Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Dimension: px
Commencer à balayer dès la page:

Download "Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group"

Transcription

1 1

2 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2

3 Le défi du Big Data (et le z Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 3

4 SGBDs Traditionnels Big Data / Map-Reduce / NoSQL Systems Echelle de Données Typique Gigabytes / Terabytes Petabytes / Exabytes Type d Accès OLTP et Batch Batch Lecture? Mise à jour? Lecture et Ecriture fréquentes Ecrite une fois, Lue de nombreuses fois Structure / Schema des données Schema Fixe Schema Flexible ou sans Schema Cohérence, Intégrité Transactionnelle Transactionnel, ACID Cohérence Finale Capacité de Croissance (Scaling) Non linéaire Linéaire 4

5 Le paysage du Big Data Data in Motion Streams Information Ingestion and Operational Information Stream Processing Data Integration Master Data Real-time Analytics Video/Audio Network/Sensor Entity Analytics Predictive Landing Area, Analytics Zone and Archive Exploration, Integrated Warehouse, and Mart Zones Discovery Deep Reflection Operational Predictive Intelligence Analysis BI and Predictive Analytics Data at Rest Raw Data Structured Data Text Analytics Data Mining Entity Analytics Machine Learning Navigation and Discovery Data in Many Forms Information Governance, Security and Business Continuity

6 Le zenterprise) sur ce paysage Data in Motion Data at Rest Data in Many Forms Information Ingestion and Operational Information IMS DB2 z/os Streams Stream Processing Data Integration Master Data DataStage Real-time Analytics Video/Audio Network/Sensor Entity Analytics Predictive Streams Landing Area, Analytics Zone and Archive Raw Data Structured Data Text Analytics Data Mining Entity Analytics Machine Learning Exploration, Integrated Warehouse, and Mart Zones Discovery Deep Reflection Operational Predictive Information Governance, Security and Business Continuity Information Server zdoop BigInsights Guardium DB2 z/os DB2 Analytics Accelerator Intelligence Analysis BI and Predictive Analytics Navigation and Discovery Cognos SPSS DataExplorer

7 Amener l analyse aux données )et non l inverse Extract, Transform & Load (ETL) 1TB ETL par jour, Les coûts de copie initiale plus 3 dérivées >$8 millions sur 4 ans (*) Applications Operationnelles Transfert de données Applications Analytiques Le plus grand bénéfice est obtenu quand l analyse est faite au plus près des données d origine 72% des interrogés (**) planifient d analyser les données transactionnelles issues des applications de l enterprise Environnements transactionnel <> analytique Multiple copies de données Consommation signficative de puissance de calcul 80% des données des grandes sociétés résident et sont générées par les mainframes * Source: enquête interne CPO. Assume dist. send and load is same cost as receive and load.. Also, assume 2 switches and 2 T3 WAN connections. ** Gartner research note Sept Survey Analysis -Big Data Adoption in 2013 Shows Substance Behind the Hype

8 zentreprise HyTAP Transactionnel et Analytique optimisés Tout est en ligne les analyses sont à la bonne place Transactions OLTP Analyses Operationnelles Données en Temps Réel DB2 Native Processing Haute concurrence Reporting Standards OLAP Requêtes Complexes Requêtes sur Historique 8 IBM DB2 Analytics Accelerator Analyses Avancées* IBM PureData System for Hadoop Intégrer Accélération native z ou contrôlée depuis le z: Larges caches, memoire, flash Technologie IDAA : FPGA, compresssion/traitement SQL Connectivité haute performance IBM Big Data Platform Visualization & Discovery Application Development Systems Management Accelerators Hadoop System Stream Computing Data Warehouse Information Integration & Governance

9 V11 V11 Analytique DB2 sur z avec Big Data DB2 fournit les connecteurs et les capacités d une Database pour permettre aux applications DB2 d accéder facilement et efficacement aux données dans Hadoop New user-defined functions New generic table UDF capability IBM Big Insights JAQL 9 { }

