Big Data Jean-Michel Franco

Dimension: px
Commencer à balayer dès la page:

Download "Big Data Jean-Michel Franco"

Transcription

1 28/03/2014 Big Data Tendances, perspectives et cas d usage Jean-Michel Franco Directeur de l innovation et des solutions Twitter

2 Définition Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent du fait des contraintes économiques, fonctionnelles et techniques liées aux volumétries, à la vitesse de traitement et à la variété des données à considérer. Source The 451 Group & Gartner Les challenges incluent la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Source Wikipedia 2

3 Le Big data : une cible mouvante mais qui désormais nous concerne tous Transports 80 GB Banque 450 GB Retail 180 TB Medias 100 PB Medias 25 PB 100 Pétas 80 Pétas Assurances 600 MB Voyages 807 MB 60 Pétas 40 Pétas 20 Pétas Péta = octets (10 15 ) = Giga octets = 1000 téra octets 3

4 Popularité Notre enjeu : le principe de la longue traîne, appliqué à la gestion de l information La gestion de l information telle qu on la connait - capital informationnel constitué sur la base des SI internes de l entreprise - information exploitée transversalement uniquement en temps différé - information modélisée à priori La gestion de l information telle qu on la voudrait La gestion de l information telle qu on la connait + information générés par les humains + information gérée par les machines + information en «juste à temps» (vitesse) + information modélisable, assemblable, et extensible au fil de l eau (élasticité) Information disponible 4

5 Exemple d innovation dans la distribution: Au plus près du terrain et de la demande client La grande distribution a été pionnière dans la mise en œuvre de data warehouses d entreprise, notamment pour l analyse des données extraites des tickets de caisse. Mais il devient nécessaire de tirer encore plus de valeur de ces données, d approfondir les capacités d analyse et de les rendre «actionnables». Gestion plus fine et dynamique des prix de vente Personnalisation des offres pour les programmes de fidélité Gestion proactive des fraudes Ajustement de l offre et de la demande, par zone géographique Gestion du on line multi-canal (e-commerce, magasins, drive) 5

6 Exemple d innovation dans les utilities : Le «Smart Watering» En France, 25% de l eau injectée sur le réseau est perdue en fuites et fraudes ; Le manque à gagner pour les citoyens s élève à 2,4 milliards d euros par an. (*) Les canaux numériques et l Internet des objets ouvrent de nouvelles opportunités pour collecter/exploiter les données, et les mettre à disposition de tous (*) Source : SIA conseil Informations en temps réel sur les débits et la qualité de l eau Services à valeur ajoutée pour les consommateurs et les collectivités Détection au plus tôt des problèmes sur le réseau et en bout de chaine Engagement commun au principe de consommation responsable Automatisation du processus de collecte 6

7 Exemple d innovation dans le secteur des assurances : innover par de nouvelles offres Une start-up dédiée à l assurance des exploitations agricoles face aux aléas du climat. La collecte d un ensemble d informations à un niveau très fin sur les températures, l humidité, les précipitations Des offres personnalisées pour chaque agriculture en fonction des spécificités de son exploitation et de son environnement Gestion des sinistres totalement dématérialisés : paiement automatisé en fonction des conditions Un potentiel de déploiement sans limites géographiques, permettant d atteindre des marchés encore peu exploités 7

8 Exemple d innovation dans le secteur des utilities -> un «datalab» pour découvrir les données concurrence et les croiser avec les données internes Lyonnaise des Eaux est leader sur la qualité de l eau et cherche à conforter son leadership en se dotant d un outil de benchmark permettant l analyse de ses performances et la comparaison avec les autres délégataires et régies. Récupérer des données publiques à partir de sources de données non structurées et externe au S.I (site web Création d un «datalab» sur le cloud permettant à un «data scientist» de qualifier la qualité de données et de les rapprocher avec les données internes de l entreprise 8

9 De la BI telle qu on la connait au Big Data : à la recherche de la «longue traine» Systèmes transactionnels Etendre les principes fondateurs des concepts du Data Warehouse et l Information Management : Immédiateté Précision Agilité Data Warehouse Big Data Aller puiser la connaissance dans de nouvelles sources de données structurées Capteurs, Internet des objets Données externes Systèmes décisionnels d entreprise Exploiter et fédérer les données «non structurées» Documents, contenu numérique riche Données publiques du web et réseaux sociaux 9

