Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Dimension: px
Commencer à balayer dès la page:

Download "Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013"

Transcription

1 Les enjeux du Big Data Innovation et opportunités de l'internet industriel

2 François Royer Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine de données industrielles Optimisation / création de services à valeur ajoutée Solutions innovantes de fouille assistée de données 2

3 Big Data Tout le monde en parle... 3

4 Le contexte Big Data 4

5 Le contexte Big Data 5

6 Le contexte Big Data Volume Variété Vélocité 6

7 Le phénomène Big Data Quels déclencheurs? 7

8 $ Coût / GB d'un disque dur Apple en septembre 1981 $ 0.07 Coût / GB d'un disque dur 1 TB Hitachi aujourd'hui 8

9 Une culture quantitative grandissante dans les entreprises 9

10 Données métier

11 Données métier Autres sources de données intra-entreprise (logs web, CRM...)

12 Données métier Autres sources de données intra-entreprise (logs web, CRM...) Données externes

13 La ménagerie Big Data: Hadoop, Map/Reduce, Big table 13

14 Genèse Google Filesystem 14

15 Genèse Publication de MapReduce Google Filesystem 15

16 Genèse Publication de MapReduce Google Filesystem Ouverture du code source 16

17 Genèse Publication de MapReduce Google Filesystem Yahoo! Ouverture du code source 17

18 Genèse Publication de MapReduce Google Filesystem machines Cluster 100 Facebook Ouverture du code source 18

19 Le web, premier utilisateur des technologies Big Data Data mining sur click stream Analyse d'image Production d'index Moteur d'enchères Conversion de 11 millions d'articles en PDF Spam screening (> 20 milliards de msg / jour) Entrepôt de données > 30 PetaOctets (2011) 19

20 Aux origines du Big Data: les clics de l'internaute USE CASE 20

21 Aux origines du Big Data: les clics de l'internaute 21

22 Big Data : applications industrielles Quelles opportunités?

23 Applications du Big Data rêves et réalités Collectivités: amélioration des services... Automobile: prédiction de pannes... Lutte contre la fraude Energie: smart meters Logistique et transports 23

24 Chevron : analyse de données sismiques sur Hadoop We collect large amounts of seismic data into this five-dimensional type data set, and the first thing we do is we sort it which is a great Hadoop use case [ ]. 24

25 FORMA FOREST MONITORING FOR ACTION 25

26 The Climate Corporation 26

27 Le Little Data, c'est fini? Non, les statistiques ont de beaux jours devant elles! 27

28 Promesses de l'analyse prédictive Nate Silver A prédit les résultats des élections US 2012 (50/52 états) Modèles bayésiens complexes ( MCMC ) Analytique =/= Big Data Maintenant chez ESPN (groupe Walt Disney - branche sport) 28

29 Quelles compétences? The sexiest job in the next 10 years will be statistician Hal Varian, Chief Economist at Google 29

30 Le Data Scientist métier d'avenir? 30

31 Le Big Data, pas pour les PMEs? Au contraire! 31

32 Les données, moteur d'innovation People to people Réseaux sociaux Blogs Communautés People to machine Documents Smart cards E-commerce Logs box/mobile Machine to machine Logs / capteurs GPS Code-barres Caméras 32

33 Acteurs du Big Data Anciens et nouveaux 33

34 Les usual suspects

35 Le contexte Big Data 130 Nouveaux acteurs Big Data depuis

36 36

37 à suivre... 38

38 Cas d'étude E-commerce / medias 39

39 Big Data en e-commerce: analyse de texte et traitement du langage Analyse sémantique Indexation Moteurs de recherche Traitement du langage 40

40 Big Data en e-commerce: analyse de texte et traitement du langage Base d'apprentissage de + de 3 millions de fiches produits Un arbre de catégories de + de 4000 branches Données déstructurées Support au poste opérateur pour une équipe de 12 personnes 41

41 Cas d'étude Big Data industriel: les opportunités 42

42 Big Data Industriel 43

43 Big Data Industriel le mythique 1% 44 source: IBM

44 Big Data Industriel 45

45 L'internet industriel 46

46 Big Data Industriel Données types: séries temporelles Mais aussi rapports d'intervention, mesures intermittentes, transactions... 47

47 EDF Retour d'expérience présenté au Hadoop Summit 2012 Contexte: Changement climatique Pression technologique (IT, fabricants) Smart Grid Communications bidirectionnelles entre producteurs et comsommateurs Monitoring à haute résolution des usages Améliorer la résilience systémique, diminuer les couts et la dépendance énergétique Mixer Complex Event Processing + Data Mining à grande échelle CRM Prédiction de la consommation et de la prédiction Classification des courbes de charge par jour / consommateur 48

48 EDF Données: Courbes de charges individuelles Données contractuelles Mesures réseau 1 mesure / 10 mins / 35 millions de clients Volume annuel: 180 milliards de mesures = 120 TB Requêtes: Extraction de courbes de charge similaires à un patron cible (moyenne/médiane) Analytique: agrégation de courbes 49

49 EDF Volumes 10 TB compressé sur HDFS (réplication X3) Partitionnement des mesures consommateurs par jour: 25 GB journaliers, blocs de 10 MB DFS utilisé à 30 % (~30 TB) Hardware 20 noeuds sur 2 racks 7 X 1U noeuds avec 4 x 1 TB 13 X 2U noeuds avec 8 x 1 TB Total: 132 TB, 336 coeurs Performance ~ 1 minute pour calculer une courbe journalière agrégée (~ 10 GB de données) 50

50 TIC Valley - Bâtiment E-volution 425 rue Jean Rostand Labège

For Fun and Profit Datasio 2012

For Fun and Profit Datasio 2012 For Fun and Profit Datasio 2012 130 Nouveaux acteurs Big Data depuis 2009 1 2 3 Agenda Hadoop, poids lourd du Big Data Stats Web avec Hive chez Scoop.it Profession: Data Scientist Agenda 1 Hadoop, poids

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Les datas = le fuel du 21ième sicècle

Les datas = le fuel du 21ième sicècle Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Introduction data science

Introduction data science Introduction data science Data science Master 2 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

TRAVAUX DE RECHERCHE DANS LE

TRAVAUX DE RECHERCHE DANS LE TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

M2 GL UE DOC «In memory analytics»

M2 GL UE DOC «In memory analytics» M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Thierry Badard, PhD, ing. jr Centre de Recherche en Géoma6que Conférence ITIS - Big Data et Open Data au coeur

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

BIG Data et R: opportunités et perspectives

BIG Data et R: opportunités et perspectives BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, rguati@gmail.com 2 Ecole des Sciences Géomatiques, IAV Rabat,

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Les humanités numériques à l ère du big data

Les humanités numériques à l ère du big data Les humanités numériques à l ère du big data D. A. ZIGHED djamel@zighed.com Journées Big data & visualisation Focus sur les humanités numériques ISH Lyon 18-19 juin 2015 Co-organisées par EGC AFIHM - SFdS

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Jean-François Boulicaut & Mohand-Saïd Hacid

Jean-François Boulicaut & Mohand-Saïd Hacid e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205

Plus en détail

Technologies et techniques d aujourd hui et de demain 1 Virtualisation Containers Projet Docker Web 3.0 Cloud Big Data Internet des objets 2 1 Virtualisation 3 Virtualisation Logiciels appelés hyperviseurs

Plus en détail

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting NewPoint IT Consulting BIG DATA WHITE PAPER NewPoint Information Technology Consulting Contenu 1 Big Data: Défi et opportunité pour l'entreprise... 3 2 Les drivers techniques et d'entreprise de BIG DATA...

Plus en détail

LES ENJEUX DU BIG DATA

LES ENJEUX DU BIG DATA LES ENJEUX DU BIG DATA POUR LA MISE EN PLACE DES SMART-GRIDS EDF R&D Marie-Luce Picard Projet SIGMA² 16 Janvier 2014 SMART GRIDS SMART METERS SMART DATA Partout dans le monde des projets smart-grids voient

Plus en détail

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 Data Mining Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 2 Plan Data mining : définition, utilisations et concepts Wolfram Alpha : extraction de données d'un compte

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Le potentiel et les défis du Big Data. Mardi 2 et Mercredi 3 Juillet 2013

Le potentiel et les défis du Big Data. Mardi 2 et Mercredi 3 Juillet 2013 Big DATA & ANALYTICS Le potentiel et les défis du Big Data Mardi 2 et Mercredi 3 Juillet 2013 QUI SUIS-JE? AMPLEUR, QUELQUES FAITS SAILLANTS Mantra vertus magiques, vitesse de propagation, amplitude richterienne

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

SÉRIE NOUVELLES ARCHITECTURES

SÉRIE NOUVELLES ARCHITECTURES SÉRIE NOUVELLES ARCHITECTURES Alerte au tsunami des données : les entreprises doivent prendre la vague maintenant! Quels sont les faits qui sous-tendent cette réalité? Quelles entreprises sont aujourd

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Conserver les Big Data, source de valeur pour demain

Conserver les Big Data, source de valeur pour demain Le potentiel et les défis du Big Data UIMM Mardi 2 et mercredi 3 juillet 2013 56 avenue de Wagram 75017 PARIS Conserver les Big Data, source de valeur pour demain Définir les Big Data Les Big Data à travers

Plus en détail

Big data* et marketing

Big data* et marketing Catherine Viot IAE de Bordeaux Maître de conférences HDR Responsable pédagogique du Master 2 Marketing Equipe de Recherche en Marketing - IRGO catherine.viot@u-bordeaux4.fr Big data* et marketing 2006

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

OPTIONS SSSR. Réplication et cohérence de données 1

OPTIONS SSSR. Réplication et cohérence de données 1 OPTIONS SSSR Réplication et cohérence de données 1 Options SSSR Mixtes "Recherche" et "Professionnel" Big Data Réplication de données Malware Systèmes dynamiques Systèmes communicant contraints Plutôt

Plus en détail

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

Le Big Data en marche. Georges HEBRAIL, Chercheur Senior, Dpt ICAME Marie-Luce PICARD, Chef de Projet, Dpt ICAME Max BRUDEY, Société Hortonworks

Le Big Data en marche. Georges HEBRAIL, Chercheur Senior, Dpt ICAME Marie-Luce PICARD, Chef de Projet, Dpt ICAME Max BRUDEY, Société Hortonworks Georges HEBRAIL, Chercheur Senior, Dpt ICAME Marie-Luce PICARD, Chef de Projet, Dpt ICAME Max BRUDEY, Société Hortonworks SOMMAIRE 1. LES ENJEUX ET DÉFIS DU BIG DATA 2. OFFRE DE SERVICE BIG DATA DE LA

Plus en détail

KARMA Le système de Revenue Management d'air France KLM avec Hadoop

KARMA Le système de Revenue Management d'air France KLM avec Hadoop KARMA Le système de Revenue Management d'air France KLM avec Hadoop Conférence BIG DATA - Master MBDS Université de Nice Sophia Antipolis 16 Décembre 2014 Martial AYAS maayas@airfrance.fr 2 Agenda 1. Présentation

Plus en détail

Masses de données et calcul : à l IRIT. 8 octobre 2013

Masses de données et calcul : à l IRIT. 8 octobre 2013 Masses de données et calcul : la recherche en lien avec les Big Data à l IRIT 8 octobre 2013 08/10/2013 1 L IRIT en qq chiffres 700 personnes sur tous les sites toulousains 5 tutelles 7 thèmes et 21 équipes

Plus en détail

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Big Data Jean-Michel Franco

Big Data Jean-Michel Franco 28/03/2014 Big Data Tendances, perspectives et cas d usage Jean-Michel Franco Directeur de l innovation et des solutions jean-michel.franco@businessdecision.com Twitter : @jmichel_franco Définition Le

Plus en détail

Les chiffres clés d OverBlog

Les chiffres clés d OverBlog Les chiffres clés d OverBlog 11~12 Millions de visiteurs uniques/mois * 12~20 Millions de pages vues par jour 1.5 Millions de blogs 25 Millions d'articles 60 Millions d'images 61 Millions de commentaires

Plus en détail

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA contact : patrick.hède@cea.fr Commissariat à l'energie Atomique GdR isis : Passage à l'échelle dans la recherche

Plus en détail

GT Big Data. Saison 2014-2015. Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) CRiP Thématique Mise en œuvre du Big Data 16/12/14

GT Big Data. Saison 2014-2015. Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) CRiP Thématique Mise en œuvre du Big Data 16/12/14 GT Big Data Saison 2014-2015 Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) Sommaire GT Big Data : roadmap 2014-15 Revue de presse Business Education / Promotion Emploi Sécurité / Compliance Cuisine:

Plus en détail

Les données massives à Calcul Québec

Les données massives à Calcul Québec Les données massives à Calcul Québec Marc Parizeau, professeur et directeur scientifique de Calcul Québec Plan Calcul Québec / Calcul Canada Les outils et les services disponibles Un outil en particulier

Plus en détail

IntentOS, le système d'exploitation du bâtiment

IntentOS, le système d'exploitation du bâtiment IntentOS, le système d'exploitation du bâtiment 1 Ceci est un smartphone. Fabriqué par LG pour Google (qui avant de racheter Motorola ne savait pas fabriquer des téléphones) Permet de démocratiser l'utilisation

Plus en détail

GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT

GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT Remarque : Tous les cours sont en français, sauf contre-indication. Pour des traductions anglaises des titres, des descriptifs, et plus de renseignements, consultez l intégralité du Programme des enseignements

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera jms@cloudera.com @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi

Plus en détail

Tables Rondes Le «Big Data»

Tables Rondes Le «Big Data» Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués

Plus en détail

À PROPOS DE TALEND...

À PROPOS DE TALEND... WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail

Données massives pour les smart-grids

Données massives pour les smart-grids Données massives pour les smart-grids Marie-Luce PICARD EDF R&D marie-luce.picard@edf.fr 9 Juin 2011 Sommaire 1. Smart-Grids : systèmes électriques intelligents 2. Données et Smart-Grids 3. Travaux menés

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

Data Mining et Big Data

Data Mining et Big Data Data Mining et Big Data Eric Rivals LIRMM & Inst. de Biologie Computationnelle CNRS et Univ. Montpellier 14 novembre 2015 E. Rivals (LIRMM & IBC) Big Data 14 novembre 2015 1 / 30 Introduction, contexte

Plus en détail

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com 18 Mars 2015 Big data et le z 2015 IBM Corporation Agenda Contexte Cas d utilisation DB2 z/os et Hadoop Connecteurs z pour Hadoop 2

Plus en détail

Fouille de données massives avec Hadoop

Fouille de données massives avec Hadoop Fouille de données massives avec Hadoop Sebastiao Correia scorreia@talend.com Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques

Plus en détail

Les entreprises de 2020 seront dirigées par les Data Scientists

Les entreprises de 2020 seront dirigées par les Data Scientists Laura Roguet, Meryem Ben Mouaz ESCP Europe 24 ans Les entreprises de 2020 seront dirigées par les Data Scientists I «Sexiest job of the century», «Les nouvelles rock stars de l'it», l engouement récent

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

Présentation Société Actulligence Consulting

Présentation Société Actulligence Consulting Présentation Société Actulligence Consulting Conseil et Accompagnement Intelligence économique Veille stratégique e-réputation Actulligence Consulting : Présentation Frédéric Martinet, Consultant indépendant

Plus en détail

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Analyse des déplacements des objets mobiles : définition de comportements types

Analyse des déplacements des objets mobiles : définition de comportements types Analyse des déplacements des objets mobiles : définition de comportements types Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Les déplacements L analyse des déplacements

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Map Reduce Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

La révolution numérique dans les secteurs d'activités économiques de l'aquitaine : impacts, enjeux, valeur ajoutée?

La révolution numérique dans les secteurs d'activités économiques de l'aquitaine : impacts, enjeux, valeur ajoutée? dans les secteurs d'activités économiques de l'aquitaine : impacts, La transformation numérique des entreprises: des enjeux multiples, dont l impact doit être apprécié au cas par cas La transformation

Plus en détail

Perspectives pour le stockage des données scientifiques. Jean-Yves Nief (CC-IN2P3)

Perspectives pour le stockage des données scientifiques. Jean-Yves Nief (CC-IN2P3) Perspectives pour le stockage des Jean-Yves Nief (CC-IN2P3) Vue d ensemble de la présentation! Etat des lieux pour le stockage des données.! Evolutions matérielles: Disque dur, SSD, bandes magnétiques.!

Plus en détail

Big Data -Comment exploiter les données et les transformer en prise de décisions?

Big Data -Comment exploiter les données et les transformer en prise de décisions? IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013

CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 www.thalesgroup.com CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 2 / Sommaire CENTAI : Présentation du laboratoire Plate-forme OSINT LAB Détection de la fraude à la carte bancaire

Plus en détail

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan

Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 1 Sommaire 1. Google en chiffres 2. Les raisons d être de GFS 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 4. Les Evolutions et Alternatives

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Big$Data$:$de$quoi$s agit0il$?$

Big$Data$:$de$quoi$s agit0il$?$ Association Nationale des Directeurs des Systèmes d Information Big$Data$:$de$quoi$s agit0il$?$ Pierre Delort, Président, Association Nationale des DSI www.andsi.fr Aussi l action de guerre offre-telle

Plus en détail

Bigdata et Web sémantique. les données + l intelligence= la solution

Bigdata et Web sémantique. les données + l intelligence= la solution Bigdata et Web sémantique les données + l intelligence= la solution 131214 1 big data et Web sémantique deux notions bien différentes et pourtant... (sable et silicium). «bigdata» ce n est pas que des

Plus en détail

02.10.2015 Olivier Rafal, PAC CXP Group

02.10.2015 Olivier Rafal, PAC CXP Group 02.10.2015 Olivier Rafal, PAC CXP Group 1 Le groupe CXP L étude BARC Big Data Use Cases 2015 Etude internationale Plus de 550 participants 3e Edition Large couverture des types d industries & tailles d

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

Fouille de données et sémantique : des techniques pour donner du sens aux données

Fouille de données et sémantique : des techniques pour donner du sens aux données Fouille de données et sémantique : des techniques pour donner du sens aux données Nathalie Aussenac-Gilles (IRIT) co-animatrice avec M. Boughanem de l axe masse de données et calcul http://www.irit.fr/-masses-de-donnees-et-calcul,677-?lang=fr

Plus en détail

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES Stages 2015-2016 Contact : Mme Lapedra, stage@isoft.fr ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET ANALYSE DE DONNEES ISoft est un concepteur-éditeur de logiciels spécialisé dans la recherche

Plus en détail

FORMATION HADOOP Développeur pour Hadoop (Apache)

FORMATION HADOOP Développeur pour Hadoop (Apache) FORMATION HADOOP Développeur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.

Plus en détail

Smart Grids! Emergence d un! nouveau marché. 6 décembre 2011 ITEMS International Smart Grids Consulting. Hervé Rannou - herve.rannou@items.

Smart Grids! Emergence d un! nouveau marché. 6 décembre 2011 ITEMS International Smart Grids Consulting. Hervé Rannou - herve.rannou@items. 6 décembre 2011 ITEMS International Smart Grids Consulting Smart Grids! Emergence d un! nouveau marché SIEGE 16, rue Kléber 92442 Issy-les-Moulineaux France www.items.fr BUREAUX: PARIS : 70 rue Amelot

Plus en détail

CIMENT et les grilles

CIMENT et les grilles CIMENT et les grilles CIMENT - University of Grenoble april 2012 CIMENT et les grilles 1 2 3 4 5 Outline 1 2 3 4 5 Qu est-ce qu une grille de calcul? Dans notre contexte (HPC), une grille de calcul permet

Plus en détail

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr SQL-ON-HADOOP Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr Données structurées (RDBMS) Exiger de strictement être organisé Annexer à RDBMS sans couture Consultable

Plus en détail