FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

Dimension: px
Commencer à balayer dès la page:

Download "FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES"

Transcription

1 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU

2 CONNAISSEZ-VOUS PAGESJAUNES?

3 CONNAISSEZ-VOUS PAGESJAUNES?

4 LES MEGADONNEES RÉPONDENT À DE NOUVEAUX BESOINS Gestion des Logs Texte Mining Sentiment Analysis Analyse des RFID / Capteurs Big Data Business Discovery Data Visualisation Self-Service BI Data Interact Flux des clics utilisateurs en temps réel Données GPS et spatiales Voix en Texte Analyse du Web Mobile BI institutionnelle Approche Agile Social Interaction Open Data Mining Reporting Couche sémantique DataWarehouse Datamart Cubes Data Gathering Massive Processing Parallel Indexation ETL Data Cleansing ERP CRM SCM Base de données Données structurées d entreprise Système de fichiers textes Données locales Gestion de Image, Vidéo Réseaux sociaux contenu, Logs Données non structurées d entreprise et externes

5 LA PREUVE PAR L EXPÉRIMENTATION. 5

6 BI - ARCHITECTURE 2013 ET 2014 Quelques limitations de la BI actuelle: 1. BI globalement en silo => ce qui ne constitue pas de la vraie BI 2. Socle de données sur Netezza avec risque de saturation avérée 3. Aucune possibilité d incorporer des données non structurées (type blog, réseaux sociaux ) 4. BI en mode batch BI Audience BI Mobile BI Commercial BI Données DMT DWH ODS Logs fixe Logs mobile Base de donnée Base de données Données Structurées ou Semi-structurées d entreprise Base de données 6

7 Date Titre de la présentation 7 Parc applicatif BI en transformation en 2014 et cible 2015 : activons le Big Data!

8 VISION CIBLE ARCHITECTURE DE LA BI Data Visualisation Data Mart Fonctionnel Open Data Group (Données brutes et Open Datamart) Logs fixe Logs mobile Commerc Finance RH MPG CRM iale Données Structurées ou Semi-structurées d entreprise Social Network Portail / Intranet Données non structurées Image, Vidéo 8

9 RÉALISATIONS 2014 REAL TIME BUSINESS Real Time Business 9

10 RÉALISATIONS 2014/ POWER SELECTOR Search Power Selector 10

11 OUR CONVICTION: OPENSOURCE WOULD SOLVE MOST OF BI PAINS The Enterprise Data Hub of Cloudera would be the «Extended DataWarehouse» The NoSql «Column Database» is the simple way to give access to the end user and ensure good performance Performance ETL for the data transformation on top of Hadoop New Data Visualization / Data Story Telling, which is very quick to install/deploy, and simple to use The end of the Batch, and the welcome of the Streaming and real time data 11

12 LE PARTAGE DE CONNAISSANCES EST CLEF! Le mangement de la donnée est essentiel dans toute pratique Big Data et tout projet. Nous avons lancé dans le cadre de l association 3 groupes de travail: Big Data Data Science Data Gouvernance D autres ateliers suivront, des événements, de la littérature donc abonnez-vous et n attendez plus! 12

13 BIENVENUE DANS LE MONDE DU NOSQL 13

14 LE NOSQL, POURQUOI? 1970 Systèmes de fichiers Système transactionnel: Écritures concurrentes, Performance accès concurrents Standardisation Base de données - RDBMS ~2009 Base de données - RDBMS Big Data: Volumétrie (téra/péta octet) Performance Données non structurées 14

15 NOSQL NOT ONLY SQL DIFFÉRENTS TYPES: BASES ORIENTÉES CLÉ / VALEUR BASES ORIENTÉES COLONNES BASES ORIENTÉES GRAPHES BASES ORIENTÉES DOCUMENTS Ben Scofield a évalué les différents types de NoSQL: Data Model Performance Scalability Flexibility Complexity Functionality Key Value Store high high high none variable (none) Column-Oriented Store high high moderate low minimal Document- Oriented Store high variable (high) high low variable (low) Graph Database variable variable high high graph theory Relational Database variable variable low moderate relational algebra 15

16 NOSQL FOCUS SUR IMPALA ET L ORIENTÉE COLONNE RowId Matricule Nom Prénom DateEntrée Fonction Salaire Dupont Eric 01/01/2000 Ingénieur Martin Jean 15/03/2007 Contrôleur LeMaitre Gaston 13/12/2003 Architecte Dupont Gaston 01/01/2000 Contrôleur Prince Charles 01/01/2010 Ingénieur Nom Dupont 1;4 Martin 2 LeMaitre 3 Prince 5 Prenom Eric 1 Jean 2 Gaston 3;4 Charles 5 Sur Impala, le mode Parquet enregistre cela en binaire et de façon compressée, ce qui accélère les analyses OLAP agrégations, filtres 16

17 CONSEIL: COMMENT ACTIVER LES PROJETS ET COMMENT REMÉDIER À L IMMOBILISME? Avec votre bâton de pèlerin: expliquez démystifiez donnez du sens fédérez! Trouvez le sponsor dans l entreprise, qui vous soutiendra appuiera mettra en lumière Lancez-vous! Nous avons toute la maturité technologique pour enfin réaliser tous nos désirs en termes de data! Épanouissezvous! 17

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Fusion : l interopérabilité chez Oracle

Fusion : l interopérabilité chez Oracle Standardisation et interopérabilité Fusion : l interopérabilité chez Oracle Lionel Dubreuil,, Applications Technology Product Manager, Oracle France, lionel.dubreuil@oracle.com 29/03/2006 Page : 1 Oracle

Plus en détail

Le nouveau visage de la Dataviz dans MicroStrategy 10

Le nouveau visage de la Dataviz dans MicroStrategy 10 Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP SFR en quelques chiffres Le Dataware Client GP de SFR en août 2011 150 applications

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

Programme New BI. Décember 2014. Thierry Milhé, Directeur des Systèmes d Information Sagem Défense Sécurité (groupe Safran)

Programme New BI. Décember 2014. Thierry Milhé, Directeur des Systèmes d Information Sagem Défense Sécurité (groupe Safran) Programme New Décember 201 Thierry Milhé, Directeur des Systèmes d Information Sagem Défense Sécurité (groupe Safran) 1. Présentation du programme New 2. Le projet et la technologie 3. Résultats. Questions

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Tout ce que vous avez toujours voulu savoir sur SAP HANA. Sans avoir jamais osé le demander

Tout ce que vous avez toujours voulu savoir sur SAP HANA. Sans avoir jamais osé le demander Tout ce que vous avez toujours voulu savoir sur SAP HANA Sans avoir jamais osé le demander Agenda Pourquoi SAP HANA? Qu est-ce que SAP HANA? SAP HANA pour l intelligence d affaires SAP HANA pour l analyse

Plus en détail

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr BI Open Source Octobre 2012 Alioune Dia, Consultant BI alioune.dia@openbridge.fr 1 Le groupe, en bref 2004 Date de création +7M * Chiffre d affaires 2012 +80 Collaborateurs au 06/2011 35% Croissance chiffre

Plus en détail

Les journées SQL Server 2013

Les journées SQL Server 2013 Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business

Plus en détail

Business Intelligence simple et efficace avec Excel et PowerPivot

Business Intelligence simple et efficace avec Excel et PowerPivot Présentation de PowerPivot A. L analyse de données 7 1. Activité 7 2. Définitions 8 a. Mesures et dimensions 8 b. Traitement et analyse 8 c. Robustesse et confiance 9 B. Des solutions pour les gros volumes

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

La Base de Données Unique (BDU) avec MyReport

La Base de Données Unique (BDU) avec MyReport La Base de Données Unique (BDU) avec MyReport Obligatoire à partir de Juin 2014 La base de données unique Répondre aux nouvelles obligations légales : Loi n 2013-504 du 14 juin 2013 auprès des membres

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

Introduction. Division Moyennes et Grandes Entreprises - Direction Produits Page 2 / 7. Communiqué de lancement Sage HR Management V5.

Introduction. Division Moyennes et Grandes Entreprises - Direction Produits Page 2 / 7. Communiqué de lancement Sage HR Management V5. Division Moyennes et Grandes Entreprises Direction Produits Communiqué de lancement Sage HR Management Version 5.10 Nouveau module Décisionnel Bases de données Sage HR Management Version 5.10 MS SQL Server

Plus en détail

Décisionnel & Reporting

Décisionnel & Reporting Décisionnel & Reporting Quelle solution est la plus adaptée à mes besoins? Présentation Société EASYNEO Conseil & Intégration de solutions Décisionnelles Spécialisations : ERP (SAP en particulier) Reporting

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Agenda Vision de la BI par Microsoft SQL Server 2008 R2 Démo PowerPivot Démo Reporting Services Questions / Réponses Une plateforme

Plus en détail

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information

IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Facilité d'exécution IBM est reconnu par les plus grands analystes comme un leader dans la gestion de l'information Data Quality Data Integration MDM Product Data MDM Customer Data Data Masking Data monitoring

Plus en détail

Vos experts Big Data. contact@hurence.com. Mener un projet Big Data

Vos experts Big Data. contact@hurence.com. Mener un projet Big Data Vos experts Big Data contact@hurence.com Mener un projet Big Data Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB Expert

Plus en détail

ELCA Forum 2014 BIG DATA

ELCA Forum 2014 BIG DATA ELCA Forum 2014 BIG DATA Jérôme Berthier, Head of Division Christian Nançoz, BI Consultant September 2014 SPEAKER Jérôme Berthier Head of Division Topics: Business Intelligence Data Warehouse Big Data

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Architecture SOA Un Système d'information agile au service des entreprises et administrations

Architecture SOA Un Système d'information agile au service des entreprises et administrations Architecture SOA Un Système d'information agile au service des entreprises et administrations www.objis.com Présentation Architecture SOA - JCertif 1 Qui sommes-nous? Spécialiste JAVA depuis 2005 (Lyon,

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

Suite Jedox La Business-Driven Intelligence avec Jedox

Suite Jedox La Business-Driven Intelligence avec Jedox Suite La Business-Driven Intelligence avec Une solution intégrée pour la simulation, l analyse et le reporting vous offre la possibilité d analyser vos données et de gérer votre planification selon vos

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Gestion des données des occupations et compositions des trains au sein de la SNCB Mobility.

Gestion des données des occupations et compositions des trains au sein de la SNCB Mobility. Mohammed Yousfi Gestion des données des occupations et compositions des trains au sein de la SNCB Mobility. Destination mieux NOTRE ENTREPRISE La SNCB (exploitant du trafic ferroviaire) fait partie du

Plus en détail

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables DocForum 18 Juin 2015 Réussites d un projet Big Data Les incontournables Vos interlocuteurs Mick LEVY Directeur Innovation Business mick.levy@businessdecision.com 06.50.87.13.26 @mick_levy 2 Business &

Plus en détail

SQL Server 2012 et SQL Server 2014

SQL Server 2012 et SQL Server 2014 SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation

Plus en détail

Philippe Lemerle Big Data Secteur public. Copyright 2015, Oracle and/or its affiliates. All rights reserved.

Philippe Lemerle Big Data Secteur public. Copyright 2015, Oracle and/or its affiliates. All rights reserved. Philippe Lemerle Big Data Secteur public 1 Le Monde se crée une copie numérique de lui même (*) (*) The world is making a digital copy of itself Paul Sonderegger, Oracle Approche réductioniste propriétés

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera jms@cloudera.com @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi

Plus en détail

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

Synthèse de son offre logicielle

Synthèse de son offre logicielle Connecting your business Synthèse de son offre logicielle Copyright 2006, toute reproduction ou diffusion non autorisée est interdite STREAM MIND Créateur de produits logiciels innovants dans le traitement

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Libérez votre intuition

Libérez votre intuition Présentation de Qlik Sense Libérez votre intuition Qlik Sense est une application nouvelle génération de visualisation de données en libre-service qui permet à chacun de créer facilement des visualisations

Plus en détail

Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise. myssii www.myssii.fr - 2012 Jedox AG, www.jedox.

Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise. myssii www.myssii.fr - 2012 Jedox AG, www.jedox. by Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise 2014 Jedox by myssii Pour toute entreprise, l informatique d aide à la décision est devenue une arme de compétitivité

Plus en détail

Mise en oeuvre d'office 365 Gestion de projet et conduite du changement

Mise en oeuvre d'office 365 Gestion de projet et conduite du changement La transformation digitale 1. Introduction 13 2. La transformation digitale 13 2.1 Les premières analyses 13 2.2 Les analyses actuelles 18 2.3 Les perspectives 28 3. Présentation d Office 365 29 3.1 Présentation

Plus en détail

L ÉCHANGE DE DONNÉES TEMPS RÉEL

L ÉCHANGE DE DONNÉES TEMPS RÉEL Talented Together L ÉCHANGE DE DONNÉES TEMPS RÉEL Retours d expériences avec Talend Julien DULOUT Manager Sopra Consulting Expert des offres BI, MDM & BigData Ludovic MONNIER Architecte Sopra Expert EAI

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs. 1 + de données. + d analyses. + d utilisateurs. 2 Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT Fondée en 1993 en Californie

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

Guide de référence pour l achat de Business Analytics

Guide de référence pour l achat de Business Analytics Guide de référence pour l achat de Business Analytics Comment évaluer une solution de décisionnel pour votre petite ou moyenne entreprise : Quelles sont les questions à se poser et que faut-il rechercher?

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2014

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2014 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2014 SOMMAIRE Présentation de Keyrus Les modes de formation Liste des formations, Plan de cours & Pré-requis IBM Cognos QlikView Microsoft Talend Oracle

Plus en détail

SQL Server 2014. SQL Server 2014. Implémentation d une solution. Implémentation d une solution de Business Intelligence.

SQL Server 2014. SQL Server 2014. Implémentation d une solution. Implémentation d une solution de Business Intelligence. Ce livre sur s adresse à toutes les personnes désireuses de mettre en œuvre les techniques de l informatique décisionnelle (ou BI, Business Intelligence) à l aide des composants de la suite Microsoft :

Plus en détail

Lazhar F. Consultant Senior en décisionnel 10 ans d expérience. Banque, Télécommunications, Distribution. Nationalité : Française

Lazhar F. Consultant Senior en décisionnel 10 ans d expérience. Banque, Télécommunications, Distribution. Nationalité : Française Lazhar F. Consultant Senior en décisionnel 10 ans d expérience Profil Formation 2001 - Ingénieur informatique Ecole Supérieure d Informatique Université d Oran 2003 - Formation modules datawarehouse, Informatique

Plus en détail

Albert CAO-TRIEU CONSULTANT DECISIONNEL CONFIRME BUSINESS INTELLIGENCE

Albert CAO-TRIEU CONSULTANT DECISIONNEL CONFIRME BUSINESS INTELLIGENCE Votre contact : Antoine Cheng 1-3 boulevard Charles De Gaulle 92700 COLOMBES Tel +33 1 83 62 32 50 Fax +33 1 83 62 32 49 info@polarys.com - www.polarys.com Albert CAO-TRIEU CONSULTANT DECISIONNEL CONFIRME

Plus en détail

Marc SALLIERES CEO ALTIC marc.sallieres@altic.org. www.altic.org

Marc SALLIERES CEO ALTIC marc.sallieres@altic.org. www.altic.org Marc SALLIERES CEO ALTIC marc.sallieres@altic.org www.altic.org Présentation ALTIC Les projets ALTIC BI Open Source véritable alternative Spécialiste BI Open Source Présentation ALTIC 2009 Club Finance

Plus en détail

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation

BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement

Plus en détail

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

TRAVAUX DE RECHERCHE DANS LE

TRAVAUX DE RECHERCHE DANS LE TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

NoSQL Faut-il franchir le pas?

NoSQL Faut-il franchir le pas? NoSQL Faut-il franchir le pas? Guillaume HARRY Journées rbdd Octobre 2015 Sommaire 1. Evolution des bases de données 2. Le mouvement NoSQL 3. Les grandes familles du NoSQL 4. Aller ou non vers le NoSQL?

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

IM01P2: Le Big Data pour enrichir, complémenter et travailler en. Corinne BARAGOIN c_baragoin@fr.ibm.com

IM01P2: Le Big Data pour enrichir, complémenter et travailler en. Corinne BARAGOIN c_baragoin@fr.ibm.com #solconnect13 IM01P2: Le Big Data pour enrichir, complémenter et travailler en synergie avec vos Warehouses Corinne BARAGOIN c_baragoin@fr.ibm.com 2 Le succès du Big Data est lié au fait que la technologie

Plus en détail