CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013

Dimension: px
Commencer à balayer dès la page:

Download "CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013"

Transcription

1 CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013

2 2 / Sommaire CENTAI : Présentation du laboratoire Plate-forme OSINT LAB Détection de la fraude à la carte bancaire Détection de comportements anormaux Cartographie du SI Projet REQUEST Conclusions

3 3 / Big Data : «Big soucis ou opportunités» pour l assureur? Enjeux de l assurance connectée et des Big Data: Une révolution dans la gestion des données : qualité, sources (internes/externes), formats (structurées, non structurées), traitement, traçabilité, sécurisation, déontologie, modélisation? Une révolution dans l approche produits& clients? Une révolution dans les organisations et les outils pour les acteurs de l assurance? Une révolution dans le métier d actuaire et dans l apparition de nouveaux métiers?

4 4 / CENTAI

5 5 / CENTAI : Laboratoire Etudes Amont Thales Research &Technology (France, Hollande, Singapour, Canada) Transfert d algorithmes Evaluation / Méthodologies & Technologies Proof of Concept, Proof of Technos Dévt et Transfert de briques logicielles et de chaînes de traitements Laboratoire joint UPMC LIP6 CENTAI (Centre de Traitement et d Analyse de l Information) Big Data, Big Analytics & Visual Analytics Thales Business Lines Partenariat LABRI (PF TULIP) PMEs (OSS) Thales Communications & Security TRL 1-3 TRL 3-5 TRL 3-6 TRL > 6

6 6 / Pourquoi le Big Data & le Big Analytics au CENTAI? Thales fournit des systèmes qui produisent de très grands volumes de données encore très partiellement exploitées Les approches Big Data et Big Analytics fondées sur des BD NoSql et des frameworks de traitement distribué, associés si besoin à des BD SQL, permettent de définir de nouveaux produits et de nouveaux services pour optimiser les processus de détection et d investigation de l information critique 2009 Détection & Investigation de la fraude à la carte bancaire sur Internet 2 milliards de transactions / an Exhaustivité, Temps réel, Requêtes complexes 2010 L information sous forme de grands graphes (SNA) noeuds Modélisation SQL non adaptée aux données et aux parcours de graphes, Pbsde performances, Partitionnement des données coûteux, Requêtes complexes 2011 Smart Transport Smart City Cyber-Sécurité 5 milliards de transactions / an (STIF/Billettique ) + Autres données Données très hétérogènes issues des systèmes Thales (billettique, maintenance et supervision) / Données externes : Open data, Données sociales E-Border, sécurité Maritime, Contrôle du spectre,. Exhaustivité, Temps réel, Requêtes complexes 130 milliards de logs / an Echantillonnage impossible Anomalies inscrites dans la durée Limitation à la recherche de patterns connus Temps réel, Requêtes complexes

7 7 / CENTAI : Métier & Domaines d Activités Traitement de données massives, hétérogènes, dynamiques et relationnelles (données métier, données open source, open data) à des fins de détection et d investigation des informations (Collecte Analyse Visualisation)

8 8 / Projet REQUEST : Appel à projets Cloud computing Big Data Objectifs du projet Couplage entre les domaines du Big Data, Big Analytics, Visual Analytics et du Cloud Computing Développement d une architecture ouverte, dédiée à la gestion des données, aux algorithmes d analyse et de visualisation Techniques de gestion des données, fondées sur les nouvelles bases de données NoSQL Techniques innovantes de requêtage, utilisant un compromis entre l approche de recherche gouvernée par les hypothèses (Hypothesis driven) et l approche par exploration exhaustive des données (Data driven) Algorithmes adaptés au traitement de données massives, hétérogènes et dynamiques (données numériques, données non structurées et grands graphes) Techniques de visualisation analytique et interactive, permettant aux utilisateurs d investiguer les données Structuration et animation de la communauté française du Big Data, en associant des partenaires issus du monde industriel - grandes entreprises, petites et moyennes entreprises - du monde académique et du monde des opérateurs et prescripteurs publics

9 9 / Consortium Un consortium pluri-disciplinaires de 15 partenaires Académiques, Industriels et PMEs Compétences reconnues dans les domaines des architectures, de la gestion de données, de l analyse des données et de la visualisation Apport d expertise SHS pour les enjeux juridiques/éthiques/réglementaires Partenaires Thales Services Thales Communications & Sécurité Orange Labs SNCF Lab. ERIC / Université ERIC LIP6 UPMC ( MALIRE & Complex Networks) LIMSI/CNRS/ILES INRIA Bordeaux / LABRI L2TI Paris 13 UTT KXEN ALTIC ALDECIS ISTHMA SYLLABS INTHEMIS Collège GE GE GE GE Académique Académique Académique Académique Académique Académique PME PME PME PME PME PME

