11/26 Définitions Définitions (Inmon 1996) Données Historisées : et donc datées : avec une conservation de l historique et de son évolution pour permettre les analyses comparatives (par exemple, d une année sur l autre, etc.). Dans un Datawarehouse un référentiel de temps est nécessaire : C est l axe temps ou période.

12 12/26 Définitions Définitions (Inmon 1996) Donnnées Non-volatiles : stables en lecture seule non modifiables Afin de conserver la traçabilité des informations et des décisions prises, les informations stockées au sein du Datawarehouse ne doivent pas disparaître...

13 13/26 Définitions Couche Présentation Graphical User Interfaces GUI GUI Couche Application OLTP Application OLTP Application Decision support System Insert, Update, Delete Read, Select Couche Base de Données BD2 BD1 Target DataBase Load DataWareHouse Ressources externes (file system, ftp, www,...)

14 14/26 Architecture Architecture des DWHs Méta données Sources externes Extraire Nettoyer Transformer Charger (Load) Intégrer Utiliser Rafraichir Maintenir Entrepot de données OLAP BD opérationnelles

15 15/26 Architecture Le DWH intègre des données à partir de sources multiples et hétérogènes afin de répondre aux requêtes du système d aide à la décision. Ce type d application est appelé On-Line Analytical Processing OLAP OLAP permet la transformation des données en informations stratégiques

16 16/26 Définition d un DWH Définition d un Data Warehouse Un système de DWH peut être formellement défini comme un triplet <BD cible, méta-données, un ensemble d opérations> L ensembles des opérations peut être présentés en 4 catégories (ETL, Agrégation et Groupement)

17 17/26 Définition d un DWH Définition d un Data Warehouse Extraction (Extraction) : Ces opérations permettent de filtrer les données à partir de données sources (BD, fichiers, sites web...) dans des BD temporaires. Transformation (Transformation) : Ces opérations permettent de transformer les données extraites dans un format uniforme. Les conflits entre les modèles, les schémas et les données sont résolus durant cette phase. Chargement (Load) : Ces opérations permettent de charger les données transformées dans la BD cible. La BD cible est souvent implantée avec un SGBD relationnel-objet. Agrégat et Groupement (Agregating and Grouping) : La BD cible doit permettre de stocker les données opérationnelles et les données issues de calculs.

18 18/26 Définition d un DWH Les données des entreprises sont généralement : Surabondantes Eparpillées Peu structurées pour l analyse Focalisées pour améliorer le quotidien Problème : Prise de décision difficile Solution : Apparition d outils et de techniques visant à préparer les données pour l analyse Data warehousing Il s agit d une technique visant à extraire des données de différentes sources afin de les intégrer selon des formats plus adaptés à l analyse et la prise de décision

19 19/26 BD vs. DWH Pourquoi pas des BDs pour Data WareHouse? les 2 systèmes sont performants SGBD calibrés pour l OLAP : méthodes d accès index, contrôle de concurrence, reprise WareHouse - calibrés pour l OLAP : requêtes OLAP complexes, vue dimensionnelle, consolidation Fonctions et données différentes Données manquantes : l aide à la décision a besoin des données historiques qui ne se trouvent pas dans les BD opérationnelles Consolidation : l AD a besoin de données consolidées (agrégats) alors qu elles sont brutes dans les BD opérationnelles

20 20/26 : Comparaison Data Ware House vs. SGBD hétérogènes Traditionnellement, l intégration de BD hétérogènes se fait par le biais de Wrappers/médiateurs au dessus des BDs hétérogènes Approches orientées requêtes Quand une requête est posée sur un site client, un métadictionnaire est utilisé pour le traduire en plusieurs requêtes appropriées à chacune des BD. Le résultat est l intégration de réponses partielles L exécution des requêtes demandent donc beaucoup de ressources DataWare House : approche orientée mise à jour les informations sont intégrées et stockées pour une interrogation directe. Plus efficace en coût d exécution des requêtes BD vs. DWH

21 21/26 : Comparaison BD vs. DWH DataWare house vs. BD opérationnelle OLTP (On-Line Transaction Processing) Exécution en temps réel des transactions, pour l enregistrement des opérations quotidiennes : inventaires, commandes, paye, comptabilité Par opposition au traitement en batch OLAP (On-Line Analytical Processing) Traitement efficace des requêtes d analyse pour la prise de décision qui sont par défaut assez complexes (bien qu a priori, elles peuvent être réalisées par les SGBD classiques)

22 22/26 BD vs. DWH : Comparaison DataWare house vs. BD opérationnelle : OLTP vs. OLAP Données : courantes, détaillées vs. historiques, consolidées Conception : modèle ER + application vs. modèle en étoile + sujet Vues : courantes, locales vs. évolutive, intégrée Mode d accès : mise à jour vs. lecture seule mais requêtes complexes

23 23/26 : Comparaison BD vs. DWH Systèmes OLTP Données exhaustives Données courantes Données dynamiques Données non volumineuses Orientés applications Utlisateurs nombreux Utilisateurs variés Mises à jour, interrogation Réquêtes simples Systèmes OLAP Données résumées Données historiques Données statiques Données Volumineuses Orientés sujets Utilisateurs peu nombreux Décideurs Intérrogations Requêtes complexes

24 24/26 Architecture du DWH Architecture et conception Dictionnaire de Méta données OLAP SERVER Oracle Express Data select (requetes) MVS (TSO, DB2...) UNIX (Oracle,...) E(xtract) T(ransform) L(oad) DataWareHouse Oracle 9i (Olap) Business Objects (rapports, analyses) SAS (Datamining) Windows (SQL Server, Excel,...) Data Marts Applications en production Controle et chargement des données OLAP Outils Front End

25 25/26 Architecture et conception Conception logique des DWHs Données multidimentionnelles Montant des ventes comme une fonction des paramètres produits, mois région Région Dimensions : Produit, Lieu, Temps Chemins de consolidation hiérarchiques Année Industrie Région Catégorie Pays Trimestre Produit Produit Ville Magasin Mois Jour Semaine Mois

26 26/26 A suivre Architecture et conception Fouille de données

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II 1ère génération 13 2ème génération : Entrepôt de données / Magasin de données 15 3ème génération OLAP 16 Références Bibliographiques 18 A. 1ère génération Infocentre Tableur Base de données Infocentre

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

Généralités sur les bases de données

Généralités sur les bases de données Généralités sur les bases de données Qu est-ce donc qu une base de données? Que peut-on attendre d un système de gestion de bases de données? Que peut-on faire avec une base de données? 1 Des données?

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Partie I : Introduction

Partie I : Introduction Partie I : Introduction Chapitre I : Introduction et Problématique 1. Introduction A l ère contemporaine, beaucoup d entreprises se sont adaptées au virage de la technologie en informatisant plusieurs

Plus en détail

Objectifs. Maîtriser. Pratiquer

Objectifs. Maîtriser. Pratiquer 1 Bases de Données Objectifs Maîtriser les concepts d un SGBD relationnel Les modèles de représentations de données Les modèles de représentations de données La conception d une base de données Pratiquer

Plus en détail

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Partie 1 : Notion de bases de données (Conception

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza

Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Avant de commencer à travailler avec le produit, il est nécessaire de comprendre, à un haut niveau, les problèmes en réponse desquels l outil a été

Plus en détail

Introduction à l Informatique Décisionnelle - Business Intelligence (7)

Introduction à l Informatique Décisionnelle - Business Intelligence (7) Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/55 Bases de Données Avancées Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin, F-93017

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

Présentation salon Linux Paris Janvier 2006 / FR / CSS6

Présentation salon Linux Paris Janvier 2006 / FR / CSS6 Présentation salon Linux Paris Janvier 2006 / FR / CSS6 Talend en bref Un éditeur leader technologique sur le marché de l intégration des données en entreprise 1 er acteur ETL Open Source 1 er acteur sur

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/62 Bases de Données Avancées Introduction & Rappel Conception et Modélisation Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE

ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE ORACLE DATA INTEGRATOR ENTERPRISE EDITION offre de nombreux avantages : performances de pointe, productivité et souplesse accrues pour un coût total de

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

BASES DE DONNÉES AVANCÉES

BASES DE DONNÉES AVANCÉES L3 Informatique Option : ISIL BASES DE DONNÉES AVANCÉES RAMDANI MED U-BOUIRA M. R A M D A N I @ U N I V - B O U I R A. D Z P E R S O. L I V E H O S T. F R Cours 5 : Evaluation et optimisation des requêtes

Plus en détail

Module IUP3 Bases de Données Avancées. Esther Pacitti

Module IUP3 Bases de Données Avancées. Esther Pacitti Module IUP3 Bases de Données Avancées Esther Pacitti Objectifs générales du Module Réviser les principales concepts de BD relationnelle et la langage algébrique et SQL (interrogation et màj) Comprendre

Plus en détail

Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème

Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème Chapitre IX L intégration de données Le problème De façon très générale, le problème de l intégration de données (data integration) est de permettre un accès cohérent à des données d origine, de structuration

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

Intégration de données hétérogènes et réparties. Anne Doucet Anne.Doucet@lip6.fr

Intégration de données hétérogènes et réparties. Anne Doucet Anne.Doucet@lip6.fr Intégration de données hétérogènes et réparties Anne Doucet Anne.Doucet@lip6.fr 1 Plan Intégration de données Architectures d intégration Approche matérialisée Approche virtuelle Médiateurs Conception

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

Guide de démarrage rapide avec DataStudio Online Edition

Guide de démarrage rapide avec DataStudio Online Edition Guide de démarrage rapide avec DataStudio Online Edition Introduction Ce document vient en complément des films de démonstration disponibles sur le site web de data. L ETL ETL est un sigle qui signifie

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

Introduc;on à l intelligence d affaires et aux entrepôts de données

Introduc;on à l intelligence d affaires et aux entrepôts de données MTI820 Entrepôts de données et intelligence d affaires Introduc;on à l intelligence d affaires et aux entrepôts de données C. Desrosiers Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaBi,

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

Enterprise Intégration

Enterprise Intégration Enterprise Intégration Intégration des données L'intégration de données des grandes entreprises, nationales ou multinationales est un vrai cassetête à gérer. L'approche et l'architecture de HVR est très

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Choix de l outil PENTAHO

Choix de l outil PENTAHO Choix de l outil PENTAHO GROUPES : Encadrant : IDRISSI BADSSI abd al moughit Mme LEMRINI loubna HALIM hamza LARHROUCH mustapha Table des matières Business intelligence... 2 Les Outils Open source de Business

Plus en détail

Évolution de modèle dans les entrepôts de données : existant et perspectives

Évolution de modèle dans les entrepôts de données : existant et perspectives EDA'07 3èmes journées francophones sur les Entrepôts de Données et l'analyse en ligne Poitiers, 7 et 8 Juin 2007 Évolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre,

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

EPITA. Bases de données 2 ème par4e AppIng2-2015 Session 2014. Alexandra Champavert. Copyright 2010-2014 Alexandra Champavert - 1 -

EPITA. Bases de données 2 ème par4e AppIng2-2015 Session 2014. Alexandra Champavert. Copyright 2010-2014 Alexandra Champavert - 1 - EPITA Bases de données 2 ème par4e AppIng2-2015 Session 2014 Alexandra Champavert - 1 - Contenu du cours Le datawarehouse Principes de modélisa=on (flocon, étoile) Les ETL Les fonc=onnalités propres à

Plus en détail

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise En synthèse HVR pour garantir les échanges sensibles de l'entreprise Le logiciel HVR fournit des solutions pour résoudre les problèmes clés de l'entreprise dans les domaines suivants : Haute Disponibilité

Plus en détail

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1)

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1) Introduction à lʼinformatique Décisionnelle et la «Business Intelligence» (1) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel.

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. IBM Software Group Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. Lydie Peter, IBM Software Group. 2004 IBM Corporation Le principe : Identifier et réagir Filtres

Plus en détail

La Business Intelligence en toute simplicité :

La Business Intelligence en toute simplicité : MyReportle reporting sous excel La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! En rendant les données accessibles aux personnes habilitées dans l entreprise (comptabilité,

Plus en détail

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse Datawarehouse 1 Plan Ce qu est le datawarehouse? Un modèle multidimensionnel Architecture d un datawarehouse Implémentation d un datawarehouse Autres développements de la technologie data cube 2 Ce qu

Plus en détail

Plateforme SAS. Data & Information System

Plateforme SAS. Data & Information System Data & Information System SOMMAIRE Rédacteur : Ref: F.Barthelemy AXIO_1111_V1 PLATEFORME SAS PREREQUIS SAS GUIDE SAS WRS SAS PORTAL SAS MINER Une plateforme unique et modulable capable d exploiter l architecture

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles

Plus en détail

FICHE CONCEPT 01 ETL (EXTRACT TRANSFORM & LOAD)

FICHE CONCEPT 01 ETL (EXTRACT TRANSFORM & LOAD) FICHE CONCEPT 01 ETL (EXTRACT TRANSFORM & LOAD) BIEN GERER SES REFERENTIELS DE DONNEES : UN ENJEU POUR MIEUX PILOTER LA PERFORMANCE DE SON ETABLISSEMENT octobre 2008 GMSIH 44, Rue de Cambronne 75015 Paris.

Plus en détail

MyReport, une gamme complète. La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! pour piloter votre activité au quotidien.

MyReport, une gamme complète. La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! pour piloter votre activité au quotidien. MyReportle reporting sous excel La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! MyReport, une gamme complète pour piloter votre activité au quotidien. En rendant les données

Plus en détail

Datawarehouse and OLAP

Datawarehouse and OLAP Datawarehouse and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today architecture ETL refreshing warehousing projects architecture architecture

Plus en détail

Bases de données et aide à la décision

Bases de données et aide à la décision Chapitre 1 Bases de données et aide à la décision 1.1 Architecture d un entrepôt de données Actuellement, les systèmes d information sont principalement constitués par les bases de données utilisées par

Plus en détail

Licence Professionnelle en Statistique et Informatique Décisionnelle (S.I.D.)

Licence Professionnelle en Statistique et Informatique Décisionnelle (S.I.D.) Université de Lille 2 - Droit et Santé Ecole Supérieure des Affaires & Institut Universitaire de Technologie (IUT-C) Département Statistique et Traitement Informatique des Données Licence Professionnelle

Plus en détail

Introduction aux S.G.B.D.

Introduction aux S.G.B.D. NFE113 Administration et configuration des bases de données - 2010 Introduction aux S.G.B.D. Eric Boniface Sommaire L origine La gestion de fichiers Les S.G.B.D. : définition, principes et architecture

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Cours #4 Introduction aux bases de données

Cours #4 Introduction aux bases de données IFT-6800, Automne 2015 Cours #4 Introduction aux bases de données Louis Salvail André-Aisenstadt, #3369 salvail@iro.umontreal.ca Pourquoi les bases de données Des applications nécessitent l organisation

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier?

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier? DOSSIER SOLUTION CA ERwin Modeling Comment gérer la complexité des données et améliorer l agilité métier? CA ERwin Modeling fournit une vue centralisée des définitions de données clés afin de mieux comprendre

Plus en détail

Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI)

Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI) Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI) Imade BENELALLAM Imade.benelallam@ieee.org AU: 2012/2013 Imade Benelallam : imade.benelallam@ieee.org

Plus en détail

Les PGI. A l origine, un progiciel était un logiciel adapté aux besoins d un client.

Les PGI. A l origine, un progiciel était un logiciel adapté aux besoins d un client. Les PGI Les Progiciels de Gestion Intégrés sont devenus en quelques années une des pierres angulaire du SI de l organisation. Le Système d Information (SI) est composé de 3 domaines : - Organisationnel

Plus en détail