10 Big Data : pour qui, pour quoi? Industrie Produit comme un service Qualité, innovation R&D Maintenance préventive Assurance Fraudes et risques Recommandation client Tarification à l usage, personnalisation Distribution Offres temps réel et service personnalisés Optimisation de l expérience magasin Pricing dynamique Santé Gestion des effets indésirables Traitements personnalisés. Amélioration des diagnostics Banques Parcours clients multicanaux Fraude, anti blanchiment Partage des données consommateurs pour personnalisation Transports, loisirs Planification et gestion des evts liés à la logistique Service client temps réel Economie d énergie Pricing dynamique Secteur public Services informationnels Fraudes, abus Sécurité publique Personnalisation de la relation citoyen Telecom Parcours clients multicanaux Partage de données de géo localisation Fraudes et analyse du comportement client Produits gde conso. Analyse de sentiments et retour produits Relation personnalisée avec le consommateur Produit comme un service Des arômes et ingrédients qui se déclinent dans tous les secteurs d activité 10

11 Le big data : Pour quoi faire? Expérience client Efficacité des processus Innovation produit Marketing ciblé Réduction des coûts Gestion des risques Monétisation de l'information Governance et réglementations Sécurité Autres Sources : Gartner La relation client avant tout, puis l efficacité des processus et l innovation 11

12 Si l information devient un actif, alors il faut s organiser et se spécialiser en conséquence Sources : R Casonato/Gartner : Addressing the Big Data Skills Crisis 12

13 Vers un monde de plus en plus transparent pour le meilleur et pour le pire Définir au plus tôt son éthique vis-à-vis du big data Ne pas utiliser la donnée audelà d un périmètre bien délimité Traitez les autres comme vous accepteriez d être traités Solliciter le consentement, partagez les résultats et les bénéfices avec vos partenaires Source : F Buytendijk Institutions are becoming naked, and if you're going to be naked fitness is no longer optional. If you're going to be naked, you better get buff. Don Tapscott : four principles for the open world 13 03/2014 Big Data

14 Quelles technologies pour le Big Data? Sources : Ray Wang 14

15 La technologie phare du Big Data Hadoop est un framework Java qui permet de constituer une plateforme Big Data complète Adaptable sur des très gros volumes Tolérant aux pannes Open source Hardware «banalisé» CORE HADOOP COMPONENTS Hadoop Distributed File System (HDFS) File Sharing & Data Protection Across Physical Servers MapReduce Distributed Computing Across Physical Servers 03/2014 Big Data 15

16 Pourquoi Hadoop? Source : P Russom TDWI Best practices report ; Integrating Hadoop into BI & Data Warehousing 16

17 Hadoop : freins et axes d amélioration Source : P Russom TDWI Best practices report ; Integrating Hadoop into BI & Data Warehousing 17

18 Quelles évolutions pour Hadoop? Intégrer le temps réel (Fast Data) Base Colonne (Hbase) Spark (in memory) Storm-Yarn : Calculs en temps réel sur les données Gestion des données au fil de l eau (streams) Faciliter les accès aux données structurées et l interactivité avec SQL Impala (Cloudera) Drill (Mapr) Stinger (Hortonworks) Evolutions Hive, Hadapt Ecosytème «on top» autour de Hadoop Intégration de données (Talend, Syncsort, Revelytix ) Accès aux données (Datameer, Karmasphere ) Data mining ( R, Weka ) 18

19 Zoom sur un cas d usage détaillé de Big Data : Mémoriser, comprendre, optimiser et influencer le parcours client cross-canal cookie Numéro téléphone Site web vitrine Carte de crédit Portail client Retrait via distributeur N de compte Passage en agence Appel Centre de contact 19

20 Préparation du rendez vous par le conseiller Restitution des informations clients + suggestions de développement commercial Préparation du rendez vous Mr Durand Samedi 08/03/ h à 12h Récapitulatif : Opportunités de développement commercial Mr Durand - Le client a utilisé le site Internet pour consulter des informations sur le crédit immobilier le 15/01/14 - Il a consulté la fiche produit Appétence Prêt à au taux Rappel fixe Immédiat (WebCallBack) Il s est renseigné sur les Appétence produits à «la Assurance prise de rendez-vous Emprunteurs» et «Assurance Habitation» - Il a demandé à vous rencontrer Appétence: suite avance à ses de consultations trésorerie Appétence: crédit immobilier 1 Evaluation du projet de Mr Durand (basé sur 2 simulations réalisées) Appétence: produit d'assurance Projet : Achat maison dans l ancien Appétence: produit d'épargne Apport client : Merci de confirmer l exactitude des Appétence: prêt à la consommation Mensualité demandée : / mois informations recueillies - 1 ère simulation Internet Nombre : 244 k de pages 15 ans vues taux 3,5% 26 Oui Non - 2 ème simulation Internet Risque : 270 k d'attrition 20 ans taux 4% 0.8 Temps depuis la dernière connexion au site web 33H Appétence mobile (optional) 0 Appétence web (optional) 1 Opportunités de proposition commerciales (* basé sur les données collectées) Si le score est inférieur à 0.2, ne pas proposer. Si le score est compris entre 0.2 et 0.6, faire une suggestion Si le score est supérieur à 0.6, faire la promotion des offres 20