10 Machine Data Analytics Accelerator Custom Applications Shrink Wrap Solutions IT use cases: Server, performance, troubleshooting Health Care Networking Insurance Telco x2020 Unity MDA Accelerator IBM Big Data Platform Business use cases: Click stream and transaction analysis Optimize production, advanced planning Tools Client Specific Customizations, Visualization tools ( zinsights ) Specific Domain Telco Financial services Retail Healthcare Generic Parsers and Extractors Federated Discovery, Pattern (applications, services, Discovery, Search, Visualization Tools servers and devices ) for root cause analysis IMS intends to provide Hadoop System Information Integration & Governance Stream Computing Data Warehouse IBM Big Data Platform Visualization & Discovery Application Development Accelerators Systems Management Hadoop System Stream Computing Data Warehouse Information Integration & Governance

11 IBM Capacity Management Analytics Utilisation optimale et rentable de zenterprise : aujourd'hui, demain et au-delà Suivi, mesure et prédiction de la capacité et de l utilisation du zenterprise Meilleure visibilitésur l utilisation de la capacitéavec un ensemble prédéfini de rapports interactifs Reporting Engine Cerner les enjeux ou les problèmes potentiels avant qu ils n affectent l expérience utilisateur TDSz Data Warehouse Tendance : Comparer en temps réel l utilisation effective et les prévisions: Identifier rapidement et corriger les anomalies et prévoir les besoins futurs Predictive Engine

12 Big data + zenterprise = Big impact z Enterprise hybride hub pour l analyse capacitéàintégrer les données prêt pour le futur Business Critical Analytics Data Warehousing Data Transformation Improved business performance out Transactions in Business System / OLTP Minimiser les délais, améliorer les performances, conduire l innovation

IM01P2: Le Big Data pour enrichir, complémenter et travailler en. Corinne BARAGOIN c_baragoin@fr.ibm.com

IM01P2: Le Big Data pour enrichir, complémenter et travailler en. Corinne BARAGOIN c_baragoin@fr.ibm.com #solconnect13 IM01P2: Le Big Data pour enrichir, complémenter et travailler en synergie avec vos Warehouses Corinne BARAGOIN c_baragoin@fr.ibm.com 2 Le succès du Big Data est lié au fait que la technologie

Plus en détail

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com 18 Mars 2015 Big data et le z 2015 IBM Corporation Agenda Contexte Cas d utilisation DB2 z/os et Hadoop Connecteurs z pour Hadoop 2

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités

Plus en détail

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Facilité d'exécution IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Data Quality Data Integration MDM Product Data MDM Customer Data Data Masking Data monitoring

Plus en détail

Fonctions Analytiques de DB2 V10 et V11. Cécile Benhamou Technical Sales DB2 z/os et Tools DB2 cecile_benhamou@fr.ibm.com

Fonctions Analytiques de DB2 V10 et V11. Cécile Benhamou Technical Sales DB2 z/os et Tools DB2 cecile_benhamou@fr.ibm.com Fonctions Analytiques de DB2 V10 et V11 Cécile Benhamou Technical Sales DB2 z/os et Tools DB2 cecile_benhamou@fr.ibm.com DB2 V10: Fonctions OLAP Moving Sum et Moving Average Fonctions colonnes (aggregate)

Plus en détail

Le nouveau visage de la Dataviz dans MicroStrategy 10

Le nouveau visage de la Dataviz dans MicroStrategy 10 Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics.

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics. Business Intelligence d entreprise MicroStrategy Analytics Platform Self-service analytics Big Data analytics Mobile analytics Disponible en Cloud Donner l autonomie aux utilisateurs. Des tableaux de bord

Plus en détail

SAP HANA : BIEN PLUS QU UNE BASE DE DONNÉES EN MÉMOIRE. Jean-Michel JURBERT Chef de Marché SAP France

SAP HANA : BIEN PLUS QU UNE BASE DE DONNÉES EN MÉMOIRE. Jean-Michel JURBERT Chef de Marché SAP France SAP HANA : BIEN PLUS QU UNE BASE DE DONNÉES EN MÉMOIRE Jean-Michel JURBERT Chef de Marché SAP France Nos innovations sont conçues pour aider les organisations et entreprises à mieux fonctionner Applications

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Comment gérer les licences dans les environnements distribués et z/os. Philippe ASTIER Tivoli Technical Sale Salle Tyrol 14h00 14h45