10 10 / Cas d usage applicatifs Cas d usage CyberCrime avec la Gendarmerie Nationale et la Police Nationale Protection du citoyen Implémentation d une chaîne de traitement, dédiée à la détection et à l investigation des infractions dans les réseaux sociaux et, plus particulièrement, dans les plateformes de microblogging, en vue de répondre aux besoins spécifiques du métier d enquêteur Cas d usage CyberSécurité - Protection du citoyen, Protection des infrastructures) Implémentation d une chaîne de traitement dédiée à la fouille de logs de sécurité et à la gestion dynamique des risques, permettant d optimiser les capacités de prévention et de détection des attaques contre les systèmes d information, pour répondre aux attentes des grands clients institutionnels et industriels Cas d usage «Transport Intelligent» - Mobilité et Sécurité Construction de typologies pour identifier des habitudes de voyages, Analyse des flux pour mieux comprendre la mobilité Couplage des données métier et OPEN DATA Exploitation de la nature relationnelle et interactionnelle des données (graphe «social» reliant des porteurs de cartes avec un réseau de transport) Détection et investigation d anomalies dans les flux de données

11 11 / «SOCIAL NETWORK ANALYSIS» PLATE-FORME OSINT LAB

12 12 / Plate-forme OSINT LAB Chaîne de traitement pour l analyse et le suivi des données issues du Web Social (Twitter, Facebook, Blogs & Forums), fondée sur des méthodes de Détection & d Investigation (Analytics et Visual Analytics) Grandes visées fonctionnelles Détecter & Investiguer dans le temps et dans l espace, en les corrélant les faits saillants (fréquents & rares) les rôles, comportements et pratiques des socionautes (individus & communautés) Innovation : Text & Link Mining Couplage dynamique des informations issues de l analyse du contenu des textes et de l analyse des relations ( liens acteurs, sources, textes) Langues supportées : Français, Anglais, Arabe Approche Intégration de composants Thales, de COTS et OSS, dans une plate-forme technique Développement agile, en s appuyant sur les résultats des évaluations opérationnelles Expérimentations continues menées en collaboration avec les utilisateurs finaux (Aujourd hui : GN, ANSSI, Thales (France, Canada, Inde ) R&D collaborative (ANR, Grand Emprunt, CALL SECURITY)

13 13 / Différentiateurs / Marché 3 grandes approches Moteur de recherche généraliste (Exalead, Bertin) Veille sociale orientée analyse des contenus textuels (AmiSoftware, Temis) Veille sociale orientée analyse des contenus relationnels (Linkfluence, I2) Approche OSINT LAB Répondre aux besoins spécifiques du métier d enquêteur (en s appuyant si besoin sur un couplage avec les outils du marché) Fonctions de collecte d informations textuelles et relationnelles en temps réel Couplage «Text et Link Mining» Fonctions de détection de signaux faibles Fonctions de détection des communautés Fonctions d investigation dynamique (pour la collecte de la preuve)

14 14 / Plate-forme OSINT LAB : Exemples d Usages Prévention, détection et investigation des infractions commises sur les réseaux sociaux, dans le contexte du Cybercrime Recherche et Etude des infractions (escroqueries, diffusion de contenus illicites, atteintes aux mineures, etc.) Analyse de la structure, des comportements et pratiques des communautés de cybercriminels (mise en évidence du rôle des différents suspects d un groupe criminel) Maintien de l ordre public / Gestion de crise Détection de menaces susceptibles de porter atteinte à l'ordre public et à la sécurité des citoyens (rassemblements dangereux, manifestations, émeutes, menaces contre les intérêts français, ) Plan de veille : Levée d alertes, pour anticiper les risques et menaces Recherche et filtrage d information multi-modale (géographie/textes/acteurs) Suivi et Investigation des événements à risque Identification des acteurs (qui parle?, qui agit?, qui interagit?) Mesure de la mobilisation sociale Cellule de veille et d anticipation de la menace dans le contexte de la cybersécurité Etude des menaces et attaques discutées sur les réseaux sociaux Etude des comportements et pratiques des communautés de hackers Anticipation des attaques potentielles, pour aider les opérateurs à prendre des décisions pour la protection et la défense des infrastructures critiques E-reputation et communication d influence, Veille technologique (Thales SA)

15 15 / Architecture fonctionnelle

16 16 / 16 / Couplage dynamique informations textuelles, relationelles et temporelles

17 17 / Débat : Quelles usages pour l assurance? Veille financière? Analyse et Suivi des risques de marché Mesure de l impact des rumeurs Exemple de la Société Générale en 2011 Baisse de l action de 15% en une journée, suite à des tweets repris par un journal anglais, annonçant la faillite de la banque puis, Chute de la bourse de 20% Social Customer Relationship Intelligence? Optimisation de la connaissance des clients Connaissance des nouveaux besoins marché E-Reputation? E-Reputation de l assureur et de son réseau Communication d influence Veille concurrentielle? Autres pistes?

18 18 / DÉTECTION DES ANOMALIES & CARTOGRAPHIE DU SYSTEME D INFORMATION

19 19 / Cyber-sécurité Analyse de logs réseau Objectifs Détection d évènements réseau anormaux (a posteriori) Caractérisation de la topologie d un système d information supervisé (a posteriori) Données 70 To de fichiers de logs Données massives et hétérogènes Architecture choisie Stockage Besoin : Stockage de gros volumes de logs hétérogènes Solution : Apache Hadoop HDFS Processing Besoin : Requêtage (sélection, jointure, ) Solution : Apache Hive / UC Berkeley Shark (requêtage SQL) Besoin : Traitements complexes sur les données (algorithmes d apprentissage) Solution : Apache Hadoop MapReduce (algorithmes de détection CENTAI)

20 20 / Le Big Data & le Big Analytics, dans le contexte de la Cybersécurité ENJEUX BIG DATA BIG ANALYTICS VISUAL ANALYTICS CYBELS SENSOR : Moteur de corrélation IDS/NetFlow/DPI Données massives et dynamiques 10GB/s Parallélisation des algorithmes Linéarisation des algorithmes Portail de reporting Cartographie dynamique et passive du SI Détection et investigation des attaques contre le SI Données massives et hétérogènes 80 To logs / an Stockage distribué (HDFS) Base de données colonne (Cassandra) Parallélisation & Distribution (MapReduce) Moteur de visualisation de graphes Cellule de veille et d évaluation de la menace sur le Web Social Données hétérogènes et dynamiques données textuelles et données relationnelles Base de données graphe (Titan) Moteur de recherche (Elastic Search) Parallélisation & Distribution (MapReduce) Moteur de visualisation de graphes Portail de reporting

21 21 / Cartographie dynamique du SI Cartographie dynamique Remonter la topologie réseau d un SI de manière passive, non intrusive et automatique Analyse des logs réseau (routeurs, firewalls, ) Représentation des liaisons entre machines sous forme de graphe relationnel Typologie des flux (protocole, nombre de paquets, ) Typologie des machines (serveurs, VMs, ) Communautés de machines (sous-réseaux) Navigation temporelle entre différents «snapshots»

22 22 / Débat : Quelles usages pour l assurance? Customer Relationship Intelligence? Cartographie et suivi des réseaux d agents et courtiers Cartographie et suivi des segments de clientèle et de leurs scores d appétence Gestion de risques? Proposition de stratégies de portefeuille : Modélisation des interdépendances de risque entre produits «Baskets» financiers entre produits / mauvais risques et mauvais comportements pour un ensemble de produits Autres?

23 23 / Débat : Autres pistes pour les assureurs Qualité des données Méthodes d amélioration de la qualité des données Big Data Gestion de risques Analyse de risques pays à partir des OPEN DATA, pour les réassureurs et les assisteurs. Autre

24 24 / CYBERCRIME : FRAUDE A LA CARTE BANCAIRE SUR INTERNET

25 25 / La problématique de la fraude à la carte bancaire sur Internet L ascension du e-commerce (FEVAD 2011) En 2011: + 22 % et CA du e-commerce de 38 milliards Un succès qui attire les fraudeurs (OSCP-2011) Montant M 73% des paiements frauduleux en 2011 et 52% en 2007 La fraude sur Internet très différente de la fraude de proximité Fraude en proximité Fraude localisée dans l espace et le temps : carte perdue ou volée avec code confidentiel, Mécanismes bien compris : par ex. piratage des distributeurs et duplication de la piste sur un faux support et utilisation à l étranger Fraude sur Internet Les comportements de fraude sont diffus, vagues, mouvants et changent fréquemment Les origines des compromissions de données sensibles sont très diverses, beaucoup plus largement distribuées géographiquement

26 26 / E-Fraud Box - Objectifs Développer une boîte à outils de techniques Fouille de données, Analyse des réseaux sociaux & Informatique décisionnelle Pour la détection de la fraude à la carte bancaire sur Internet Identifier plus rapidement les cartes utilisées frauduleusement sur Internet et ainsi prévenir les porteurs de carte plus tôt & pour l investigation de la fraude Identifier plus automatiquement des points de compromission Détecter plus rapidement les nouveaux modes opératoires Identifier plus rapidement les affaires pour les transmettre aux forces de l ordre

27 27 / Principaux résultats Un ensemble d algorithmes pour la détection et l investigation de la fraude Techniques d échantillonnage tenant compte du déséquilibre des classes Typologie dynamique de la fraude Evolution des comportements de fraude Algorithmes de détection de la fraude Algorithmes d investigation de la fraude Une intégration dans un démonstrateur au sein du GIE Cartes Bancaires CB Une phase de test par le GIE après la fin du projet (6 mois-2 ans)

28 28 / Débat : Quelles usages pour l assurance? Détection de la fraude Sécurisation des systèmes d information Sécurisation des opérations d assurance en ligne avec un mode de distribution sur Internet en croissance continue Assurance Santé : diminution des incidents de paiement chez les professionnels de santé, aide à la lutte contre la fraude, réduction de coûts, dématérialisation des cartes de Tiers Payant Autres?

29 29 / Conclusions

La fraude à la carte bancaire

La fraude à la carte bancaire Agenda Utilisation des réseaux sociaux dans la lutte contre la fraude Françoise Soulié Fogelman VP Innovation francoise@kxen.com 1. La fraude à la carte bancaire 2. La question des volumes 3. La création

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le Qui je suis Innovation Utilisation des réseaux sociaux pour le data mining Business & Decision Françoise Soulié Fogelman francoise.soulie@outlook.com Atos KDD_US CNAM Séminaire de Statistique appliquée

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Graphes d attaques Une exemple d usage des graphes d attaques pour l évaluation dynamique des risques en Cyber Sécurité

Graphes d attaques Une exemple d usage des graphes d attaques pour l évaluation dynamique des risques en Cyber Sécurité Graphes d attaques Une exemple d usage des graphes d attaques pour l évaluation dynamique des risques en Cyber Sécurité Emmanuel MICONNET, Directeur Innovation WISG 2013, UTT le 22/1/13 2 / CyberSécurité,

Plus en détail

Transformation IT de l entreprise COMMENT L ANALYTIQUE ET LE BIG DATA RENFORCENT LES ENJEUX DE SÉCURITÉ

Transformation IT de l entreprise COMMENT L ANALYTIQUE ET LE BIG DATA RENFORCENT LES ENJEUX DE SÉCURITÉ Transformation IT de l entreprise COMMENT L ANALYTIQUE ET LE BIG DATA RENFORCENT LES ENJEUX DE SÉCURITÉ L analytique de données peut-elle faire baisser la criminalité? Si vous pensez que c est impossible

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

DÉVELOPPER DES APPLICATIONS WEB SÉCURISÉES

DÉVELOPPER DES APPLICATIONS WEB SÉCURISÉES DÉVELOPPER DES APPLICATIONS WEB SÉCURISÉES et après? 3 avril 2012 www.advens.fr Document confidentiel - Advens 2012 Etat des lieux en 2012 Augmentation de la fréquence et de la complexité des attaques

Plus en détail

4 février 2015. Exemple d application opérationnelle immédiate en France d un projet européen de R&D en sécurité

4 février 2015. Exemple d application opérationnelle immédiate en France d un projet européen de R&D en sécurité Exemple d application opérationnelle immédiate en France d un projet européen de R&D en sécurité Projet européen isar+ Budget de 5,2 M dans le cadre FP7-SEC-2012-1, 16 partenaires de 9 pays, dont Deveryware,

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

La refondation de l informatique Des opportunités pour les entreprises

La refondation de l informatique Des opportunités pour les entreprises La refondation de l informatique Des opportunités pour les entreprises DENIS ATTAL VP TECHNICAL, CRITICAL INFORMATION SYSTEMS AND CYBER-SECURITY www.thalesgroup.com QUESTION Quelle est la discipline dans

Plus en détail

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC

Plus en détail

Master Informatique Aix-Marseille Université

Master Informatique Aix-Marseille Université Aix-Marseille Université http://masterinfo.univ-mrs.fr/ Département Informatique et Interactions UFR Sciences Laboratoire d Informatique Fondamentale Laboratoire des Sciences de l Information et des Systèmes

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

e-fraud Box : Détection et Investigation de la fraude à la carte bancaire sur Internet

e-fraud Box : Détection et Investigation de la fraude à la carte bancaire sur Internet e-fraud Box : Détection et Investigation de la fraude à la carte bancaire sur Internet Consortium e-fraud Box 1 1 ALTIC, GIE Cartes Bancaires CB, KXEN, LIP6, LIPN, Thales efraud.lip6.fr, stephane.lorin@fr.thalesgroup.com

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

La sécurité intelligente intégrée pour protéger vos données critiques

La sécurité intelligente intégrée pour protéger vos données critiques IBM Software Livre blanc sur le leadership éclairé Avril 2013 La sécurité intelligente intégrée pour protéger vos données critiques Exploitez des informations décisionnelles afin de réduire les risques

Plus en détail

3 minutes. cybersécurité. avec Orange Consulting. pour tout savoir sur la. mobile, network & cloud. maîtrisez vos risques dans le cybermonde

3 minutes. cybersécurité. avec Orange Consulting. pour tout savoir sur la. mobile, network & cloud. maîtrisez vos risques dans le cybermonde 3 minutes pour tout savoir sur la cybersécurité mobile, network & cloud maîtrisez vos risques dans le cybermonde avec Orange Consulting 1 estimez la menace évaluez vos vulnérabilités maîtrisez vos risques

Plus en détail

HySIO : l infogérance hybride avec le cloud sécurisé

HySIO : l infogérance hybride avec le cloud sécurisé www.thalesgroup.com SYSTÈMES D INFORMATION CRITIQUES ET CYBERSÉCURITÉ HySIO : l infogérance hybride avec le cloud sécurisé Le cloud computing et la sécurité au cœur des enjeux informatiques L informatique

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

REFERENTIEL DU CQPM. TITRE DU CQPM : Préventeur (trice) en cybersécurité des systèmes d information

REFERENTIEL DU CQPM. TITRE DU CQPM : Préventeur (trice) en cybersécurité des systèmes d information COMMISION PARITAIRE NATIONALE DE L EMPLOI DE LE METALLURGIE Qualification : Catégorie : D Dernière modification : 02/04/2015 REFERENTIEL DU CQPM TITRE DU CQPM : Préventeur (trice) en cybersécurité des

Plus en détail

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data»

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» BT, UN LEADER MONDIAL BT est l une des premières entreprises

Plus en détail

DEMARREZ RAPIDEMENT VOTRE EVALUATION

DEMARREZ RAPIDEMENT VOTRE EVALUATION Pentaho Webinar 30 pour 30 DEMARREZ RAPIDEMENT VOTRE EVALUATION Resources & Conseils Sébastien Cognet Ingénieur avant-vente 1 Vous venez de télécharger une plateforme moderne d intégration et d analyses

Plus en détail

Projet de l UBS en cybersécurité

Projet de l UBS en cybersécurité Projet de l UBS en cybersécurité 22 janvier 2015 Guy GOGNIAT www.univ-ubs.fr Pôle de cybersécurité de l UBS Chaire cyberdéfense Plusieurs projets se nourrissent au sein d un même pôle 1 2 3 4 Des formations

Plus en détail

Vision prospective et obstacles à surmonter pour les assureurs

Vision prospective et obstacles à surmonter pour les assureurs smart solutions for smart leaders Le «Big Data» assurément Rédigé par Pascal STERN Architecte d Entreprise Vision prospective et obstacles à surmonter pour les assureurs Un avis rendu par la cour de justice

Plus en détail

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES Stages 2015-2016 Contact : Mme Lapedra, stage@isoft.fr ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET ANALYSE DE DONNEES ISoft est un concepteur-éditeur de logiciels spécialisé dans la recherche

Plus en détail

Présentation Société Actulligence Consulting

Présentation Société Actulligence Consulting Présentation Société Actulligence Consulting Conseil et Accompagnement Intelligence économique Veille stratégique e-réputation Actulligence Consulting : Présentation Frédéric Martinet, Consultant indépendant

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Découverte et investigation des menaces avancées PRÉSENTATION

Découverte et investigation des menaces avancées PRÉSENTATION Découverte et investigation des menaces avancées PRÉSENTATION AVANTAGES CLÉS RSA Security Analytics offre les avantages suivants : Surveillance de la sécurité Investigation des incidents Reporting sur

Plus en détail

SPÉCIALISTE DU SOCIAL MEDIA INTELLIGENCE

SPÉCIALISTE DU SOCIAL MEDIA INTELLIGENCE SPÉCIALISTE DU SOCIAL MEDIA INTELLIGENCE Le web regorge de conversations, de publications disparates souvent sous-exploitées : une source de valeur ajoutée, des leviers de décisions stratégiques. LE SOCIAL

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

Formation A2IMP. Acquisition d information sur les autres équipements du réseau. Frédéric Bongat IPSL Formation A2IMP 1

Formation A2IMP. Acquisition d information sur les autres équipements du réseau. Frédéric Bongat IPSL Formation A2IMP 1 Formation A2IMP Acquisition d information sur les autres Frédéric Bongat IPSL Formation A2IMP 1 Idée : corréler des informations via d autres Informations de base Connaître l horodatage (date, heure) des

Plus en détail

Intégration de la cybersécurité aux systèmes de conduite industriels. Méthodes et pratiques

Intégration de la cybersécurité aux systèmes de conduite industriels. Méthodes et pratiques Intégration de la cybersécurité aux systèmes de conduite industriels Méthodes et pratiques Les Infrastructures critiques utilisant des Systèmes de Contrôle Industriels Industrie nucléaire Industrie pétrolière,

Plus en détail

5 novembre 2013. Cloud, Big Data et sécurité Conseils et solutions

5 novembre 2013. Cloud, Big Data et sécurité Conseils et solutions 5 novembre 2013 Cloud, Big Data et sécurité Conseils et solutions Agenda 1. Enjeux sécurité du Cloud et du Big Data 2. Accompagner les projets 3. Quelques solutions innovantes 4. Quelle posture pour les

Plus en détail

Vos experts Big Data. contact@hurence.com. Mener un projet Big Data

Vos experts Big Data. contact@hurence.com. Mener un projet Big Data Vos experts Big Data contact@hurence.com Mener un projet Big Data Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB Expert

Plus en détail

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE Leading Digital Together 2 3 Capgemini Consulting, le leader français de la transformation digitale Une force de frappe de 900 consultants en France et de

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

PLATEFORME MÉTIER DÉDIÉE À LA PERFORMANCE DES INSTALLATIONS DE PRODUCTION

PLATEFORME MÉTIER DÉDIÉE À LA PERFORMANCE DES INSTALLATIONS DE PRODUCTION PLATEFORME MÉTIER DÉDIÉE À LA PERFORMANCE DES INSTALLATIONS DE PRODUCTION KEOPS Automation Espace Performance 2B, rue du Professeur Jean Rouxel BP 30747 44481 CARQUEFOU Cedex Tel. +33 (0)2 28 232 555 -

Plus en détail

La fonction Conformité dans l assurance

La fonction Conformité dans l assurance La fonction Conformité dans l assurance L approche par les risques L exemple de la lutte contre le blanchiment Présentation pour : Faculté d Orléans Intervenant(s) : Laurent GUEREL AG2R LA MONDIALE 1/19

Plus en détail

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France Sommaire Cloud Computing Retours sur quelques notions Quelques chiffres Offre e need e need Services e need Store

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Technique et architecture de l offre Suite infrastructure cloud. SFR Business Team - Présentation

Technique et architecture de l offre Suite infrastructure cloud. SFR Business Team - Présentation Technique et architecture de l offre Suite infrastructure cloud Les partenaires de l offre Cloud Computing SFR Le focus HP Les principes de mise en œuvre réseau Les principes de fonctionnement de la solution

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

L exploitation des rapports de vérifications réglementaires : quels enjeux, quelle solution?

L exploitation des rapports de vérifications réglementaires : quels enjeux, quelle solution? L exploitation des rapports de vérifications réglementaires : quels enjeux, quelle solution? 5 décembre 2013 Sommaire L exploitation des rapports de vérifications réglementaires : Quels enjeux? Bureau

Plus en détail

Exploiter l information remontée par le SI

Exploiter l information remontée par le SI Exploiter l information remontée par le SI Synthèse de la conférence thématique du CLUSIF du 14 octobre 2014. Il est un domaine de la sécurité des systèmes d information qui s applique tant en termes de

Plus en détail

La GRC en temps de crise, difficile équilibre entre sentiment de sécurité et réduction des coûts

<Insert Picture Here> La GRC en temps de crise, difficile équilibre entre sentiment de sécurité et réduction des coûts La GRC en temps de crise, difficile équilibre entre sentiment de sécurité et réduction des coûts Christophe Bonenfant Cyril Gollain La GRC en période de croissance Gouvernance Gestion

Plus en détail

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

«Innovation Intelligence» La valorisation des données massives au service des partenariats R&D. Expernova Université d été GFII 11-09-2014

«Innovation Intelligence» La valorisation des données massives au service des partenariats R&D. Expernova Université d été GFII 11-09-2014 «Innovation Intelligence» La valorisation des données massives au service des partenariats R&D Expernova Université d été GFII 11-09-2014 [Une tendance forte à l Open Innovation ] «Le monde est devenu

Plus en détail

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL

PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL PLANIFICATION ET OPERATIONS INTEGREES DU TRANSPORT MULTIMODAL KEYWORDS : SYSTEMX, Transport, Multimodal, Simulation, Optimisation, Supervision CONTEXTE de l IRT SYSTEMX L IRT SystemX est un institut de

Plus en détail

Big Data : se préparer au Big Bang

Big Data : se préparer au Big Bang Big Data : se préparer au Big Bang Initialement confinées au cœur des moteurs de recherche et des réseaux sociaux, les technologies du Big Data s'exportent désormais avec succès dans de nombreux secteurs

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

MailCube MC 2. 2,5 jours / homme / an. 33 milliards de kwh. 17 millions de. 3,1 millions de. nouvelle génération. Le spam en quelques chiffres :

MailCube MC 2. 2,5 jours / homme / an. 33 milliards de kwh. 17 millions de. 3,1 millions de. nouvelle génération. Le spam en quelques chiffres : Le spam en quelques chiffres : Pour faire face à cet afflux de courriers électroniques non désirés Vade Retro Technology lance une nouvelle génération de sa solution appliance MailCube. Le nouveau boîtier

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

Performances Veille. Système d Information. Semaine 25 du 18 au 24 juin 2012. Numéro 228

Performances Veille. Système d Information. Semaine 25 du 18 au 24 juin 2012. Numéro 228 Performances Veille Système d Information Semaine 25 du 18 au 24 juin 2012 Numéro 228 TABLE DES MATIÈRES LA GÉNÉRATION Y DÉFIE LA DSI... 2 SOLUTIONS LINUX : BIG DATA ET BI OPEN SOURCE FONT BON MÉNAGE 01

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Club des Experts de la Sécurité de l Information et du Numérique

Club des Experts de la Sécurité de l Information et du Numérique Club des Experts de la Sécurité de l Information et du Numérique Cybersécurité dans les entreprises 9 ème Entretiens de Télécom ParisTech Alain Bouillé Président du CESIN Sommaire 1. Quel terrain de jeu

Plus en détail

Brèches de sécurité, quelles solutions?

Brèches de sécurité, quelles solutions? Brèches de sécurité, quelles solutions? Pierre-Yves Popihn Directeur Technique 2 juin 2015 1 Contexte Actuel Evolution du paysage des menaces Innovation Technologique Evolution des besoins métiers 2 juin

Plus en détail

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com Le Web, l'entreprise et le consommateur Françoise Soulié Fogelman francoise@kxen.com Forum "Quel futur pour le Web" Lyon, mardi 21 septembre 2010 THE DATA MINING AUTOMATION COMPANY TM Agenda Le Web un

Plus en détail

Les humanités numériques à l ère du big data

Les humanités numériques à l ère du big data Les humanités numériques à l ère du big data D. A. ZIGHED djamel@zighed.com Journées Big data & visualisation Focus sur les humanités numériques ISH Lyon 18-19 juin 2015 Co-organisées par EGC AFIHM - SFdS

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

July 1, 2013. Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15

July 1, 2013. Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15 Mastère Spécialisé Big Data Stéphan Clémençon Télécom ParisTech July 1, 2013 Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15 Agenda Contexte et Opportunité Les grandes lignes

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

la sécurité change avec Orange développez vos activités en toute sérénité, nous protégeons vos systèmes d information

la sécurité change avec Orange développez vos activités en toute sérénité, nous protégeons vos systèmes d information la sécurité change avec Orange développez vos activités en toute sérénité, nous protégeons vos systèmes d information 2 à nouveau contexte, nouvelle vision de la sécurité Nouveaux usages et nouvelles technologies,

Plus en détail

FORMATION HADOOP Développeur pour Hadoop (Apache)

FORMATION HADOOP Développeur pour Hadoop (Apache) FORMATION HADOOP Développeur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.

Plus en détail

Projet VOIE (VidéoprotectionOuverte et IntégréE) Appel à projets FUI 19. Sensorit

Projet VOIE (VidéoprotectionOuverte et IntégréE) Appel à projets FUI 19. Sensorit Projet VOIE (VidéoprotectionOuverte et IntégréE) Appel à projets FUI 19 Sensorit Besoin Un ensemble de besoinsen vidéo-protection et protection de bâtiments recevant le public Des opérateurs publics ou

Plus en détail

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables DocForum 18 Juin 2015 Réussites d un projet Big Data Les incontournables Vos interlocuteurs Mick LEVY Directeur Innovation Business mick.levy@businessdecision.com 06.50.87.13.26 @mick_levy 2 Business &

Plus en détail

politique de la France en matière de cybersécurité

politique de la France en matière de cybersécurité dossier de presse politique de la France en matière de cybersécurité 20 février 2014 Contact presse +33 (0)1 71 75 84 04 communication@ssi.gouv.fr www.ssi.gouv.fr Sommaire L ANSSI L ANSSI en chiffres Le

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009

Panorama des outils de veille. Myriel Brouland I-Expo 17 Juin 2009 Panorama des outils de veille Myriel Brouland I-Expo 17 Juin 2009 1 La veille s est affirmée en tant que discipline : Elle s inscrit dans un démarche d optimisation du management de l information au sein

Plus en détail

Un livre blanc des L EMAIL, VECTEUR DE MENACES POUR LA SÉCURITÉ DES PME 5 RÉALITÉS QUE TOUTE PME DOIT CONNAÎTRE SUR LA SÉCURITÉ DE L EMAIL

Un livre blanc des L EMAIL, VECTEUR DE MENACES POUR LA SÉCURITÉ DES PME 5 RÉALITÉS QUE TOUTE PME DOIT CONNAÎTRE SUR LA SÉCURITÉ DE L EMAIL Un livre blanc des L EMAIL, VECTEUR DE MENACES POUR LA SÉCURITÉ DES PME 5 RÉALITÉS QUE TOUTE PME DOIT CONNAÎTRE SUR LA SÉCURITÉ DE L EMAIL En dépit du succès grandissant des outils de communication en

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

Des capacités de cybersécurité et de confiance numérique pour accélérer votre transformation digitale

Des capacités de cybersécurité et de confiance numérique pour accélérer votre transformation digitale CYBERSÉCURITÉ Des capacités de cybersécurité et de confiance numérique pour accélérer votre transformation digitale Delivering Transformation. Together. Sopra Steria, leader européen de la transformation

Plus en détail

CYBERSÉCURITÉ. Des capacités globales de cybersécurité pour une transformation numérique en toute confiance. Delivering Transformation. Together.

CYBERSÉCURITÉ. Des capacités globales de cybersécurité pour une transformation numérique en toute confiance. Delivering Transformation. Together. CYBERSÉCURITÉ Des capacités globales de cybersécurité pour une transformation numérique en toute confiance Delivering Transformation. Together. Sopra Steria, leader européen de la transformation numérique,

Plus en détail

Comment lutter efficacement contre la fraude à l assurance

Comment lutter efficacement contre la fraude à l assurance Comment lutter efficacement contre la fraude à l assurance 1 En cette période de tension sur leur rentabilité et de pression sur les tarifs, les assureurs soulignent la nécessité de renforcer leur dispositif

Plus en détail

PROGRAMME DE FORMATION EN INVESTIGATION NUMERIQUE

PROGRAMME DE FORMATION EN INVESTIGATION NUMERIQUE PROGRAMME DE FORMATION EN INVESTIGATION NUMERIQUE Aziz Da Silva WWW.AZIZDASILVA.NET Rédaction Nom Fonction Version Date Notes Aziz DA SILVA Consultant Senior En 1.0 21/09/14 Version Initiale Stratégies

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE Leading Together 2 L histoire en quelques mots Capgemini Consulting est l activité conseil en stratégie et transformation digitale du groupe Capgemini. Née

Plus en détail

Les datas = le fuel du 21ième sicècle

Les datas = le fuel du 21ième sicècle Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Trusteer Pour la prévention de la fraude bancaire en ligne

Trusteer Pour la prévention de la fraude bancaire en ligne Trusteer Pour la prévention de la fraude bancaire en ligne La solution de référence pour la prévention de la fraude bancaire en ligne Des centaines d institutions financières et des dizaines de millions

Plus en détail

Présentation de Probayes. ProbayesCard Solution de détection de fraude à la carte bancaire

Présentation de Probayes. ProbayesCard Solution de détection de fraude à la carte bancaire Présentation de Probayes La maîtrise des incertitudes ProbayesCard Solution de détection de fraude à la carte bancaire Octobre 2009 Page: 1 La société Créée en 2003 Basée à Grenoble Spin-off du INRIA/CNRS

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Thales Services, des systèmes d information plus sûrs, plus intelligents www.thalesgroup.com

Thales Services, des systèmes d information plus sûrs, plus intelligents www.thalesgroup.com , des systèmes d information plus sûrs, plus intelligents www.thalesgroup.com Thales, leader mondial des hautes technologies Systèmes de transport, Espace, Avionique, Opérations aériennes, Défense terrestre,

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail