BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

Dimension: px
Commencer à balayer dès la page:

Download "BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara"

Transcription

1 BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1

2 2 Introduction Historique des bases de données : méthodes de stockage et d analyse Organisation classique en fichier Premier SGBD 2 ème génération des SGBD: Les systèmes relationnels 3 ème génération des SGBD: Les systèmes orientés objets. Entrepôt de données Explosion du volume de données Méthodes d analyses statistiques classiques 1 er méthode d analyse chimiométrique multivariée : Exploratoires (ACP,AFCM) Régression(PCR, PLS) Fouille de données. Méthodes pas assez puissante pour traiter et analyser toutes ces données

3 3 Introduction Volume Vitesse Variété à Big Data Ensemble de données trop volumineuses et variées pour être stockées ettraitées avec des outils classiques de gestion de base de données. Problèmatique: Comment stocker et analyser ces données?

4 4 Introduction Qui est concerné par le Big Data q Web, internet et objet communicant : e-journaux, réseaux sociaux, e- commerce, stockage de document, RFID, réseaux de capteurs q Sciences : génomique, astronomie, climatologie q Données commerciales, personnelles, publiques. (Historique de transaction dans une chaine de supermarchés, Dossier médicaux, Open data ) Fournisseurs de solutions Leader du web Le secteur scientifique Les grands acteurs de logiciel et système d entreprises

5 5 Plan Formes de stockage des données Méthode de traitement Conclusion et perspectives

6 Modèle classique : BD relationnelle 6 I. Quelles formes de stockage? Interrogation par requête SQL Techniquement impossible sur du big data Modèle NoSQL (not only SQL)

7 Le modèle NoSQL I. Quelles formes de stockage? Base du NoSQL : structure «clé-valeur» distribuée 7 Clé Malek Valeur Etudiante Léo 23 Nina Bruno France Enseignant Clé Nina Valeur agrotic Malek Léo Tunisie Etudiant Simplifier les BD : Supprimer les relations entre tables Transférer l intelligence des requêtes SQL vers l applicatif qui interroge la BD Pouvoir répartir la BD sur plusieurs serveurs

8 I. Quelles formes de stockage? 8 Base de donnée clé-valeur AVANTAGES Stocker un grand nombre de données et de nature variée Effectuer des requêtes rapides Augmentation de la capacité de calcul et de stockage en ajoutant de nouveaux serveurs INCONVENIENTS Pas de requêtes complexes Transactionnel limité (atomicité, cohérence, isolation, durabilité) Apprendre une nouvelle approche de technologie de base de données

9 9 I. Quelles formes de stockage? Les différents types de NoSQL

10 I. Quelles formes de stockage? 10 Les différents types de NoSQL APPLICATIONS : Données semi-persistantes cache, pour conserver les sessions d'un site web stockage pour des files d'attentes, accumuler des événements bruts en vue d'en agréger des statistiques EXEMPLES : Memcached CouchBase Redis

11 Les types de NoSQL BigTable et dérivés Clé (ID message) Valeur (destinataire) 11 I. Quelles formes de stockage? Tag temps (heure envoie) APPLICATIONS : BD de tous les produits Google (Gmail, Reader, gmaps, Earth, blogger, youtube, ) sur Bigtable BD de Twitter sur Cassandra BD de Facebook sur HBase

12 12 Les types de NoSQL BD orientées documents I. Quelles formes de stockage? Clé (id document) Doc001 Valeur (information structurée de manière hiérarchique type XML,JSON) {promo: agrotic2012, groupe : Malek, Nina, Leo, travail : veille techno, date : 19/12/2012, body:, } APPLICATIONS : Accélérateur de particules du CERN, banque Barclays sur MongoDB Ubuntu One et la banque suisse sur CouchDB Mozilla, AOL sur Riak

13 Les types de NoSQL BD orientées graphes Clé Valeur 3 {Statut: étudiante, Etat: souriante } 13 I. Quelles formes de stockage? Bruno Id: 1 Statut : enseignant 103 {label: enseigne à } Nina Id: 103 label : enseigne à Id: 2 Statut : étudiante Id: 203 label : est amie avec Malek Id: 3 Statut : étudiante État : souriante APPLICATIONS : Deutsche Telekom et Viadeo sur NEO4J

14 14 Plan Formes de stockage des données Méthode de traitement Conclusion et perspectives

15 15 II. Méthode de traitement Une Nouvelle façon d interroger les données Architecture traditionnelle Architecture BigData Division en clusters à Une méthode de programmation d analyses en parallèle à Grande quantité de données, traitement à grande vitesse Source:

16 16 II. Méthode de traitement Le principe en exemple Compter le nombre de lettres contenus dans un fichier Fichier source (Base de données NoSQL) Splitting Découpage en blocs Mapping Fonction d analyse parallèle Shuffling Tri Reducing Agrégation des informations Résultat A, 3 B, 1 C, 3 D, 2 à Répartition du travail à Efficace sur des tera octets de données

17 17 II. Méthode de traitement Source:

18 18 II. Méthode de traitement Projet Apache Open Source

19 19 II. Méthode de traitement PARALLELISATION DES PROCESSUS Volume de donnée Vitesse de traitement augmentée Les traitements en temps réel Quelques exemples Publicité Transactions financières Gérer des flux de données énormes en temps réel

20 Conclusion: 20 Principes: Travail en parallèle et structuration simplifiée de la donnée. Le Big Data ne s applique que dans des cas particuliers, pour des besoins particuliers. A quand un BigDat Agricole?

21 21 Autres informations: Conférence à Paris (Défense)au CNIT le 3 et 4 avril 2013 sur le BIG DATA. 1 er master en France, ouvre en 2013 à Telecom Paris Tech sur BIG DATA : gestion et analyse des données massives.

22 22

23 23 Risques: Protection des données à caractères personnelle: Mot de passe, liberté de circulation,géolocalisation des personnes à partir des smartphones (photos et les publications). De contrôle permanent de la pars des autorités.

24 Bibliographie (articles scientifique, conférences, livres, cours ) 24 Conférence du 20/21 mars 2012 sur les Big Data à la Cité universitaire à Paris (lexique de l Open Data) Journal : O Reilly, article Big Data Now. Edition Big Data Spectrum, Connect Architecture, Infosis. Big Data et Open source, une convergence inévitable, Mars 2012 Stéphane Fermier.

25 25 II. Nouveau mode de traitement des flux de données «Stream Processing». Utilité: permet d effectuer plus facilement et plus rapidement le calcul parallèle. Pourquoi? : Les données en entrée sont trop rapide pour les stocker dans leur intégralités La réponse doit être immédiate. (en temps réel) Quelques exemples.

26 Annexes 26

27 Annexes 27

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

NoSQL : en Quête de Performances Extrêmes

NoSQL : en Quête de Performances Extrêmes NoSQL : en Quête de Performances Extrêmes Alors que l audience du web croît sans cesse, les applications Internet à succès ont été confrontées aux mêmes problèmes de base de données : si les serveurs web

Plus en détail

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

NoSQL Faut-il franchir le pas?

NoSQL Faut-il franchir le pas? NoSQL Faut-il franchir le pas? Guillaume HARRY Journées rbdd Octobre 2015 Sommaire 1. Evolution des bases de données 2. Le mouvement NoSQL 3. Les grandes familles du NoSQL 4. Aller ou non vers le NoSQL?

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Introduction aux bases de données NoSQL

Introduction aux bases de données NoSQL Introduction aux bases de données NoSQL Khaled Tannir ets@khaledtannir.net Montréal - 23 Juillet 2015 Qui suis-je? Khaled TANNIR Big Data Architect Lead 20 ans d expérience ets@khaledtannir.net @khaled_tannir

Plus en détail

MIF18 - Les SGBD Non-Relationnels

MIF18 - Les SGBD Non-Relationnels MIF18 - Les SGBD Non-Relationnels Fabien Duchateau fabien.duchateau [at] univ-lyon1.fr Université Claude Bernard Lyon 1 2013-2014 Transparents disponibles sur http://liris.cnrs.fr/~ecoquery/dokuwiki/doku.php?id=

Plus en détail

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData NoSql Principes Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData Les SGBD NoSql partagés ne peuvent satisfaire que 2 critères au plus NoSql Les transactions

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Quels choix de base de données pour vos projets Big Data?

Quels choix de base de données pour vos projets Big Data? Quels choix de base de données pour vos projets Big Data? Big Data? Le terme "big data" est très à la mode et naturellement un terme si générique est galvaudé. Beaucoup de promesses sont faites, et l'enthousiasme

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 14 NoSQL 14.1. Présentation de la semaine On construit souvent les entrepôts de données en utilisant des systèmes de bases de données relationnels

Plus en détail

Rapport de projet : Interrogation de données hétérogènes.

Rapport de projet : Interrogation de données hétérogènes. Université Montpellier II Sciences et Techniques GMIN332 Gestion de Données Complexes, Master 2 Informatique 2013-2014 Rapport de projet : Interrogation de données hétérogènes. Otmane Nkaira Étudiant en

Plus en détail

NoSQL : hype ou innovation? Grégory Ogonowski / Recherches Octobre 2011

NoSQL : hype ou innovation? Grégory Ogonowski / Recherches Octobre 2011 NoSQL : hype ou innovation? Grégory Ogonowski / Recherches Octobre 2011 Sommaire Introduction Théorème CAP NoSQL (principes, mécanismes, démos,...) Ce que nous avons constaté Recommandations Conclusion

Plus en détail

Les bases de données relationnelles

Les bases de données relationnelles Bases de données NO SQL et SIG : d un existant restreint à un avenir prometteur CHRISTIAN CAROLIN, AXES CONSEIL CAROLIN@AXES.FR - HTTP://WWW.AXES.FR Les bases de données relationnelles constituent désormais

Plus en détail

11/01/2014. Le Big Data Mining enjeux et approches techniques. Plan. Introduction. Introduction. Quelques exemples d applications

11/01/2014. Le Big Data Mining enjeux et approches techniques. Plan. Introduction. Introduction. Quelques exemples d applications Plan Le Big Data Mining enjeux et approches techniques Bernard Dousset Professeur des universités Institut de Recherche en Informatique de Toulouse UMR 5505 Université de Toulouse 118, Route de Narbonne,

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

[BIG DATA & NOSQL] Rédigé par : Belhaj Hajar & Khanoun Chaimae Encadré par : Mr Badir Hassan

[BIG DATA & NOSQL] Rédigé par : Belhaj Hajar & Khanoun Chaimae Encadré par : Mr Badir Hassan ECOLE SUPERIEURE DE SCIENCES TECHNIQUES ET DE MANAGMENT [BIG DATA & NOSQL] Rédigé par : Belhaj Hajar & Khanoun Chaimae Encadré par : Mr Badir Hassan Abstract Big data, which refers to the data sets that

Plus en détail

Objectifs. Maîtriser. Pratiquer

Objectifs. Maîtriser. Pratiquer 1 Bases de Données Objectifs Maîtriser les concepts d un SGBD relationnel Les modèles de représentations de données Les modèles de représentations de données La conception d une base de données Pratiquer

Plus en détail

Quand et pourquoi utiliser une base de données NoSQL?

Quand et pourquoi utiliser une base de données NoSQL? Quand et pourquoi utiliser une base de données NoSQL? Introduction Les bases de données NoSQL sont devenues un sujet très à la mode dans le milieu du développement web. Il n est pas rare de tomber sur

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting NewPoint IT Consulting BIG DATA WHITE PAPER NewPoint Information Technology Consulting Contenu 1 Big Data: Défi et opportunité pour l'entreprise... 3 2 Les drivers techniques et d'entreprise de BIG DATA...

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Le NoSQL - Cassandra

Le NoSQL - Cassandra Le NoSQL - Cassandra Thèse Professionnelle Xavier MALETRAS 27/05/2012 Ce document présente la technologie NoSQL au travers de l utilisation du projet Cassandra. Il présente des situations ainsi que des

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Document réalisé par Khadidjatou BAMBA

Document réalisé par Khadidjatou BAMBA Comprendre le BIG DATA Document réalisé par Khadidjatou BAMBA 1 Sommaire Avant propos. 3 Historique du Big Data.4 Introduction.....5 Chapitre I : Présentation du Big Data... 6 I. Généralités sur le Big

Plus en détail

Big data* et marketing

Big data* et marketing Catherine Viot IAE de Bordeaux Maître de conférences HDR Responsable pédagogique du Master 2 Marketing Equipe de Recherche en Marketing - IRGO catherine.viot@u-bordeaux4.fr Big data* et marketing 2006

Plus en détail

Datomic. La base qui détonne (aka database as a value)

Datomic. La base qui détonne (aka database as a value) Datomic La base qui détonne (aka database as a value) Identité Base de données NoSQL Distribuée ("cloud"!) ACID Annoncée début 2012 Version 0.8.XXXX Rich Hickey et Relevance (Clojure!) Licence privative

Plus en détail

Introduction aux S.G.B.D.

Introduction aux S.G.B.D. NFE113 Administration et configuration des bases de données - 2010 Introduction aux S.G.B.D. Eric Boniface Sommaire L origine La gestion de fichiers Les S.G.B.D. : définition, principes et architecture

Plus en détail

Gestion de données complexes

Gestion de données complexes Master 2 Informatique Spécialité AIGLE Gestion de données complexes Amayas ABBOUTE Gilles ENTRINGER SOMMAIRE Sommaire i 1 - Introduction 1 2 - Technologies utilisées 2 2.1 API Jena........................................

Plus en détail

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Responsable du stage : Nabil Belcaid Le Guyader Chef de projet : Ali Belcaid Déroulement du stage

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Les technologies du Web, en condensé

Les technologies du Web, en condensé Les technologies du Web, en condensé Georges Gouriten georges.gouriten@telecom-paristech.fr Master COMASIC, 8 février 2012 8h30 10h et 10h15 11h45 Les technologies fondatrices du Web 13h30 15h et 15h15

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

bases Modélisation de données des Modélisation des bases de données UML et les modèles entité-association

bases Modélisation de données des Modélisation des bases de données UML et les modèles entité-association Christian Soutou Christian Soutou Maître de conférences rattaché au département Réseaux et Télécoms de l IUT de Blagnac, Christian Soutou intervient en licence et master professionnels. Il est aussi consultant

Plus en détail

Les humanités numériques à l ère du big data

Les humanités numériques à l ère du big data Les humanités numériques à l ère du big data D. A. ZIGHED djamel@zighed.com Journées Big data & visualisation Focus sur les humanités numériques ISH Lyon 18-19 juin 2015 Co-organisées par EGC AFIHM - SFdS

Plus en détail

Département informatique de l IUT (de l université) de Bordeaux Cours de Bases de Données : NoSQL 19 août 2015 Olivier Guibert. NoSQL.

Département informatique de l IUT (de l université) de Bordeaux Cours de Bases de Données : NoSQL 19 août 2015 Olivier Guibert. NoSQL. Département informatique de l IUT (de l université) de Bordeaux Cours de Bases de Données : NoSQL 19 août 2015 Olivier Guibert NoSQL Not only non relational Plan Généralités SGBD Relationnel Théorème CAP

Plus en détail

République Algérienne Démocratique et Populaire. Université Abou Bakr Belkaid Tlemcen. Faculté des Sciences. Département d Informatique

République Algérienne Démocratique et Populaire. Université Abou Bakr Belkaid Tlemcen. Faculté des Sciences. Département d Informatique République Algérienne Démocratique et Populaire Université Abou Bakr Belkaid Tlemcen Faculté des Sciences Département d Informatique Mémoire de fin d études Pour l obtention du diplôme de Master en Informatique

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Les quatre piliers d une solution de gestion des Big Data

Les quatre piliers d une solution de gestion des Big Data White Paper Les quatre piliers d une solution de gestion des Big Data Table des Matières Introduction... 4 Big Data : un terme très vaste... 4 Le Big Data... 5 La technologie Big Data... 5 Le grand changement

Plus en détail

CESI Bases de données

CESI Bases de données CESI Bases de données Introduction septembre 2006 Bertrand LIAUDET EPF - BASE DE DONNÉES - septembre 2005 - page 1 PRÉSENTATION GÉNÉRALE 1. Objectifs généraux L objectif de ce document est de faire comprendre

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Bases documentaires Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Les activités de recherche sont associées à des voies technologiques et à des opportunités concrètes sur le court, moyen et long terme.

Les activités de recherche sont associées à des voies technologiques et à des opportunités concrètes sur le court, moyen et long terme. Mémoires 2010-2011 www.euranova.eu EURANOVA R&D Euranova est une société Belge constituée depuis le 1er Septembre 2008. Sa vision est simple : «Être un incubateur technologique focalisé sur l utilisation

Plus en détail

Big Data : une complexité réduite pour un retour sur investissement plus rapide

Big Data : une complexité réduite pour un retour sur investissement plus rapide Big Data : une complexité réduite pour un retour sur investissement plus rapide Copyright 2013 Pentaho Corporation. Redistribution autorisée. Toutes les marques commerciales sont déposées par leur propriétaire

Plus en détail

Cassandra chez Chronopost pour traiter en temps réel 1,5 milliard d événements par an

Cassandra chez Chronopost pour traiter en temps réel 1,5 milliard d événements par an Cassandra chez Chronopost pour traiter en temps réel 1,5 milliard d événements par an Qui suis-je? Alexander DEJANOVSKI Ingénieur EAI Depuis 15 ans chez Chronopost @alexanderdeja Chronopost International

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES 1 Base de données COURS 01 INTRODUCTION AUX BASES DE DONNÉES Objectifs du cours 2 Introduction aux bases de données relationnelles (BDR). Trois volets seront couverts : la modélisation; le langage d exploitation;

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

NoSQL. Etat de l art et benchmark

NoSQL. Etat de l art et benchmark NoSQL Etat de l art et benchmark Travail de Bachelor réalisé en vue de l obtention du Bachelor HES par : Adriano Girolamo PIAZZA Conseiller au travail de Bachelor : David BILLARD, Professeur HES Genève,

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

Cours Administration BD

Cours Administration BD Faculté des Sciences de Gabès Cours Administration BD Chapitre 2 : Architecture Oracle Faîçal Felhi felhi_fayssal@yahoo.fr 1 Processus serveur 1 Mémoire PGA Architecture SGBD Oracle Processus serveur 2

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction du cours Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Bases de données relationnelles : Introduction

Bases de données relationnelles : Introduction Bases de données relationnelles : Introduction historique et principes V. Benzaken Département d informatique LRI UMR 8623 CNRS Université Paris Sud veronique.benzaken@u-psud.fr https://www.lri.fr/ benzaken/

Plus en détail

Bases de données et SGBDR

Bases de données et SGBDR Bases de données et SGBDR A. Zemmari zemmari@labri.fr 1 Bibliographie Bases de données relationnelles (Les systèmes et leurs langages). G. Gardarin Eyrolles Bases de données et systèmes relationnels. C.

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction a MongoDB Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Rapport de TER : Collecte de médias géo-localisés et recherche de points d intérêt avec l algorithme Mean Shift Martin PUGNET Février 2014

Rapport de TER : Collecte de médias géo-localisés et recherche de points d intérêt avec l algorithme Mean Shift Martin PUGNET Février 2014 Rapport de TER : Collecte de médias géo-localisés et recherche de points d intérêt avec l algorithme Mean Shift Martin PUGNET Février 2014 résumé : Ce projet a pour but de récupérer des données géolocalisées

Plus en détail

http://blog.khaledtannir.net

http://blog.khaledtannir.net Algorithme de parallélisations des traitements Khaled TANNIR Doctorant CIFRE LARIS/ESTI http://blog.khaledtannir.net these@khaledtannir.net 2e SéRI 2010-2011 Jeudi 17 mars 2011 Présentation Doctorant CIFRE

Plus en détail

Optimisations des SGBDR. Étude de cas : MySQL

Optimisations des SGBDR. Étude de cas : MySQL Optimisations des SGBDR Étude de cas : MySQL Introduction Pourquoi optimiser son application? Introduction Pourquoi optimiser son application? 1. Gestion de gros volumes de données 2. Application critique

Plus en détail

Mesures DNS à l ère du Big Data : outils et défis. JCSA, 9 juillet 2015 Vincent Levigneron, Afnic

Mesures DNS à l ère du Big Data : outils et défis. JCSA, 9 juillet 2015 Vincent Levigneron, Afnic Mesures DNS à l ère du Big Data : outils et défis JCSA, 9 juillet 2015 Vincent Levigneron, Afnic Sommaire 1. Mesures DNS réalisées par l Afnic 2. Volumes et biais 3. Limitations 4. Pourquoi une approche

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Introduction aux Bases de Données

Introduction aux Bases de Données Introduction aux Bases de Données I. Bases de données I. Bases de données Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Exemples classiques d'applications BD

Plus en détail

10 Intégration de données sur le web

10 Intégration de données sur le web 10 Intégration de données sur le web 240 Requête utilisateur : Où est-ce que je peux voir les films qui ont participé au dernier Festival de Cannes? Je voudrais les résumés et critiques des films de Pedro

Plus en détail

IPPI Instruction des Prêts Personnels Immobiliers

IPPI Instruction des Prêts Personnels Immobiliers Université de la Méditerranée Aix-Marseille II École Supérieure d Ingénieurs de Luminy Département informatique Luminy case 925 13288 Marseille cedex 09 IPPI Instruction des Prêts Personnels Immobiliers

Plus en détail

Performances Veille. Système d Information. Semaine 25 du 18 au 24 juin 2012. Numéro 228

Performances Veille. Système d Information. Semaine 25 du 18 au 24 juin 2012. Numéro 228 Performances Veille Système d Information Semaine 25 du 18 au 24 juin 2012 Numéro 228 TABLE DES MATIÈRES LA GÉNÉRATION Y DÉFIE LA DSI... 2 SOLUTIONS LINUX : BIG DATA ET BI OPEN SOURCE FONT BON MÉNAGE 01

Plus en détail

Bases de données Cours 1 : Généralités sur les bases de données

Bases de données Cours 1 : Généralités sur les bases de données Cours 1 : Généralités sur les bases de données POLYTECH Université d Aix-Marseille odile.papini@univ-amu.fr http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 1 Qu est ce qu une

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

LA DIVULGATION INTELLIGENTE DES DONNEES A L'HEURE DES BIG DATA

LA DIVULGATION INTELLIGENTE DES DONNEES A L'HEURE DES BIG DATA LA DIVULGATION INTELLIGENTE DES DONNEES A L'HEURE DES BIG DATA Une approche politiques publiques Données personnelles / traitement pénal des infractions CNIL 1 Journée AFDIT 22.2.2013 BIG DATA L'un des

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Compteurs de nouvelle génération

Compteurs de nouvelle génération Compteurs de nouvelle génération Intégration des données dans l'environnement PI System Alexandre Bouffard, chercheur Institut de recherche d Hydro-Québec (IREQ) 18 juin 2013 Aperçu 1. À propos d Hydro-Québec

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

I. Bases de données. Exemples classiques d'applications BD. Besoins de description

I. Bases de données. Exemples classiques d'applications BD. Besoins de description I. Bases de données Exemples classiques d'applications BD Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Gestion des personnels, étudiants, cours, inscriptions,...

Plus en détail

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Mappy en Chiffre Filiale du groupe Solocal 10M de visiteurs uniques 300M visites annuelles 100 collaborateurs dont 60% technique 3,7 Md de dalles

Plus en détail

Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives

Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives Web et bases de données : un mariage nécessaire pour faire face aux défis des données massives Module 6 : Changement d échelle et cohérence Les bases de données relationnelles sont mûres : elles ont bientôt

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

b-swiss education La solution la plus simple et intelligente pour communiquer par écrans en milieu scolaire

b-swiss education La solution la plus simple et intelligente pour communiquer par écrans en milieu scolaire education La solution la plus simple et intelligente pour communiquer par écrans en milieu scolaire Conçu pour les établissements scolaires de toute taille, le pack éducation de la gamme constitue la solution

Plus en détail

Structure fonctionnelle d un SGBD

Structure fonctionnelle d un SGBD Fichiers et Disques Structure fonctionnelle d un SGBD Requetes Optimiseur de requetes Operateurs relationnels Methodes d acces Gestion de tampon Gestion de disque BD 1 Fichiers et Disques Lecture : Transfert

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

IT203 : Systèmes de gestion de bases de données. A. Zemmari zemmari@labri.fr

IT203 : Systèmes de gestion de bases de données. A. Zemmari zemmari@labri.fr IT203 : Systèmes de gestion de bases de données A. Zemmari zemmari@labri.fr 1 Informations pratiques Intervenants : Cours : (A. Zemmari zemmari@labri.fr) TDs, TPs : S. Lombardy et A. Zemmari Organisation

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Méthodes & Outils pour la Veille

Méthodes & Outils pour la Veille Méthodes & Outils pour la Veille Stéphane Bortzmeyer AFNIC bortzmeyer@nic.fr 26 janvier 2009 1 Méthodes & Outils pour la Veille / Le bol et l eau Il y a deux choix importants à faire pour la veille : 1.

Plus en détail

Méthodes & Outils pour la Veille. Stéphane Bortzmeyer AFNIC bortzmeyer@nic.fr. 26 janvier 2009

Méthodes & Outils pour la Veille. Stéphane Bortzmeyer AFNIC bortzmeyer@nic.fr. 26 janvier 2009 1 Méthodes & Outils pour la Veille / Méthodes & Outils pour la Veille Stéphane Bortzmeyer AFNIC bortzmeyer@nic.fr 26 janvier 2009 2 Méthodes & Outils pour la Veille / Le bol et l eau Il y a deux choix

Plus en détail

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 1 Sommaire 1. Google en chiffres 2. Les raisons d être de GFS 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 4. Les Evolutions et Alternatives

Plus en détail

Technologies et techniques d aujourd hui et de demain 1 Virtualisation Containers Projet Docker Web 3.0 Cloud Big Data Internet des objets 2 1 Virtualisation 3 Virtualisation Logiciels appelés hyperviseurs

Plus en détail