Big data : vers une nouvelle science des risques?

Dimension: px
Commencer à balayer dès la page:

Download "Big data : vers une nouvelle science des risques?"

Transcription

1 Big data : vers une nouvelle science des risques? Serge Abiteboul INRIA et ENS Cachan Conseil national du numérique et Académie des sciences Big data et science des risques 1

2 Organisation Big data en bref Big data : mythe et réalité Exemple : la santé (une vision d ignorant) Big data et science des risques 2

3 Big data en bref Big data et science des risques 3

4 Le Big Data Le big data ou La data Data ce n est pas pluriel? En français : Grosses données Moins glamour? Big data et science des risques 4

5 Crash course en Big Data La société moderne génère des volumes de données infernaux Double tous les 18 mois Ces données ont une valeur considérable Santé, science, environnement, sécurité, transport... Le «Big data»: croiser les données Très structurées et propres d une entreprise/organisation Avec la masse de données moins structurées/plus sales du Web Des données personnelles (comme des s) Des données de réseaux sociaux Et des flux de données (générées par ex. par des senseurs) Valoriser ces données Découvrir de nouvelles connaissances Offrir de nouveaux services Big data et science des risques 5

6 Crash course: tâches principales L analyse de données Un vieux problème Tâches principales Acquisition : aller chercher les données, e.g., outils ETL Intégration : e.g., transformer dans un schéma unique, aligner les données Nettoyage : e.g., éliminer les réplicas, résoudre les contradictions, gérer les données manquantes Crowd sourcing: interagir avec des humains pour obtenir des données, résoudre les contradictions Interrogation : requête, souscription, visualisation Analyse statistique : frequent item set L analyse de données ne répond pas à des problèmes souvent complexes Fouille : quelles sont les questions intéressantes? Utilisation : comment utiliser ces données? Etc. Big data et science des risques 6

7 Difficultés Taille des données : c est Big! Téraoctets, plus Hétérogénéité: structures, ontologies, multilinguisme Vélocité: importance du temps, taux de changement/d'arrivée Espace : localisation Protection des données : données privées, réglementation Qualité: erreurs, incomplétude, confiance, Et encore de la qualité: provenance, fraicheur... Et la complexité : un algorithme en n 3 sur un milliard d enregistrements reste hors de portée même avec mille machines Big data et science des risques 7

8 Pour tuer quelques idées reçues La grande mode est au parallélisme massif style Hadoop Super techno venue des moteurs de recherche Ne marche que sur les problèmes très parallèles Technologie encore assez bas niveau (ça s améliore) Évidemment, Ça impressionne (de moins en moins) C est fun Mais si «votre data est Big» et si vous recherchez l efficacité, interrogez vous : Vos données sont-elles vraiment Big? Ne suffirait-il pas de gonfler votre machine en RAM/en SSD? Peut-on réduire la dimension en échantillonnant? Big data et science des risques 8

9 Big data : mythe et réalité Big data et science des risques 9

10 Big data Le mythe On va résoudre les problèmes de l humanité On a plus en plus de données bientôt toutes les données Un coup d algo et on va résoudre le cancer, la pauvreté, etc. En analysant ces données, nous pouvons faire des prédications de plus en plus fines mais Cela reste des statistiques Limites dues à la complexité en la taille des données Et évidemment une énorme place au hasard On va sûrement résoudre des problèmes Mais Big data et science des risques 10

11 Big data La réalité Ce qu on observe surtout pour l instants 1. Les sociétés utilisent des données privées Pour des buts commerciaux principalement pub ciblées Plus il y a de données, plus ils gagnent d argent 2. Les états utilisent des données privées Pour se protéger du terrorisme Pour surveiller leurs citoyens (surtout dans certains pays) Plus il y a de données, plus l état est puissant Big data et science des risques 11

12 Et si on utilisait cette techno pour résoudre de vrais problèmes Prévoir et mieux y répondre À des crises sanitaires À des problèmes d'environnement À des catastrophes naturelles Aider à résoudre les problèmes de Santé, transport, pauvreté, Organiser un suivi personnalisé Des personnes en difficultés Des personnes âgées Des élèves en difficulté Big data et science des risques 12