Comment gérer les licences dans les environnements distribués et z/os. Philippe ASTIER Tivoli Technical Sale Salle Tyrol 14h00 14h45 Comment gérer les licences dans les environnements distribués et z/os Philippe ASTIER Tivoli Technical Sale Salle Tyrol 14h00 14h45 Objectif La gestion des licences est complexe. Nous proposons une solution

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Des solutions IBM pour tout le cycle de vie de l information

Des solutions IBM pour tout le cycle de vie de l information Des solutions IBM pour tout le cycle de vie de BUSINESS PROCESS MANAGEMENT & BUSINESS RULES MANAGEMENT INFORMATION ACCESS & ANALYTICS OPERATIONAL APPLICATIONS ENTERPRISE ARCHIVE ENTERPRISE DATA ENTERPRISE

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

Big Data : Quand l approche traditionnelle ne suffit plus à gérer les données

Big Data : Quand l approche traditionnelle ne suffit plus à gérer les données Big Data : Quand l approche traditionnelle ne suffit plus à gérer les données L information est au cœur des préoccupations de l entreprise x44 de données et contenus au cours de la prochaine décennie 2020

Plus en détail

L offre IBM Software autour de la valeur métier

L offre IBM Software autour de la valeur métier IBM Frame Mai 2011 L offre IBM Software autour de la valeur métier Hervé Rolland - Vice Président, Software Group France Milestones that Matter: IBM Software Acquisitions Milestones that Matter: IBM Software

Plus en détail

Donnez de la valeur à vos informations: De la Business Intelligence au Capacity Management

Donnez de la valeur à vos informations: De la Business Intelligence au Capacity Management Donnez de la valeur à vos informations: De la Business Intelligence au Capacity Management Ordre du jour 1. Business Analytics Introduction Business Intelligence Predictive Analytics 2. Business Analytics

Plus en détail

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit La Business Intelligence pour les Institutions Financières Jean-Michel JURBERT Resp Marketing Produit Agenda Enjeux des Projets Financiers Valeur de Business Objects Références Clients Slide 2 Des Projets

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Opportunités et enjeux à l heure du Cloud, du Big Data, de la mobilité et du Social Business

Opportunités et enjeux à l heure du Cloud, du Big Data, de la mobilité et du Social Business Opportunités et enjeux à l heure du Cloud, du Big Data, de la mobilité et du Social Business Véronique Blondelle, Leader Marketing Software Philippe Bournhonesque, Leader Stratégie Software Les grandes

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Big Data -Comment exploiter les données et les transformer en prise de décisions?

Big Data -Comment exploiter les données et les transformer en prise de décisions? IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

SAP REDÉFINIR LE POSSIBLE. Jean-Michel JURBERT Business Development. Rolland ZANZUCCHI SAP Specialist

SAP REDÉFINIR LE POSSIBLE. Jean-Michel JURBERT Business Development. Rolland ZANZUCCHI SAP Specialist 1 SAP REDÉFINIR LE POSSIBLE Jean-Michel JURBERT Business Development Rolland ZANZUCCHI SAP Specialist 2 Forces du partenariat avec EMC Partenaire technologique de SAP au niveau international depuis 1996

Plus en détail

SAP Runs SAP Reporting Opérationnel & BI avec HANA et SAP Analytics. Pierre Combe, Enterprise Analytics Juin, 2015

SAP Runs SAP Reporting Opérationnel & BI avec HANA et SAP Analytics. Pierre Combe, Enterprise Analytics Juin, 2015 SAP Runs SAP Reporting Opérationnel & BI avec HANA et SAP Analytics Pierre Combe, Enterprise Analytics Juin, 2015 Agenda SAP Enterprise Analytics qui sommes-nous? Acteur clé de l innovation à SAP Présentation

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

Jean-Philippe VIOLET Solutions Architect

Jean-Philippe VIOLET Solutions Architect Jean-Philippe VIOLET Solutions Architect IBM Cognos: L' Expertise de la Gestion de la Performance Acquis par IBM en Janvier 08 Rattaché au Brand Information Management Couverture Globale 23,000 clients

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

Jean-Pascal Ancelin Directeur Commercial Information Builders. Conférence IDC Jeudi 11 juin 2009

Jean-Pascal Ancelin Directeur Commercial Information Builders. Conférence IDC Jeudi 11 juin 2009 Simplifier l accès et la mise à disposition de l information en temps réel dans l entreprise: Les exemples de Ford, NYC Dept. of Health, Police de la ville de Richmond Jean-Pascal Ancelin Directeur Commercial

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

#solconnect1 3. #solconnect1

#solconnect1 3. #solconnect1 3 Appliances analytiques: le "Data as a Service" pour vos utilisateurs décisionnels Frédéric Montaigu-Lancelin Philippe Ramé 3 «Data as a Service (DaaS)» Agilité les utilisateurs sont plus réactifs car

Plus en détail

IBM Cognos Enterprise

IBM Cognos Enterprise IBM Cognos Enterprise Leveraging your investment in SPSS Les défis associés à la prise de décision 1 sur 3 Business leader prend fréquemment des décisions sans les informations dont il aurait besoin 1

Plus en détail

Gestion des inventaires, des licences et des contrats logiciels et matériels

Gestion des inventaires, des licences et des contrats logiciels et matériels Gestion des inventaires, des licences et des contrats logiciels et matériels Philippe Dilain Technical Sales and Solutions IBM Software Group - Tivoli System z IT Gestion des Actifs Les besoins business

Plus en détail

Cisco Expo 2008 L innovation au service de vos ambitions Jeudi 13 mars 2008 Carrousel du Louvre - Paris

Cisco Expo 2008 L innovation au service de vos ambitions Jeudi 13 mars 2008 Carrousel du Louvre - Paris Cisco Expo 2008 L innovation au service de vos ambitions Jeudi 13 mars 2008 Carrousel du Louvre - Paris Les Infrastructures Orientées Services (SOI) Marc Frentzel Directeur technique Cisco France 1 Agenda

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress transformer en temps réel vos données en avantage compétitif Your business technologists. Powering progress Transformer les données en savoir Les données sont au cœur de toute activité, mais seules elles

Plus en détail

Jean-Michel JURBERT Directeur de Marché Solutions BI analytiques - SAP. Eric DEBRAY Responsable des alliances technologiques DataCenter - CISCO

Jean-Michel JURBERT Directeur de Marché Solutions BI analytiques - SAP. Eric DEBRAY Responsable des alliances technologiques DataCenter - CISCO Jean-Michel JURBERT Directeur de Marché Solutions BI analytiques - SAP Eric DEBRAY Responsable des alliances technologiques DataCenter - CISCO 2013 SAP AG. All rights reserved. 1 TOUT S ACCÉLÈRE Le temps

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera jms@cloudera.com @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi

Plus en détail

Transformation IT de l entreprise BIG DATA, MÉTIERS ET ÉVOLUTION DES BASES DE DONNÉES

Transformation IT de l entreprise BIG DATA, MÉTIERS ET ÉVOLUTION DES BASES DE DONNÉES Transformation IT de l entreprise BIG DATA, MÉTIERS ET ÉVOLUTION DES BASES DE DONNÉES M a l g r é s o n ca r act è r e en apparence multiforme un enjeu central s est progressivement affirmé en matière

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

La démarche décisionnelle à l hôpital

La démarche décisionnelle à l hôpital Vincent David La démarche décisionnelle à l hôpital nouvelle gouvernance et pilotage des activités Smarter Healthcare Plan Hôpital 2012 : 5 domaines stratégiques à moderniser (Communiqué du Ministre de

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter

Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter Expérience de la mise en place s une solution de gestion de capacité pour supporter la migration des Datacenter Gilles HANUSSE Responsable services Monitor & Operate Sanofi Global Infrastructure Services

Plus en détail

#solconnect1 3. #solconnect1

#solconnect1 3. #solconnect1 3 IM03 Exploitation des données de capteurs avec Big Data Vincent PONCET Big Data Expert vincent.poncet@fr.ibm.com Christophe BURGAUD Big Data Architect christophe.burgaud@fr.ibm.com 2 L écosystème Hadoop

Plus en détail

GPC Computer Science

GPC Computer Science CYCLE ISMIN P2015 GPC Computer Science P LALEVÉE lalevee@emse.fr @p_lalevee A3.01 0442616715 C YUGMA yugma@emse.fr A3.01 0442616715 01/09/2014 Présentation GPC CS - Ph. Lalevée - C Yugma 1 Scolarité Site

Plus en détail

La Business Intelligence 01/05/2012. Les Nouvelles Technologies

La Business Intelligence 01/05/2012. Les Nouvelles Technologies 2 La Business Intelligence Les Nouvelles Technologies 3 Une expertise méthodologique pour une intervention optimale sur tous les niveaux du cycle de vie d un projet 4 5 Ils nous font confiance : L ambition

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données.

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données. Data Mining = Knowledge Discovery in Databases (KDD) = Fouille de données 1 Définition : Processus ou méthode qui extrait des connaissances «intéressantes» ou des motifs (patterns) à partir d une grande

Plus en détail

Boostez votre système décisionnel avec InfoSphere Balanced Warehouse

Boostez votre système décisionnel avec InfoSphere Balanced Warehouse Boostez votre système décisionnel avec InfoSphere Balanced Warehouse Eric Sallou 1 2008 IBM Corporation IBM est un des leaders en Data Warehouse Ces sociétés utilisent un Data Warehouse IBM 11 des 12 premières

Plus en détail

Lieberman Software Corporation

Lieberman Software Corporation Lieberman Software Corporation Managing Privileged Accounts Ou La Gestion des Comptes à Privilèges 2012 by Lieberman Software Corporation Agenda L éditeur Lieberman Software Les défis Failles sécurité,

Plus en détail

BI SWISS FORUM (ecom / SITB)

BI SWISS FORUM (ecom / SITB) 2015 04 21 - GENEVA BI SWISS FORUM (ecom / SITB) LE BIG DATA A L ASSAUT DES ZONES DE CONFORT TECH ET BUSINESS WWW.CROSS-SYSTEMS.CH GROUPE MICROPOLE 1100 COLLABORATEURS DONT 130 EN SUISSE +800 CLIENTS 27

Plus en détail

02.10.2015 Olivier Rafal, PAC CXP Group

02.10.2015 Olivier Rafal, PAC CXP Group 02.10.2015 Olivier Rafal, PAC CXP Group 1 Le groupe CXP L étude BARC Big Data Use Cases 2015 Etude internationale Plus de 550 participants 3e Edition Large couverture des types d industries & tailles d

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information

Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information Darren Cooper Information Management Consultant, IBM Software Group 1st December, 2011 Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information Information

Plus en détail

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Agenda Vision de la BI par Microsoft SQL Server 2008 R2 Démo PowerPivot Démo Reporting Services Questions / Réponses Une plateforme

Plus en détail

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels

Plus en détail

Régis David. Isabelle Ringwald. Expert CICS, zchampion Mobilité. IT Specialist System z

Régis David. Isabelle Ringwald. Expert CICS, zchampion Mobilité. IT Specialist System z 1 Régis David Expert CICS, zchampion Mobilité Isabelle Ringwald IT Specialist System z 2 Le défi de la Mobilité Isabelle Ringwald : Architecte System z iringwald@fr.ibm.com Régis David : Expert CICS, zchampion

Plus en détail

Stratégie Software. Philippe Bournhonesque Leader Stratégie Software France

Stratégie Software. Philippe Bournhonesque Leader Stratégie Software France Stratégie Software Philippe Bournhonesque Leader Stratégie Software France Systems of Engagement Social Systèmes d'engagement Social Drives Business Understand the social network not as your new water

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Capture the value of your IT

Capture the value of your IT Trader s S.A.S www.quick-software-line.com 01 53 10 27 50 Capture the value of your IT Think Data! En 2014 En 2015 Trader s puts your Data in Motion with Quick-SmartData!!! Quick-SmartData à l intérieur

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

Le décisionnel plus que jamais au sommet de l agenda des DSI

Le décisionnel plus que jamais au sommet de l agenda des DSI Le décisionnel plus que jamais au sommet de l agenda des DSI 9 juin 2011 www.idc.com Cyril Meunier IDC France Research & Consulting Manager Copyright 2008 IDC. Reproduction is forbidden unless authorized.

Plus en détail

Exadata Storage Server et DB Machine V2

<Insert Picture Here> Exadata Storage Server et DB Machine V2 Exadata Storage Server et DB Machine V2 Croissance de la Volumétrie des Données Volumes multipliés par 3 tous les 2 ans Evolution des volumes de données 1000 Terabytes (Données) 800

Plus en détail

Rationalisation et évolution des assets, licences et contrats informatiques. Philippe ASTIER Software Technical Professionals

Rationalisation et évolution des assets, licences et contrats informatiques. Philippe ASTIER Software Technical Professionals Rationalisation et évolution des assets, licences et contrats informatiques Philippe ASTIER Software Technical Professionals Le coût de la gestion des logiciels GARTNER : Les entreprises peuvent espérer

Plus en détail

Ne cherchez plus, soyez informés! Robert van Kommer

Ne cherchez plus, soyez informés! Robert van Kommer Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte

Plus en détail

Evolution stratégique du cloud computing

Evolution stratégique du cloud computing Evolution stratégique du cloud computing Etat des lieux et tendances 2010-2013 www.idc.com Bruno TEYTON Directeur Consulting IDC France Copyright 2010 IDC. Reproduction is forbidden unless authorized.

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

ENVIRONNEMENTS ORACLE CRITIQUES AVEC VMAX 3

ENVIRONNEMENTS ORACLE CRITIQUES AVEC VMAX 3 ENVIRONNEMENTS ORACLE CRITIQUES AVEC VMAX 3 AVANTAGES CLES CRITIQUES Puissance Stockage hybride avec des niveaux de service performants optimisés pour le Flash à grande échelle, pour les charges applicatives

Plus en détail

Big Data & Analytics Leviers de transformation Métier. Retours d expérience. Laurence CHRETIEN Valérie PERHIRIN Mars 2015

Big Data & Analytics Leviers de transformation Métier. Retours d expérience. Laurence CHRETIEN Valérie PERHIRIN Mars 2015 Leviers de transformation Métier Retours d expérience Laurence CHRETIEN Valérie PERHIRIN Mars 2015 BIG DATA & ANALYTICS, UN VRAI LEVIER DE TRANSFORMATION BUSINESS? RETOURS D EXPERIENCE CAPGEMINI Valérie

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

ATELIER. QUASAR OBILOG BI (Décisionnel) ATELIER > PROJET BI

ATELIER. QUASAR OBILOG BI (Décisionnel) ATELIER > PROJET BI ATELIER QUASAR OBILOG BI (Décisionnel) Sommaire Définitions Objectifs du projet Notre démarche Notre partenaire (TIBCO) Présentation indicateurs Production et Qualité Création indicateur (TRS) Disponibilité

Plus en détail

Gestion des données des occupations et compositions des trains au sein de la SNCB Mobility.

Gestion des données des occupations et compositions des trains au sein de la SNCB Mobility. Mohammed Yousfi Gestion des données des occupations et compositions des trains au sein de la SNCB Mobility. Destination mieux NOTRE ENTREPRISE La SNCB (exploitant du trafic ferroviaire) fait partie du

Plus en détail

Les Grandes Tendances d Investissement Informatique en 2011/ 2012. Rachel Hunt

Les Grandes Tendances d Investissement Informatique en 2011/ 2012. Rachel Hunt Les Grandes Tendances d Investissement Informatique en 2011/ 2012 Rachel Hunt Un retour a la croissance pour l investissement informatique Croissance de 3 a 5% en 2011/12 La croissance est tirée par les

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

EMC Enterprise Hybrid Cloud. Emmanuel Bernard Advisory vspecialist EMC Emmanuel.bernard@emc.com @veemanuel

EMC Enterprise Hybrid Cloud. Emmanuel Bernard Advisory vspecialist EMC Emmanuel.bernard@emc.com @veemanuel EMC Enterprise Hybrid Cloud Emmanuel Bernard Advisory vspecialist EMC Emmanuel.bernard@emc.com @veemanuel Copyright 2014 EMC Corporation. All rights reserved. # Nouveau programme IT Défis métiers actuels

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs. 1 Actuate Corporation 2012 + de données. + d analyses. + d utilisateurs. Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT

Plus en détail

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL

SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et

Plus en détail

IBM BigInsights for Apache Hadoop

IBM BigInsights for Apache Hadoop IBM BigInsights for Apache Hadoop Gérer et explorer efficacement le Big Data pour exploiter tous les signaux Points clés : Plateforme Hadoop prête à l'emploi pour le traitement, le stockage et l'analyse

Plus en détail