21 27/03/2014 Big Data Tendances, perspectives et cas d usage Jean-Michel Franco Directeur de l innovation et des solutions Twitter 21

22 27/03/2014 Table ronde Les cas d usage du Big Data Gestion de l information, Business Intelligence, Big Data : nouveaux rôles, nouvelles organisations 22

23 Table ronde : Big Data et industrie, services, retail Avec Cyril Amsellem Talend Etienne Cha Orange René Brégnard Qlik Pascal Courrier Orange Jean-Michel Franco Business & Decision Eric Gagnier Sas Nicolas Rouyer Orange Thierry Thépaut BiBoard 03/2014 Table ronde 23

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE Leading Digital Together 2 3 Capgemini Consulting, le leader français de la transformation digitale Une force de frappe de 900 consultants en France et de

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

We make your. Data Smart. Data Smart

We make your. Data Smart. Data Smart We make your We make your Data Smart Data Smart Une société Une société du du groupe Le groupe NP6 SPECIALISTE LEADER SECTEURS EFFECTIFS SaaS Marketing : 50% Data intelligence : 50% 15 sociétés du CAC

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

Big Data : Quel usage au sein des projetsinternet?

Big Data : Quel usage au sein des projetsinternet? 19 juin 2014 Big Data : Quel usage au sein des projetsinternet? Fréderic DULAC, DirecteurEolas 1 Spécialiste en conception et exploitation de services en ligne Créateur d Applications Digitales Marketing

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE

THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE SOMMAIRE Les enquêtes du CXP SaaS / Cloud Mobilité Big Data Conclusion 2 SOMMAIRE Les enquêtes

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

SMARC La révolution des usages et des technologies : Quels impacts sur votre Stratégie Digitale. Mardi, le 21 avril 2015 SMARC G16

SMARC La révolution des usages et des technologies : Quels impacts sur votre Stratégie Digitale. Mardi, le 21 avril 2015 SMARC G16 SMARC La révolution des usages et des technologies : Quels impacts sur votre Stratégie Digitale Mardi, le 21 avril 2015 SMARC G16 Avant, la relation entre le Client et la Marque était simple Depuis, les

Plus en détail

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données 1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l

Plus en détail

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com Le Web, l'entreprise et le consommateur Françoise Soulié Fogelman francoise@kxen.com Forum "Quel futur pour le Web" Lyon, mardi 21 septembre 2010 THE DATA MINING AUTOMATION COMPANY TM Agenda Le Web un

Plus en détail

Assurance et Protection sociale Les enjeux du Digital Commerce

Assurance et Protection sociale Les enjeux du Digital Commerce Assurance et Protection sociale Les enjeux du Digital Commerce Sortir des murs, démultiplier les contacts 2013 T A L E N T E D T O G E T H E R Unissons nos Talents 1 Introduction Entre discours incantatoires

Plus en détail

L IT, l Immatérielle Transformation. Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business

L IT, l Immatérielle Transformation. Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business L IT, l Immatérielle Transformation Frédéric Simottel Directeur de la rédaction 01B&T Présentateur de l émission : IT For Business PLUS D INNOVATION, PLUS DE SIMPLICITE ET UN MARCHE IT SOUS TENSION Des

Plus en détail

Optimisez votre organisation et vos pratiques Marketing pour réussir la transformation digitale

Optimisez votre organisation et vos pratiques Marketing pour réussir la transformation digitale Optimisez votre organisation et vos pratiques Marketing pour réussir la transformation digitale Notre vision des enjeux et notre offre de service Septembre 2015 La révolution digitale est un challenge

Plus en détail

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr Déploiement d une architecture Hadoop pour analyse de flux françois-xavier.andreu@renater.fr 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les

Plus en détail

BIG DATA ET MARKETING

BIG DATA ET MARKETING BIG DATA ET MARKETING SPIKLY / LA NOUVELLE REPUBLIQUE Agence Conseil en stratégie digitale 20/06/2013 1 1. PRÉSENTATION 20/06/2013 2 Keyrus - All rights reserved PRÉSENTATION DE KEYRUS Présentation générale

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVER SON CAPITAL CLIENTS, RECRUTER, FIDÉLISER ET RÉCOLTER DU ROI! La société Base Plus cultive depuis

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com 18 Mars 2015 Big data et le z 2015 IBM Corporation Agenda Contexte Cas d utilisation DB2 z/os et Hadoop Connecteurs z pour Hadoop 2

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

Les datas = le fuel du 21ième sicècle

Les datas = le fuel du 21ième sicècle Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition

Plus en détail

SpagoBI: la seule suite décisionnelle 100% open source, complète et flexible www.spagobi.org

SpagoBI: la seule suite décisionnelle 100% open source, complète et flexible www.spagobi.org SpagoBI: la seule suite décisionnelle 100% open source, complète et flexible www.spagobi.org Pourquoi choisir SpagoBI? Une suite décisionnelle open source complète : Une gamme complète de fonctionnalités,

Plus en détail

Vision prospective et obstacles à surmonter pour les assureurs

Vision prospective et obstacles à surmonter pour les assureurs smart solutions for smart leaders Le «Big Data» assurément Rédigé par Pascal STERN Architecte d Entreprise Vision prospective et obstacles à surmonter pour les assureurs Un avis rendu par la cour de justice

Plus en détail

La GRC en temps de crise, difficile équilibre entre sentiment de sécurité et réduction des coûts

<Insert Picture Here> La GRC en temps de crise, difficile équilibre entre sentiment de sécurité et réduction des coûts La GRC en temps de crise, difficile équilibre entre sentiment de sécurité et réduction des coûts Christophe Bonenfant Cyril Gollain La GRC en période de croissance Gouvernance Gestion

Plus en détail

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME

Plus en détail

La Business Intelligence & le monde des assurances

La Business Intelligence & le monde des assurances Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 La Business Intelligence & le monde des assurances Karim NAFIE Regional Presales Manager EEMEA Operations

Plus en détail

Card Linked Offers et services à valeur ajoutée

Card Linked Offers et services à valeur ajoutée Card Linked Offers et services à valeur ajoutée Gilles Marchand Responsable Business Development Unité Banque Finance Assurance 06/06/2014 Mobile wallet Restez connecté avec vos clients Composants Connaissance

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

Tables Rondes Le «Big Data»

Tables Rondes Le «Big Data» Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués

Plus en détail

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP SFR en quelques chiffres Le Dataware Client GP de SFR en août 2011 150 applications

Plus en détail

S84-1 LA GRC ET LE SI (Système d Information) 841 - Qualification des données clientèle. 842 - La segmentation de la clientèle

S84-1 LA GRC ET LE SI (Système d Information) 841 - Qualification des données clientèle. 842 - La segmentation de la clientèle S84-1 LA GRC ET LE SI (Système d Information) 841 - Qualification des données clientèle 842 - La segmentation de la clientèle 843 - Les actions personnalisées utilisation des procédures de consultation

Plus en détail

LE COMMERCE CONNECTÉ SHOW

LE COMMERCE CONNECTÉ SHOW 1 ER COMMERCE CONNECTÉ SHOW Salon Dock Pullman - Paris 27 & 28 octobre 2015 LE COMMERCE CONNECTÉ SHOW «There is no Business like Retail Connected Business» Un salon d échange, concentré d expertise et

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique

Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique Extraits d analyses publiées par MARKESS International Emmanuelle Olivié-Paul epaul@markess.com

Plus en détail

CONFERENCE TECHNOM AIDE IBM

CONFERENCE TECHNOM AIDE IBM Conférence Big Data CONFERENCE TECHNOM AIDE IBM Le BIG DATA : le nouveau pétrole de la société. En présence de : Christophe MENICHETTI (spécialiste BIG DATA chez IBM) JN. SCHNEIDER et F. WEYGAND (professeurs

Plus en détail

Titre 1 Quas doluptur? Is audiossi alit perum accus quidust, optatis suntiam, apiendit, consequisque voluptatia cuptius plab

Titre 1 Quas doluptur? Is audiossi alit perum accus quidust, optatis suntiam, apiendit, consequisque voluptatia cuptius plab Augmentez vos marges CLOUD accus quidust, optatis suntiam, apiendit, ut alit libus, id unt quis et maximol escimil lanissum dis doles voluptaquis am, aut pa De la production à SOLUTION la gestion de projet

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul Big Data Les problématiques liées au stockage des données et aux capacités de calcul Les problématiques liées au Big Data La capacité de stockage - Traitement : Ponctuel ou permanent? - Cycle de vie des

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Objets connectés, avez-vous donc une âme?

Objets connectés, avez-vous donc une âme? Objets connectés, avez-vous donc une âme? Bernard Ourghanlian Directeur Technique et Sécurité Microsoft France Qu est ce que l Internet des Objets? «Le réseau des objets physiques contenant des technologies

Plus en détail

For Fun and Profit Datasio 2012

For Fun and Profit Datasio 2012 For Fun and Profit Datasio 2012 130 Nouveaux acteurs Big Data depuis 2009 1 2 3 Agenda Hadoop, poids lourd du Big Data Stats Web avec Hive chez Scoop.it Profession: Data Scientist Agenda 1 Hadoop, poids

Plus en détail

BIG DATA et données externes dans les modèles de tarification

BIG DATA et données externes dans les modèles de tarification BIG DATA et données externes dans les modèles de tarification BIG DATA BIG DATA : Quelques clés Eric FROIDEFOND MAAF MBA CNAM ENASS en cours Intégration du BIG DATA dans la tarification en assurances IARD

Plus en détail

À PROPOS DE TALEND...

À PROPOS DE TALEND... WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Surabondance d information

Surabondance d information Surabondance d information Comment le manager d'entreprise d'assurance peut-il en tirer profit pour définir les stratégies gagnantes de demain dans un marché toujours plus exigeant Petit-déjeuner du 25/09/2013

Plus en détail

Système d Information Géographique (SIG) : quels apports dans les métiers de l assurance?

Système d Information Géographique (SIG) : quels apports dans les métiers de l assurance? Système d Information Géographique (SIG) : quels apports dans les métiers de l assurance? 20 mars 2012 Agenda Présentation Esri A quels enjeux du secteur Assurance un SIG peut-il répondre? Qu est-ce qu

Plus en détail

Big Data et l avenir du décisionnel

Big Data et l avenir du décisionnel Big Data et l avenir du décisionnel Arjan Heijmenberg, Jaspersoft 1 Le nouveau monde des TI L entreprise en réseau de McKinsey McKinsey sur le Web 2.0 McKinsey Global Institute, décembre 2010 Emergence

Plus en détail

Les clients puissance cube

Les clients puissance cube LETTRE CONVERGENCE Les clients puissance cube L intelligence artificielle au service du marketing des services N 28 To get there. Together. A PROPOS DE BEARINGPOINT BearingPoint est un cabinet de conseil

Plus en détail

PÉRENNISER LA PERFORMANCE

PÉRENNISER LA PERFORMANCE PÉRENNISER LA PERFORMANCE La recherche de performance est aujourd hui au cœur des préoccupations des organisations : succession des plans de productivité et de profitabilité, plans de reprise d activités,

Plus en détail

Big Data et Marketing : les competences attendues

Big Data et Marketing : les competences attendues Big Data et Marketing : les competences attendues Laurence Fiévet Responsable Marketing Corporate Oney Banque Accord LA DYNAMIQUE DU MARKETING Selon la définition de Kotler et Dubois, «Le marketing est

Plus en détail

Tirez plus vite profit du cloud computing avec IBM

Tirez plus vite profit du cloud computing avec IBM Tirez plus vite profit du cloud computing avec IBM Trouvez des solutions de type cloud éprouvées qui répondent à vos priorités principales Points clés Découvrez les avantages de quatre déploiements en

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015

Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Big Data: comment passer de la stratégie à la mise en œuvre? Big Data Paris Mars 2015 Jean-David Benassouli Managing Director, Responsable France de la practice Digital Data management +33 6 79 45 11 51

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull BI Haute performance Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull Bull aujourd'hui - La seule expertise 100% européenne des infrastructures et des applications critiques - Une

Plus en détail

MyReport Le reporting sous excel. La solution de business intelligence pour la PME

MyReport Le reporting sous excel. La solution de business intelligence pour la PME La solution de business intelligence pour la PME Qu est que la business intelligence La Business intelligence, dénommée aussi par simplification "Informatique Décisionnelle", est vraisemblablement l'unique

Plus en détail

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress transformer en temps réel vos données en avantage compétitif Your business technologists. Powering progress Transformer les données en savoir Les données sont au cœur de toute activité, mais seules elles

Plus en détail

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel.

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. IBM Software Group Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. Lydie Peter, IBM Software Group. 2004 IBM Corporation Le principe : Identifier et réagir Filtres

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

Grégory Bressolles L E-MARKETING

Grégory Bressolles L E-MARKETING Grégory Bressolles L E-MARKETING Conseiller éditorial : Christian Pinson Dunod, Paris, 2012 ISBN 978-2-10-057045-4 SOMMAIRE Avant-propos 5 CHAPITRE 1 Qu est-ce que l e-marketing? I COMMENT INTERNET A-T-IL

Plus en détail

02.10.2015 Olivier Rafal, PAC CXP Group

02.10.2015 Olivier Rafal, PAC CXP Group 02.10.2015 Olivier Rafal, PAC CXP Group 1 Le groupe CXP L étude BARC Big Data Use Cases 2015 Etude internationale Plus de 550 participants 3e Edition Large couverture des types d industries & tailles d

Plus en détail

LES ENTREPRISES PROSPÈRES SE TRANSFORMENT GRÂCE À DES SOLUTIONS SAP FLEXIBLES

LES ENTREPRISES PROSPÈRES SE TRANSFORMENT GRÂCE À DES SOLUTIONS SAP FLEXIBLES Briefing direction LES ENTREPRISES PROSPÈRES SE TRANSFORMENT GRÂCE À DES SOLUTIONS SAP FLEXIBLES Le Big Data, les réseaux sociaux, les applications mobiles et les réseaux mondiaux modifient de façon radicale

Plus en détail

Diginnove, Agence Conseil E-commerce, vous accompagne dans votre apprentissage des principaux médias sociaux B2C et B2B

Diginnove, Agence Conseil E-commerce, vous accompagne dans votre apprentissage des principaux médias sociaux B2C et B2B Diginnove, Agence Conseil E-commerce, vous accompagne dans votre apprentissage des principaux médias sociaux B2C et B2B Des formations personnalisées sur-mesure pour appréhender facilement les réseaux

Plus en détail

Les journées SQL Server 2013

Les journées SQL Server 2013 Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne

Plus en détail

Les quatre piliers d une solution de gestion des Big Data

Les quatre piliers d une solution de gestion des Big Data White Paper Les quatre piliers d une solution de gestion des Big Data Table des Matières Introduction... 4 Big Data : un terme très vaste... 4 Le Big Data... 5 La technologie Big Data... 5 Le grand changement

Plus en détail

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Projet Xdata Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Mutualisation des données XData = Cross Data En croisant des données d origine diverses,

Plus en détail

Transformation Digitale

Transformation Digitale Transformation Digitale Rendez-vous de l'assurance Mehdi Tazi, Saham Assurance Casablanca, Avril 2015 Fondamentaux Le Maroc connaît une forte progression du Digital grâce à l'essor des équipements technologiques

Plus en détail

CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013

CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 www.thalesgroup.com CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 2 / Sommaire CENTAI : Présentation du laboratoire Plate-forme OSINT LAB Détection de la fraude à la carte bancaire

Plus en détail

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes SOFT COMPUTING et les projets Big Data Mission Un positionnement de spécialistes Sur le moyen terme, nous sommes profondément convaincus que les organisations qui tireront leur épingle du jeu et feront

Plus en détail

Réussir la transformation. Ensemble. Les défis de l expérience client différenciante. Delivering Transformation. Together.

Réussir la transformation. Ensemble. Les défis de l expérience client différenciante. Delivering Transformation. Together. Réussir la transformation. Ensemble. Les défis de l expérience client différenciante Delivering Transformation. Together. Sopra Steria Consulting est l activité Conseil du Groupe Sopra Steria. Présent

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs. 1 Actuate Corporation 2012 + de données. + d analyses. + d utilisateurs. Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT

Plus en détail

Formation continue. Ensae-Ensai Formation Continue (Cepe)

Formation continue. Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist Formation continue Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist La demande de data scientists est croissante mais peu de formations existent. Ce certificat

Plus en détail

I N S T I T U T QUELLES CONTRIBUTIONS AU SMART METERING? AFTERWORK ENERGY 21.05.2015

I N S T I T U T QUELLES CONTRIBUTIONS AU SMART METERING? AFTERWORK ENERGY 21.05.2015 I N S T I T U T QUELLES CONTRIBUTIONS AU SMART METERING? AFTERWORK ENERGY 21.05.2015 FIL CONDUCTEUR Le eenergy Center en quelques mots Le Smart Meter : contexte et définition L apport de l eenergy Center

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail