Big Data et Prévisions. Philippe Picard, le 24 juin Page 1

Dimension: px
Commencer à balayer dès la page:

Download "Big Data et Prévisions. Philippe Picard, le 24 juin 2015. Page 1"

Transcription

1 Big Data et Prévisions Philippe Picard, le 24 juin Page 1

2 Vous dites prévisions et prédictions? Neptune Météo Marées Boson de Higgs Loto PMU Economie Sismique + Nostradamus _ Philippe Picard, le 24 juin Page 2

3 Contribution des BgD PREDICTIONS PREVISIONS PROJECTIONS ESTIMATION CAUSALITE DEDUCTION EXPLICATION CORRELATION EXTRACTION INDUCTION ANTICIPATION DIVINATIONS PROPHETIE THEORIE, MODELISATION FOUILLE, ALGORITHMIQUE VISION, INTUITION CREDO, SORCELLERIE Les BgD pourront enrichir des processus existants ou permettre des nouveaux domaines de prévisions. Philippe Picard, le 24 juin Page 3

4 BgD: les fondamentaux. Du tera au zetta echelle log10 16,00 14,00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 FADETTES RELEVES EDF FEUILLES DE SOIN NOMBRE VOLUME 21 zetta 18 exa 15 peta 12 tera 09 giga 06 mega L explosion des volumes accessibles au BgD sera due au développement de l IoT Philippe Picard, le 24 juin Page 4

5 BgD: variété des gisements de données Les précurseurs BgD, par exemple: C.D.R («fadettes»), comptes bancaires IT (MIB SNMP) SI d entreprise (CRM, ERP) LHC Open Data, «Etalab» Santé (FSE), Transports, etc. Internet (fixe et mobile) Google, Facebook, etc. Toutes sources de géolocalisation (cellulaire, GPS) Les e-transactions Objets (M2M, IoT) Véhicules connectés, RFID, Smart Grid, domotique, etc., etc. Philippe Picard, le 24 juin Page 5

6 Prévisions: approche classique déductive Données Programme Simulation numérique Prévisions Théorie et/ou Modèle Exemples: Météo Economie Sondages électoraux?sismique, Volcanologie? Philippe Picard, le 24 juin Page 6

7 Prévisions: approche classique déductive Les limites de ces prévisions: Données insuffisantes (effet GiGo) Modèles trop simplistes par rapport à la réalité (en particulier, hors zone de stabilité des modèles) «Plafond de Verre» dû à la nature complexe des phénomènes: Chaos et effet papillon: météo P. de Facteur Humain (PFH): économétrie, conjoncture, prévisions électorales «Hasard sauvage»: volcanologie, sismique, bourse Amélioration grâce des prévisions avec les BGD? Philippe Picard, le 24 juin Page 7

8 Météo et BgD Croissance des volumes de données dues à l augmentation des sources de données, mais plafonnement potentiel des performances des prévisions Philippe Picard, le 24 juin Page 8

9 Modèles économiques Retraites (COR) Prévisions Banque de France (modèle Mascotte) Philippe Picard, le 24 juin Page 9

10 Prévisions BgD: approche inductive Données Big Data Acquisition Extraction adaptative apprenante Corrélations Prévisions Prédictions Modélisation inductive Philippe Picard, le 24 juin Page 10

11 La panoplie du «data scientist» Exemple de programme d enseignement Techno distribuée: stockage, calcul, Structures des données: structurées et numériques, textuelles/web, multimédias Apprentissage Introduction à l apprentissage statistique Apprentissage supervisé (classification/régression), algorithmes (arbres, SVM, boosting, forêts aléatoires, optimisation distribuée) Techniques avancées pour l apprentissage (ranking, on-line, renforcement, optimisation distribuée) Apprentissage non supervisé (clustering, modèles à variables latentes, détection de nouveautés/anomalies, HMM (Modèle de Markov Caché), modèles graphiques, réseaux bayésiens/markoviens Graph mining Visualisation de données massives Philippe Picard, le 24 juin Page 11

12 Echantillon d applications BgD identifiées PREVISION, PREDICTION FOUILLE, DETECTION PILOTAGE TEMPS REEL CRIMINALITE X X X CHURN X X X FRAUDE BANCAIRE X X PREVISION TRAFIC ROUTIER X X PARCOURS CLIENT X X GRID NETWORK X X DETECTION CAUSES DE PANNES X X SCORING X MOUVEMENTS DE FOULES X RISQUES ASSURANCES X GOOGLE FLU X MAINTENANCE ET QUALITE X FLUX DE POPULATION X SINISTRES AGRICOLES X AFFAIRE «BISMUTH» X X LHC BOSON DE HIGGS X Philippe Picard, le 24 juin Page 12

13 De «l espionnage pour votre bien» au Big Brother? L identification du Boson de HIGGS fut un triomphe du big data au CERN Quand Google Flu Trends éternue, le Big Data s enrhume Orange mise sur l analyse prédictive pour son scoring Uberisation Gendarmes et industriels imaginent un nouveau logiciel pour prédire le crime Philippe Picard, le 24 juin Page 13

14 Philippe Picard, le 24 juin Page 14

15 Réserve et compléments Philippe Picard, le 24 juin Page 15

16 Vocabulaire du BgD TECHNO SGBD CLOUD DATA WAREHOUSE HADOOP OUTILS DE PREDICTION ANALYSE FACTORIELLE TEST STATISTIQUES (Student, Fisher, ²,, etc ) DATA MINING (exploration, fouille, forage de données) EXTRACTION DE DONNEES INDUCTION STATISTIQUE MACHINE LEARNING NoSQL USAGES ANALYSE PREDICTIVE CHURN (attrition) SCORING CORRELATIONS MODELISATION EXPLICATIVE MODELISATION INDUCTIVES MODELISATION PREDICTIVE PREDICTIONS, PREVISIONS PRONOSTICS ELECTORAUX SOURCES ET COLLECTE ECHANTILLONNAGE CDR (fadettes) FSE (Feuilles de soins) OPEN DATA STI (systèmes de transport) IoT, M2M, RFID GEOLOCALISATION Philippe Picard, le 24 juin Page 16

17 Météo: état de l art Philippe Picard, le 24 juin Page 17

18 Progrès de la prévision Météo Philippe Picard, le 24 juin Page 18

19 Nouveau paradigme? Philippe Picard, le 24 juin Page 19

20 Météos: que sait-on prévoir? Quelques heures à l'avance Des orages, des lignes de grains, des rafales, des averses, des brouillards (taille caractéristique des phénomènes : environ 50 km) à l'échelle d'une commune. 1 à 5 jours à l'avance L'arrivée d'une tempête (taille caractéristique du phénomène : environ 2000 km) à l'échelle d'un département (1 jour à l'avance) ou d'une région (5 jours à l'avance). 5 à 10 jours à l'avance Un type de circulation atmosphérique, des indications sur le type de temps, une tendance pour la température (taille caractéristique des phénomènes : environ 7000 km) à l'échelle de la France. Trois semaines à l'avance Une indication sur les conditions moyennes (température, précipitations) à l'échelle de la France. Par exemple : température moyenne probablement supérieure de 2 C à la normale à l'échelle de la France. Trois mois à l'avance Éventuellement un signal qualitatif sur les conditions moyennes (température, précipitations), à l'échelle d'une zone comme l'europe de l'ouest. Philippe Picard, le 24 juin Page 20

21 Les applications BgD dont on parle YTD Philippe Picard, le 24 juin Page 21

22 Valeur apportée par le Big Data Selon Enjeux et Usages du Big Data, Lavoisier Philippe Picard, le 24 juin Page 22

23 BgD dans l histoire A partir des BgD représentées par les observations de Tycho Brahe, J. Kepler a essayé et progressivement «intuité» ses lois avec une méthode inductive doublée d une puissance phénoménale de calcul accélérée par la techno des logarithmes. A l inverse, LeVerrier a déduit d observations et des lois de la mécanique astronomique l existence de Neptune. Philippe Picard, le 24 juin Page 23

24 Big Data et Open Data Les technologies du Big Data permettent la valorisation des énormes gisements de données publiques (Open Data) Questions: Données gratuites ou payantes? Qui les vend? le propriétaire public (mais a-t-il les moyens de les exploiter?) l extracteur industriel Confidentialité et protection des données individuelles Philippe Picard, le 24 juin Page 24

25 Philippe Picard, le 24 juin Page 25

26 RESULTAT ESPERE FACTEURS D'EFFICACITE COMPLEXITE INTRINSEQUE EFFICACITE DES OUTILS PREVISION PREDICTION PROSPECTIVE ESCROQUERIE HASARD SAUVAGE CHAOS X ASTROLOGIE X X LOTO X X CAUSES DU CANCER X X X BOURSE X X X X SISMIQUE X X VULCANOLOGIE X X CONJONCTURE ECONOMIQUE X X X X X COSMOLOGIE X X X PREVISIONS METEO COURT TERME X X X PREVISIONS METEO LONG TERME X X FIABILITE SW X X X DEMOGRAPHIE X X X X OBSERVATOIRE DES RETRAITES X X X SONDAGES ELECTORAUX X X X PREVISIONS FMI OCDE X X X RECHAUFFEMENT CLIMATIQUE/GIEC X X TIERCE HIPPIQUE X X FIABILITE HW X X X L'EMPIRE ECLATE (HELENE CARRERE X X IMPACT DE LA "LOI DE MOORE" X X VOYAGE DANS LA LUNE X X DECOUVERTE NEPTUNE (LE VERRIER) X X TEMPLE DU SOLEIL (ECLIPSE) X X EQUATION DE DIRAC: POSITRON X Philippe X Picard, MODELE le 24 STANDARD: juin BOSON DE HIGGS X Page 26 PFH MODELE FAIBLE MODELE DETERMINISTE VISION INTUITIVE MODELE PREDICTIF

27 BgD et sondages électoraux 4,5 4 3,5 3 Taille d'échantillon Populatio n Marge d erreur 0,5 10% 5% 1% 90% 95% 99% 0 2,5 2 1,5 1 MARGE 10% 0 MARGE 1 5% MARGE 1% Niveau de confiance Marge d erreur et niveau de confiance des sondages ne sont pas affaire de BgD, quelle que soit la taille de la population! Philippe Picard, le 24 juin Page 27

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Formation Actuaire Data-Scientist 4 JUILLET 2014

Formation Actuaire Data-Scientist 4 JUILLET 2014 Formation Actuaire Data-Scientist 4 JUILLET 2014 Objectifs de la formation Initier les participants aux méthodologies statistiques et informatiques en lien avec la manipulation de données massives. Sensibiliser

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES Stages 2015-2016 Contact : Mme Lapedra, stage@isoft.fr ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET ANALYSE DE DONNEES ISoft est un concepteur-éditeur de logiciels spécialisé dans la recherche

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

R, VISUALISATION ET APPRENTISSAGE

R, VISUALISATION ET APPRENTISSAGE R, VISUALISATION ET APPRENTISSAGE ANALYSE DE COMPORTEMENTS TOURISTIQUES À PARTIR DE DONNÉES PHOTOGRAPHIQUES GÉOTAGGÉES B.Branchet G.Chareyron J.Da-Rugna 2 PRÉSENTATION Bérengère Branchet Gaël Chareyron

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares

Plus en détail

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 Data Mining Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 2 Plan Data mining : définition, utilisations et concepts Wolfram Alpha : extraction de données d'un compte

Plus en détail

Journée Futur et Ruptures 2015

Journée Futur et Ruptures 2015 Journée Futur et Ruptures 2015 Vers des réseaux d énergie toujours plus intelligents 5 mars 2015 Contexte énergétique 2 Contexte énergétique France 34% de l énergie produite consommée par l industrie,

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Projet de création de SAFRAN ANALYTICS

Projet de création de SAFRAN ANALYTICS Projet de création de SAFRAN ANALYTICS Comité de Groupe 27 février 2015 SOMMAIRE Contexte Enjeux du Big Data pour Safran Projet Safran Analytics Calendrier prévisionnel 1 / CONFIDENTIEL / 27-02-2015 /

Plus en détail

Apprentissage Statistique et Données Massives

Apprentissage Statistique et Données Massives Apprentissage Statistique et Données Massives Philippe Besse Université de Toulouse INSA Dpt GMM Institut de Mathématiques ESP UMR CNRS 5219 Introduction Technologies des donne es massives Motivations,

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

CONFERENCE TECHNOM AIDE IBM

CONFERENCE TECHNOM AIDE IBM Conférence Big Data CONFERENCE TECHNOM AIDE IBM Le BIG DATA : le nouveau pétrole de la société. En présence de : Christophe MENICHETTI (spécialiste BIG DATA chez IBM) JN. SCHNEIDER et F. WEYGAND (professeurs

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

We make your. Data Smart. Data Smart

We make your. Data Smart. Data Smart We make your We make your Data Smart Data Smart Une société Une société du du groupe Le groupe NP6 SPECIALISTE LEADER SECTEURS EFFECTIFS SaaS Marketing : 50% Data intelligence : 50% 15 sociétés du CAC

Plus en détail

But du cours. Sources & références. Sources & références. Sources & références. Plan. La fouille de données (ou data mining) Principe (postulat...

But du cours. Sources & références. Sources & références. Sources & références. Plan. La fouille de données (ou data mining) Principe (postulat... But du cours Vocabulaire, principes et techniques du Data Mining Méthodes et Algorithmes Interprétation des résultats. Data Mining : Concepts and Techniques J. Han, M. Kamber Morgan Kaufmann Le Data Mining

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Data Mining et Big Data

Data Mining et Big Data Data Mining et Big Data Eric Rivals LIRMM & Inst. de Biologie Computationnelle CNRS et Univ. Montpellier 14 novembre 2015 E. Rivals (LIRMM & IBC) Big Data 14 novembre 2015 1 / 30 Introduction, contexte

Plus en détail

Retour d'expérience sur la mise en place d'un laboratoire de Data Science à la CNP Assurances

Retour d'expérience sur la mise en place d'un laboratoire de Data Science à la CNP Assurances Retour d'expérience sur la mise en place d'un laboratoire de Data Science à la CNP Assurances Atelier animé par Anani OLYMPIO Actuaire certifié Institut des Actuaires, Expert ERM CERA Responsable R&D et

Plus en détail

Fouille de données et sémantique : des techniques pour donner du sens aux données

Fouille de données et sémantique : des techniques pour donner du sens aux données Fouille de données et sémantique : des techniques pour donner du sens aux données Nathalie Aussenac-Gilles (IRIT) co-animatrice avec M. Boughanem de l axe masse de données et calcul http://www.irit.fr/-masses-de-donnees-et-calcul,677-?lang=fr

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009 Le Data Mining Techniques pour exploiter l information Auteur : Dan Noël Date : 24.04.2009 Agenda de la présentation du 26.03.2009 Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un

Plus en détail

Analyse multivariée approfondie

Analyse multivariée approfondie Analyse multivariée approfondie Enseignants: NIANG N. et RUSSOLILLIO G. Maître de conférences Statistique Appliquée Laboratoire CEDRIC CNAM http://www.cnam.fr et d autres intervenants extérieurs au Cnam

Plus en détail

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD

Mo3: Big Data, Web & (Cyber)security. Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD Mo3: Big Data, Web & (Cyber)security Laura WILBER Director of Strategy, Dassault Systèmes EXALEAD 23/04/2013 Dassault Systèmes EXALEAD «Information Intelligence» Search & Discovery Entreprise Web «ii»

Plus en détail

INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS

INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS established in 2006 at the University of Abomey-Calavi (Republic of Benin) UNITWIN/UNESCO

Plus en détail

Digital & Marketing Analytics en Assurance

Digital & Marketing Analytics en Assurance Digital & Marketing Analytics en Assurance Une explosion du volume et de la finesse de la maille des données Quelles sont les réponses business à ces changements fondamentaux de la société? De nouvelles

Plus en détail

Monitoring continu et gestion optimale des performances énergétiques des bâtiments

Monitoring continu et gestion optimale des performances énergétiques des bâtiments Monitoring continu et gestion optimale des performances énergétiques des bâtiments Alexandre Nassiopoulos et al. Journée d inauguration de Sense-City, 23/03/2015 Croissance de la demande énergétique et

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Partie I Organisations, management et systèmes d information... 1

Partie I Organisations, management et systèmes d information... 1 Liste des cas d entreprise............................................................ Liste des figures..................................................................... Liste des tableaux...................................................................

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Introduction data science

Introduction data science Introduction data science Data science Master 2 ISIDIS Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe

Plus en détail

TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE

TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET TP n 2 de DATA MINING : Modélisation 1 Jeu de données

Plus en détail

Open Data. Enjeux et perspectives dans les télécommunications

Open Data. Enjeux et perspectives dans les télécommunications Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open

Plus en détail

Big data : vers une nouvelle science des risques?

Big data : vers une nouvelle science des risques? Big data : vers une nouvelle science des risques? Serge Abiteboul INRIA et ENS Cachan Conseil national du numérique et Académie des sciences Big data et science des risques 1 Organisation Big data en bref

Plus en détail

Statistique II Inférence pour une et deux variables Introduction

Statistique II Inférence pour une et deux variables Introduction Faculté de psychologie Statistique II Inférence pour une et deux variables Introduction Support à l exposé oral Titulaire Bernadette Govaerts ISBA, LSBA et SMCS UCLouvain 28/08/15 P 1 28/08/15 P 2 Statistique

Plus en détail

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 WEKA : c est quoi? Brigitte Bigi LPL - Équipe C3I 15 février 2011 Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 Introduction 1 Introduction 2 Classification supervisée 3 WEKA

Plus en détail

Date Matière Horaire Durée Salle

Date Matière Horaire Durée Salle 13-23 JUIN 2016 1 ERE ANNEE MASTER PROFESSIONNEL E-COMMERCE 22/06/2015 ANGLAIS DES AFFAIRES 1 T2 100 T2 SYSTEME D INFORMATION COMMERCIAL STRATEGIE E-BUSINESS T2 ANALYSE FINANCIERE 100 T2 GESTION DU RISQUE,

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Solutions et Services. d'analyse prédictive

Solutions et Services. d'analyse prédictive ProbaYes Mastering Uncertainty Solutions et Services d'analyse prédictive Mai 2013 Copyright 2013 Probayes All Rights Reserved 1 Présenta)on Probayes Créée en 2003 Basée en France (Grenoble) Spin-off de

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT

GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT Remarque : Tous les cours sont en français, sauf contre-indication. Pour des traductions anglaises des titres, des descriptifs, et plus de renseignements, consultez l intégralité du Programme des enseignements

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE Gestionnaire du Réseau de Transport d 'Electricité La prévision de consommation d électricité à RTE 2 PLAN DE LA PRESENTATION RTE, le gestionnaire du réseau d électricité Présentation d une méthodologie

Plus en détail

Les nouveaux débouchés dans l électronique du hardware au software, de l embarqué à l objet connecté

Les nouveaux débouchés dans l électronique du hardware au software, de l embarqué à l objet connecté Les nouveaux débouchés dans l électronique du hardware au software, de l embarqué à l objet connecté Organisation de la session Etat de lieux des systèmes embarqués et de l IoT Laurent George, Professeur

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

Les télécommunications contemporaines, systèmes complexes? Philippe Picard, le 14 mai 2011. Page 1

Les télécommunications contemporaines, systèmes complexes? Philippe Picard, le 14 mai 2011. Page 1 Les télécommunications contemporaines, systèmes complexes? Philippe Picard, le 14 mai 2011. Page 1 Une accélération de l histoire 120 ans Révolution numérique Télégraphe Téléphone radio Télévision Internet

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

DAC Données, Apprentissage et Connaissances

DAC Données, Apprentissage et Connaissances DAC Données, Apprentissage et Connaissances Responsables : Spécialité adossée au département DAPA du LIP6 Thierry Artières thierry.artieres@lip6.fr Bernd Amann bernd.amann@lip6.fr Partenaires : ENST, ENSTA,

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX Jean-Loup Guillaume Le cours http://jlguillaume.free.fr/www/teaching/syrres/ Exemple 1 : Expérience de Milgram Objectif faire transiter une lettre depuis les Nebraska à un

Plus en détail

Le Big Data en marche. Georges HEBRAIL, Chercheur Senior, Dpt ICAME Marie-Luce PICARD, Chef de Projet, Dpt ICAME Max BRUDEY, Société Hortonworks

Le Big Data en marche. Georges HEBRAIL, Chercheur Senior, Dpt ICAME Marie-Luce PICARD, Chef de Projet, Dpt ICAME Max BRUDEY, Société Hortonworks Georges HEBRAIL, Chercheur Senior, Dpt ICAME Marie-Luce PICARD, Chef de Projet, Dpt ICAME Max BRUDEY, Société Hortonworks SOMMAIRE 1. LES ENJEUX ET DÉFIS DU BIG DATA 2. OFFRE DE SERVICE BIG DATA DE LA

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

SNCC SCADA MES Vecteurs d intégration

SNCC SCADA MES Vecteurs d intégration SNCC SCADA MES Vecteurs d intégration Paris, le 6 juin 2013 Improving your execution systems Parcours Personnel 30 années d expérience en informatique industrielle ABSY (1983-1988 : constructeur SNCC)

Plus en détail

Journée de rencontres ANSES - IGN - INA - Labex Bézout

Journée de rencontres ANSES - IGN - INA - Labex Bézout Journée de rencontres ANSES - IGN - INA - Labex Bézout Présentation du LAMA Stéphane Sabourau 3 mars 2014 Présentation générale Le Laboratoire d Analyse et Mathématiques Appliquées (LAMA) est composé de

Plus en détail

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVER SON CAPITAL CLIENTS, RECRUTER, FIDÉLISER ET RÉCOLTER DU ROI! La société Base Plus cultive depuis

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION Jean-Loup Guillaume Le cours Enseignant : Jean-Loup Guillaume équipe Complex Network Page du cours : http://jlguillaume.free.fr/www/teaching-syrres.php Évaluation

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 STATISTIQUES Méthodes d'estimation ponctuelle (méthodes des moments, du maximum de vraisemblances, bayésienne) et par intervalles de confiance. Statistiques

Plus en détail

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Stéphanie Combes et Pauline Givord (DMCSI) INSEE-DMSCI 02/04/2015 Plan Qu'est-ce que le Big Data? Les

Plus en détail

Formation continue. Ensae-Ensai Formation Continue (Cepe)

Formation continue. Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist Formation continue Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist La demande de data scientists est croissante mais peu de formations existent. Ce certificat

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Analyse des déplacements des objets mobiles : définition de comportements types

Analyse des déplacements des objets mobiles : définition de comportements types Analyse des déplacements des objets mobiles : définition de comportements types Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Les déplacements L analyse des déplacements

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

Objets connectés, avez-vous donc une âme?

Objets connectés, avez-vous donc une âme? Objets connectés, avez-vous donc une âme? Bernard Ourghanlian Directeur Technique et Sécurité Microsoft France Qu est ce que l Internet des Objets? «Le réseau des objets physiques contenant des technologies

Plus en détail

Calatik, la vision métier et technique pour simplifier le pilotage du système d information

Calatik, la vision métier et technique pour simplifier le pilotage du système d information Calatik, la vision métier et technique pour simplifier le pilotage du système d information Le contexte : trop d outils, d écrans et de complexité Dans le domaine du pilotage du système d information,

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Thème 8 : Capteurs et objets connectés au service de l observabilité et du pilotage du réseau public de distribution d électricité

Thème 8 : Capteurs et objets connectés au service de l observabilité et du pilotage du réseau public de distribution d électricité Concours ERDF de l innovation 2015 «Réseaux Electriques Intelligents» Thème 8 : Capteurs et objets connectés au service de l observabilité et du pilotage du réseau public de distribution d électricité

Plus en détail

Retour sur les sessions

Retour sur les sessions Retour sur les sessions Session 1 : Modèles de données dans le cadre de systèmes d informations multi-sources en écologie Session 2 : Enrichissement et représentation de données multi-sources en écologie

Plus en détail

Introduction et définition

Introduction et définition Loi de puissance Introduction et définition Propriétés de la loi de puissance(ldp) LdP et loi probabilités LdP et loi d échelle LdP et graphes complexes LdP et SOC Exemples d applicabilité Economie Réseaux

Plus en détail

Première partie I. Aspects administratifs. Option reconnaissance des formes. Aspects pratiques. Le programme. Organisation du cours.

Première partie I. Aspects administratifs. Option reconnaissance des formes. Aspects pratiques. Le programme. Organisation du cours. Option reconnaissance des formes ntroduction Guillaume Wisniewski guillaume.wisniewski@limsi.fr Première partie Aspects administratifs Université Paris Sud LMS janvier 2011 Aspects pratiques Le programme

Plus en détail

Quelle valeur ajoutée marketing avec SAS?

Quelle valeur ajoutée marketing avec SAS? Quelle valeur ajoutée marketing avec SAS? 5 Nov. 2015 Hervé Chevallier Responsable Intelligence Marché 1 Vecteur Plus? Vecteur Plus Qui sommes-nous? N 1 de la veille commerciale en France Notre métier

Plus en détail

Business Intelligence L avantage. géographique. Emanuele Gennai Global Affairs ESRI Nyon, Switzerland

Business Intelligence L avantage. géographique. Emanuele Gennai Global Affairs ESRI Nyon, Switzerland Business Intelligence L avantage géographique Emanuele Gennai Global Affairs ESRI Nyon, Switzerland Qu est ce que le SIG pour ESRI? Aider à mieux gérer g nos ressources Communiquer nos géographies Notre

Plus en détail

LICENCE 1 Semestre 2. LICENCE 1 Semestre 1 COURS COURS. Histoire des faits économiques 30h C.M. + 15h T.D. (6 ECTS) 30h C.M.

LICENCE 1 Semestre 2. LICENCE 1 Semestre 1 COURS COURS. Histoire des faits économiques 30h C.M. + 15h T.D. (6 ECTS) 30h C.M. LICENCE 1 Semestre 1 LICENCE 1 Semestre 2 Economie d entreprise Statistique 1 Histoire des faits économiques Mathématiques 2 Mathématiques 1 Macroéconomie 1 Droit 30h C.M. (4 ECTS) Microéconomie 2 Principes

Plus en détail

Bouchekif Abdesselam 11 mars 2012

Bouchekif Abdesselam 11 mars 2012 Expériences sur les données du répertoire de données de UCI avec une boîte à outils Bouchekif Abdesselam 11 mars 2012 Résumé Les dix dernières années ont été témoin de grands progrès réalisés dans le domaine

Plus en détail

MASTER (LMD) GESTION DE DONNEES ET SPATIALISATION EN ENVIRONNEMENT (GSE)

MASTER (LMD) GESTION DE DONNEES ET SPATIALISATION EN ENVIRONNEMENT (GSE) MASTER (LMD) GESTION DE DONNEES ET SPATIALISATION EN ENVIRONNEMENT (GSE) RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine ministériel : Sciences, Technologies, Santé Mention : STIC POUR L'ECOLOGIE

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

INTRODUCTION AU DATA MINING. Cina MOTAMED

INTRODUCTION AU DATA MINING. Cina MOTAMED INTRODUCTION AU DATA MINING Cina MOTAMED 2 Data Mining : contexte Âge numérique : explosion des volumes de données Transactions commerciales Opérations bancaires Navigation Internet Indicateurs démographiques

Plus en détail

Oct. 2015. Julien MALAURENT malaurent@essec.edu

Oct. 2015. Julien MALAURENT malaurent@essec.edu Oct. 2015 Julien MALAURENT malaurent@essec.edu 2 X 11! 3 4 5 Volume Vitesse Variété 6 Difficile de s accorder sur une définition unique : on parle tantôt de technologies de traitement, tantôtde modèle

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

SchemaElec. Gestion topologique des réseaux électriques

SchemaElec. Gestion topologique des réseaux électriques SchemaElec Gestion topologique des réseaux électriques INTRODUCTION Ce que c est UN LOGICIEL SPÉCIALISÉ SchemaElec permet la saisie et la modification des données du réseau de manière ordonnée en respectant

Plus en détail

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1 De la donnée à la décision Sofian MAABOUT LaBRI. Université Bordeaux 1 1 Décider c est choisir, parmi plusieurs actes possibles, celui qui apparaît comme le plus pertinent pour atteindre un résultat envisagé,

Plus en détail

Méthodes de mathématiques (MAP4C)

Méthodes de mathématiques (MAP4C) Méthodes de mathématiques (MAP4C) Introduction Cette ressource pédagogique a été créée pour répondre aux exigences du programme-cadre révisé de 12 e année (septembre 2007). Les leçons préparées ne sont

Plus en détail

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2

Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data

Plus en détail

Méthodes d apprentissage statistique («Machine Learning»)

Méthodes d apprentissage statistique («Machine Learning») Méthodes d apprentissage statistique («Machine Learning») Journées d Etudes IARD Niort, 21 Mars 2014 Fabrice TAILLIEU Sébastien DELUCINGE Rémi BELLINA 2014 Milliman. All rights reserved Sommaire Introduction

Plus en détail