13 Exemple : la santé (une vision d ignorant) Big data et science des risques 13

14 Exemple : La santé Les soins personnalisés Toutes les données médicales de la personne Son génome Toutes ses données sociales Soins personnalisés Mesures prédictives Les polices personnalisées Plus chères pour les personnes à risque Personnes «trop» à risque non assurées Mutualisation des risques de plus en plus limitée C est la même science qui rend ça possible Quel monde souhaitons-nous? Big data et science des risques 14

15 Problème : les données personnelles Mes achats, ma géolocalisation, mes courriels Mes données médicales, fiscales, assurances Mes données dans les réseaux sociaux Peut-être celles de mes amis Mes données génomiques 23andMe: pour 99$ séquencement de votre génome et publication sur le Web Et ma vie privée? 2 exemples de problèmes récents : Instagram et revente Facebook et embauche Big data et science des risques 15

16 Une religion personnelle À qui appartiennent mes données? Les données personnelles appartiennent à la personne Les entreprises/états n en sont que les dépositaires temporaires Big data et science des risques 16

17 Comment pouvoir faire quand même des statistiques? L anonymisation des données En garantissant l anonymat de chacun - compliqué Par exemple, «differential privacy» Le propriétaire des données a le droit de choisir ce qu on fait de ses données Condition d utilisation Durée Responsabilité légales de ceux qui détiennent ces données Big data et science des risques 17

18 Big data et science des risques 18

Atelier Donnees de sante et esante: quelles opportunites de creation de valeur?

Atelier Donnees de sante et esante: quelles opportunites de creation de valeur? Atelier Donnees de sante et esante: quelles opportunites de creation de valeur? Les opportunités pour les entreprises? Christophe RICHARD Pour mémoire Open Data Big Data «Open» signifie «ouvert» «Data»

Plus en détail

IODAA. de l 1nf0rmation à la Décision par l Analyse et l Apprentissage / 21

IODAA. de l 1nf0rmation à la Décision par l Analyse et l Apprentissage / 21 IODAA de l 1nf0rmation à la Décision par l Analyse et l Apprentissage IODAA Informations générales 2 Un monde nouveau Des données numériques partout en croissance prodigieuse Comment en extraire des connaissances

Plus en détail

Big Data: développement, rôle des ARS?? Laurent Tréluyer, ARS Ile de France Alain Livartowski Institut Curie Paris 01/12/2014

Big Data: développement, rôle des ARS?? Laurent Tréluyer, ARS Ile de France Alain Livartowski Institut Curie Paris 01/12/2014 Big Data: développement, rôle des ARS?? Laurent Tréluyer, ARS Ile de France Alain Livartowski Institut Curie Paris 01/12/2014 1 Classiquement, le Big Data se définit autour des 3 V : Volume, Variété et

Plus en détail

Big- Data: Les défis éthiques et juridiques. Copyright 2015 Digital&Ethics

Big- Data: Les défis éthiques et juridiques. Copyright 2015 Digital&Ethics Big- Data: Les défis éthiques et juridiques. 1 Big- Data: Les défis éthiques et juridiques. Digital & Ethics Ce que change le Big Data Les questions éthiques et juridiques Les réponses possibles 2 Digital

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

Les datas = le fuel du 21ième sicècle

Les datas = le fuel du 21ième sicècle Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

R, VISUALISATION ET APPRENTISSAGE

R, VISUALISATION ET APPRENTISSAGE R, VISUALISATION ET APPRENTISSAGE ANALYSE DE COMPORTEMENTS TOURISTIQUES À PARTIR DE DONNÉES PHOTOGRAPHIQUES GÉOTAGGÉES B.Branchet G.Chareyron J.Da-Rugna 2 PRÉSENTATION Bérengère Branchet Gaël Chareyron

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

TOP. année promet d être BIG (Business Intelligence Growth) PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013

TOP. année promet d être BIG (Business Intelligence Growth) PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013 0 Cette TOP 10 PRINCIPALES TENDANCES EN MATIÈRE DE SOLUTIONS DÉCISIONNELLES POUR 2013 année promet d être BIG (Business Intelligence Growth) Quel est le bilan de l année 2012 en matière de solutions décisionnelles?

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

Mobilités : connaître pour mieux agir. Présentation du projet Octobre 2014 Projet co-financé par l Ademe

Mobilités : connaître pour mieux agir. Présentation du projet Octobre 2014 Projet co-financé par l Ademe Mobilités : connaître pour mieux agir Présentation du projet Octobre 2014 Projet co-financé par l Ademe 1 A propos mobi-lise est un projet de recherche qui vise à : Accroître la compréhension des pratiques

Plus en détail

Regards sur. Un phénomène massif d une rapidité. «Big data» : les données comme matière première? Le Big data

Regards sur. Un phénomène massif d une rapidité. «Big data» : les données comme matière première? Le Big data Regards sur «Big data» : les données comme matière première? Un phénomène massif d une rapidité extrême est intervenu ces dernières années : alors que 2 % des données étaient stockées sous format numérique

Plus en détail

Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique

Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique Extraits d analyses publiées par MARKESS International Emmanuelle Olivié-Paul epaul@markess.com

Plus en détail

PROFILAGE : UN DEFI POUR LA PROTECTION DES DONNEES PERSONNELLES Me Alain GROSJEAN Bonn & Schmitt

PROFILAGE : UN DEFI POUR LA PROTECTION DES DONNEES PERSONNELLES Me Alain GROSJEAN Bonn & Schmitt PROFILAGE : UN DEFI POUR LA PROTECTION DES DONNEES PERSONNELLES Me Alain GROSJEAN Bonn & Schmitt ASPECTS TECHNIQUES M. Raphaël VINOT CIRCL SEMINAIRE UIA ENJEUX EUROPEENS ET MONDIAUX DE LA PROTECTION DES

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

À PROPOS DE TALEND...

À PROPOS DE TALEND... WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour

Plus en détail

GUIDE PRATIQUE déplacements professionnels temporaires en France et à l étranger

GUIDE PRATIQUE déplacements professionnels temporaires en France et à l étranger GUIDE PRATIQUE déplacements professionnels temporaires en France et à l étranger SOMMAIRE GUIDE PRATIQUE déplacements professionnels temporaires en France et à l étranger o o o o o o o o o o o o

Plus en détail

Mobilités 2.0 : connaître pour mieux agir

Mobilités 2.0 : connaître pour mieux agir Mobilités 2.0 : connaître pour mieux agir (objet, partenaires, cheminement et concept, architecture du projet, vues d aide à la décision, et prochaine étape 21 janvier!) denys.alapetite @smartengy.com

Plus en détail

Les protocoles cryptographiques: comment sécuriser nos communications?

Les protocoles cryptographiques: comment sécuriser nos communications? Les protocoles cryptographiques: comment sécuriser nos communications? Stéphanie Delaune Chargée de recherche CNRS au LSV, INRIA projet SecSI & ENS Cachan 21 Mars 2014 S. Delaune (LSV Projet SecSI) Les

Plus en détail

Big Data et le droit :

Big Data et le droit : Big Data et le droit : Comment concilier le Big Data avec les règles de protection des données personnelles? CRIP - Mercredi 16 Octobre 2013 Yann PADOVA, avocat Baker & McKenzie SCP est membre de Baker

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Utilisation des médias sociaux. Pour tirer le plein potentiel des médias sociaux

Utilisation des médias sociaux. Pour tirer le plein potentiel des médias sociaux Utilisation des médias sociaux Pour tirer le plein potentiel des médias sociaux Document réalisé par le Carrefour jeunesse-emploi Rivière-du-Nord 2013-2014 LES MÉDIAS SOCIAUX Les médias sociaux se sont

Plus en détail

Jean-François Boulicaut & Mohand-Saïd Hacid

Jean-François Boulicaut & Mohand-Saïd Hacid e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205

Plus en détail

Dailymotion: La performance dans le cloud

Dailymotion: La performance dans le cloud Dailymotion: La performance dans le cloud CRiP Thématique Services IT dans le Cloud 06/11/14 Dailymotion en quelques chiffres? 130 millions visiteurs uniques par mois 3 milliards de vidéos vues par mois

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Transcription médicale: comment faire le bon choix

Transcription médicale: comment faire le bon choix Transcription médicale: comment faire le bon choix La réduction des coûts et l optimisation des investissements sont des préoccupations majeures pour tout entrepreneur qui se respecte. À travers ce document,

Plus en détail

Le BIG DATA????? Big Buzz? Big Bang? Big Opportunity? Big hype? Big Business? Big Challenge? Big Hacking? Gérard Peliks planche 2

Le BIG DATA????? Big Buzz? Big Bang? Big Opportunity? Big hype? Big Business? Big Challenge? Big Hacking? Gérard Peliks planche 2 Le BIG DATA????? Big Bang? Big hype? Big Challenge? Big Buzz? Big Opportunity? Big Business? Big Hacking? Gérard Peliks planche 2 Les quatre paradigmes de la science en marche Paradigme 1 : L empirisme

Plus en détail

GT Big Data. Saison 2014-2015. Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) CRiP Thématique Mise en œuvre du Big Data 16/12/14

GT Big Data. Saison 2014-2015. Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) CRiP Thématique Mise en œuvre du Big Data 16/12/14 GT Big Data Saison 2014-2015 Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) Sommaire GT Big Data : roadmap 2014-15 Revue de presse Business Education / Promotion Emploi Sécurité / Compliance Cuisine:

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Transformation IT de l entreprise COMMENT PROTÉGER VOS DONNÉES ET APPLICATIONS À L ÈRE DE LA MOBILITÉ?

Transformation IT de l entreprise COMMENT PROTÉGER VOS DONNÉES ET APPLICATIONS À L ÈRE DE LA MOBILITÉ? Transformation IT de l entreprise COMMENT PROTÉGER VOS DONNÉES ET APPLICATIONS À L ÈRE DE LA MOBILITÉ? L a montée en puissance des fuites de données en tout genre et l explosion des volumes de données

Plus en détail

Les défis statistiques du Big Data

Les défis statistiques du Big Data Les défis statistiques du Big Data Anne-Sophie Charest Professeure adjointe au département de mathématiques et statistique, Université Laval 29 avril 2014 Colloque ITIS - Big Data et Open Data au cœur

Plus en détail

Le Etourismeen 2012. Jean-Luc BOULIN - MOPA. 1 ère Journée e-tourisme Pays de Bergerac

Le Etourismeen 2012. Jean-Luc BOULIN - MOPA. 1 ère Journée e-tourisme Pays de Bergerac Le Etourismeen 2012 Jean-Luc BOULIN - MOPA 1 ère Journée e-tourisme Pays de Bergerac Mission des Offices de Tourisme et Pays Touristiques d Aquitaine Renforcersa communication 5 MISSIONS D ACCOMPAGNEMENT

Plus en détail

lundi 27 février 2012 François Charron

lundi 27 février 2012 François Charron François Charron Présentation Entrepreneur depuis l âge de 18 ans (commerce de détail, manufacturier, importation, service et production) Chroniqueur Web et techno depuis 12 ans à TVA / Salut, Bonjour!

Plus en détail

Patrick Fischer et les «boursicoteurs» de TTC

Patrick Fischer et les «boursicoteurs» de TTC < 28 octobre 2008 > Patrick Fischer et les «boursicoteurs» de TTC Reçu de Patrick Fischer un courriel qu il m autorise à mettre en ligne, un commentaire de mes remarques en partie négatives sur le concours

Plus en détail

Pulsarbeonpush@gmail.com. Affiliate link: https://www.beonpush.com/s/pulsar

Pulsarbeonpush@gmail.com. Affiliate link: https://www.beonpush.com/s/pulsar Pulsarbeonpush@gmail.com Affiliate link: https://www.beonpush.com/s/pulsar INTRODUCTION AU RTB Enchères en temps réel Beonpush a été créé en 2015 et enregistrée le 3 Août 2015 en Angleterre et au Luxembourg.

Plus en détail

Votre laisser-passer pour les. Big Data Guide visuel

Votre laisser-passer pour les. Big Data Guide visuel Votre laisser-passer pour les Big Data Guide visuel Les Big Data ont une immense valeur Apprenez à en libérer tout le potentiel Nul doute aujourd hui que les Big Data entraînent une profonde mutation du

Plus en détail

Pair-à-Pair: Architectures et Services

Pair-à-Pair: Architectures et Services Pair-à-Pair: Architectures et Services Fabrice Le Fessant Fabrice.Le_Fessant@inria.fr Équipe ASAP (Réseaux très large échelle) INRIA Saclay Île de France Octobre 2008 Fabrice Le Fessant () Architectures

Plus en détail

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big data le Buzz Le Big Data? Tout le monde en parle sans trop savoir ce qu il signifie. Les médias high-tech en font la nouvelle panacée,

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

Création de jeu vidéo

Création de jeu vidéo Création de jeu vidéo Mathias Fontmarty Jeudi 5 Juin 2014 Collège Jacqueline Auriol Villeneuve-Tolosane Qui suis-je? TRAVAIL Naissance 1982 Primaire 1986 Enseignant Collège Lycée Bac S Ingénieur informatique

Plus en détail

QUELLE EST LA SITUATION ACTUELLE

QUELLE EST LA SITUATION ACTUELLE INTRODUCTION Etre à jour de ses vaccins et en gérer le suivi de manière permanente, voici une exigence vitale pour l hygiène des populations et une préoccupation majeure de santé publique en côte d Ivoire

Plus en détail

Esri LOCATION ANALYTICS

Esri LOCATION ANALYTICS Esri LOCATION ANALYTICS Le «où» qui fait la différence De meilleurs résultats avec Esri Location Analytics. Comment canaliser les flux de données et comment en tirer la valeur ajoutée la plus élevée? À

Plus en détail

Solution Le problème à un million de dollars

Solution Le problème à un million de dollars Solution Le problème à un million de dollars Dans le présent scénario, un homme (le «proposant») souhaite disposer d un million de dollars pour chaque personne qui atteint l âge de 100 ans. Il veut calculer

Plus en détail

UNION POSTALE UNIVERSELLE

UNION POSTALE UNIVERSELLE UPU UNION POSTALE UNIVERSELLE CEP C 2 2014.1 Doc 6b Original: anglais CONSEIL D EXPLOITATION POSTALE Commission 2 (Développement des marchés) Questions intéressant le Groupe «Economie postale appliquée

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 13 L exploration des données 13.1. Présentation de la semaine L exploration de données (ou data mining) est souvent associée à l intelligence

Plus en détail

Journées pédagogiques SIF. 23 juin 2015 au CNAM

Journées pédagogiques SIF. 23 juin 2015 au CNAM Journées pédagogiques SIF 23 juin 2015 au CNAM Apports de l informatique aux SHS et réciproquement Nathalie Denos - Univ. Grenoble Alpes Informatique et SHS : le cas du traitement de données massives données

Plus en détail

Big Data et protection des données personnelles et de la vie privée dans le secteur des assurances au Maroc

Big Data et protection des données personnelles et de la vie privée dans le secteur des assurances au Maroc Big Data et protection des données personnelles et de la vie privée dans le secteur des assurances au Maroc M. Saïd IHRAI, Président de la CNDP FMSAR, Casablanca 15 Avril 2015 SOMMAIRE I. La protection

Plus en détail

4 février 2015. Exemple d application opérationnelle immédiate en France d un projet européen de R&D en sécurité

4 février 2015. Exemple d application opérationnelle immédiate en France d un projet européen de R&D en sécurité Exemple d application opérationnelle immédiate en France d un projet européen de R&D en sécurité Projet européen isar+ Budget de 5,2 M dans le cadre FP7-SEC-2012-1, 16 partenaires de 9 pays, dont Deveryware,

Plus en détail

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

Vision prospective et obstacles à surmonter pour les assureurs

Vision prospective et obstacles à surmonter pour les assureurs smart solutions for smart leaders Le «Big Data» assurément Rédigé par Pascal STERN Architecte d Entreprise Vision prospective et obstacles à surmonter pour les assureurs Un avis rendu par la cour de justice

Plus en détail

"Les médecins seront les infirmières de 2030"

Les médecins seront les infirmières de 2030 RECHERCHE par Laure Martin le 25-09-2014 38 RÉACTION(S) "Les médecins seront les infirmières de 2030" Afficher sur plusieurs pages Chirurgien-urologue et neurobiologiste de formation, le Dr Laurent Alexandre

Plus en détail

La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST.

La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST. La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST. Gaël Le Mahec - p. 1/12 L algorithme BLAST. Basic Local Alignment Search Tool est un algorithme de recherche

Plus en détail

Le Big Data est-il polluant? BILLET. Big Data, la déferlante des octets VIVANT MATIÈRE SOCIÉTÉS UNIVERS TERRE NUMÉRIQUE TERRE (/TERRE)

Le Big Data est-il polluant? BILLET. Big Data, la déferlante des octets VIVANT MATIÈRE SOCIÉTÉS UNIVERS TERRE NUMÉRIQUE TERRE (/TERRE) Donner du sens à la science Rechercher Se connecter / S'inscrire Suivre VIVANT MATIÈRE SOCIÉTÉS UNIVERS TERRE NUMÉRIQUE MES THÈMES Types DOSSIER Paru le 15.11.2012 Mis à jour le 29.01.2014 Big Data, la

Plus en détail

Protection des données personnelles : Vers un Web personnel sécurisé

Protection des données personnelles : Vers un Web personnel sécurisé Rencontre Inria Industrie Les télécoms du futur Table ronde Sécurité des contenus Protection des données personnelles : Vers un Web personnel sécurisé Luc Bouganim - INRIA Paris-Rocquencourt EPI SMIS,

Plus en détail

Conseil économique et social

Conseil économique et social Nations Unies Conseil économique et social Distr. générale 24 janvier 2014 Français Original: anglais ECE/CES/2014/7 Commission économique pour l Europe Conférence des statisticiens européens Soixante-deuxième

Plus en détail

Emergence du Big Data Exemple : Linked Open Data

Emergence du Big Data Exemple : Linked Open Data 1 CNRS - Misionpour l'interdisciplinarité Mokrane Bouzeghoub 1 Une approche interdisciplinaire des grandes masses de données (Défi Mastodons) Mokrane Bouzeghoub DAS INS2I / MI Ecole de L Innova.on Thérapeu.

Plus en détail

Un monde de données. comprendre l implication sociale et politique des banques de données et leur accès

Un monde de données. comprendre l implication sociale et politique des banques de données et leur accès Un monde de données comprendre l implication sociale et politique des banques de données et leur accès Hubert Guillaud, éditeur de formation, vit à Romans-sur-Isère (Drôme). Il est rédacteur en chef d

Plus en détail

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting NewPoint IT Consulting BIG DATA WHITE PAPER NewPoint Information Technology Consulting Contenu 1 Big Data: Défi et opportunité pour l'entreprise... 3 2 Les drivers techniques et d'entreprise de BIG DATA...

Plus en détail

Fraude de masse Sophie Olieslagers 14 mars 2014

Fraude de masse Sophie Olieslagers 14 mars 2014 Fraude de masse Sophie Olieslagers 14 mars 2014 Que-est-ce que la «Fraude de masse» Toutes les formes de fraude faisant usage des techniques de communication de masse telles que le télémarketing, internet

Plus en détail

MONEY, MONEY, MONEY PAYER, VENDRE ET ÉCHANGER DE L ARGENT DEMAIN

MONEY, MONEY, MONEY PAYER, VENDRE ET ÉCHANGER DE L ARGENT DEMAIN MONEY, MONEY, MONEY PAYER, VENDRE ET ÉCHANGER DE L ARGENT DEMAIN EDITO Il y a 20 ans, il fallait se déplacer en agence pour effectuer un virement ou passer un ordre de bourse. Aujourd hui, il nous est

Plus en détail

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Smart Building. Comment transformer un centre de coûts en une source de valeurs

Smart Building. Comment transformer un centre de coûts en une source de valeurs Smart Building Comment transformer un centre de coûts en une source de valeurs Nouvelles technologies, nouveaux acteurs, nouveaux métiers et nouveaux enjeux Du 80/20 au 20/80 Xavier Dalloz (XDC) David

Plus en détail

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 Data Mining Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 2 Plan Data mining : définition, utilisations et concepts Wolfram Alpha : extraction de données d'un compte

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables DocForum 18 Juin 2015 Réussites d un projet Big Data Les incontournables Vos interlocuteurs Mick LEVY Directeur Innovation Business mick.levy@businessdecision.com 06.50.87.13.26 @mick_levy 2 Business &

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Comment ça se passe? Déroulé détaillé. INTRODUCTION / 10 minutes

Comment ça se passe? Déroulé détaillé. INTRODUCTION / 10 minutes De quoi s agit il Cette animation d une durée de 2 heures permet de sensibiliser les participants au domaine particulier des informations personnelles, du quantified self et de l usage marketing qui peut

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

Être plus proche, mais pas à n importe quel prix

Être plus proche, mais pas à n importe quel prix TABLE RONDE N 4 Être plus proche, mais pas à n importe quel prix 1 TABLE RONDE N 4 Johanna CARVAIS Direction des affaires internationales et de l expertise CNIL 2 1) Bref rappel des notions contenues dans

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

Travailler avec les télécommunications

Travailler avec les télécommunications Travailler avec les télécommunications Minimiser l attrition dans le secteur des télécommunications Table des matières : 1 Analyse de l attrition à l aide du data mining 2 Analyse de l attrition de la

Plus en détail

COMMENT TRANSFORMER LE WEB

COMMENT TRANSFORMER LE WEB COMMENT TRANSFORMER LE WEB & LES RESEAUX SOCIAUX EN GÉNÉRATEUR DE BUSINESS? Sabrina BULTEAU CEO & CO- FOUNDER BE CONNECT - MISSION Générer plus de trafic, plus de leads, plus de ventes grâce au social

Plus en détail

UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072

UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072 UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072 Numéro dans le SI local : Référence GESUP : Corps : Professeur des universités Article : 46-1 Chaire : Non Section 1 : 27-Informatique Section 2

Plus en détail

Big Data et la santé

Big Data et la santé Big Data, c'est quoi? Big Data et la santé Collecte, stockage et exploitation de masses de données Capter de façon automatique et anonyme une très grande quantité d'informations, les traiter avec des algorithmes

Plus en détail

THE ONE ID RIGHT DATA MAKES GREAT MARKETING POWERED BY EMAIL-BROKERS 2015

THE ONE ID RIGHT DATA MAKES GREAT MARKETING POWERED BY EMAIL-BROKERS 2015 THE ONE ID QUE VOULEZ-VOUS SAVOIR? ICI Qui sont vos clients et prospects? Ce qu ils font? Ce qu ils aiment? Leurs centres d intérêt et passions? Où ils sont? Ce qu ils déclarent? ICI ICI ICI EN 2015, LES

Plus en détail

Que faire des data? 04/06/2015

Que faire des data? 04/06/2015 Que faire des data? 04/06/2015 2 minutes pour le BigData Le Big Data Volume : la dimension du teraoctet est dépassée Variété : données structurées (relationnelle) et non structurées Vélocité : création,

Plus en détail

Chercher sur le Web : juste un point fixe et quelques algorithmes

Chercher sur le Web : juste un point fixe et quelques algorithmes Chercher sur le Web : juste un point fixe et quelques algorithmes Serge Abiteboul, directeur de recherche Inria à l École Normale Supérieure de Cachan Le Web met à notre disposition une masse considérable

Plus en détail

De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA

De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA Ladjel BELLATRECHE bellatreche@ensma.fr http://www.lias lab.fr/members/bellatreche Les déterminants de la motivation selon Rolland Viau Perception

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

L humain et ses données, le «quantified self»

L humain et ses données, le «quantified self» Chapitre 1 L humain et ses données, le «quantified self» L explosion de la quantité des données disponibles et le perfectionnement de nos capacités d analyse bouleversent les rapports que l Homme entretient

Plus en détail

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

L e-recrutement Réseaux Sociaux et Jobboards. Thierry DUFOUR Conférence ANDRH Présentation du 17 Novembre 2011

L e-recrutement Réseaux Sociaux et Jobboards. Thierry DUFOUR Conférence ANDRH Présentation du 17 Novembre 2011 L e-recrutement Réseaux Sociaux et Jobboards Thierry DUFOUR Conférence ANDRH Présentation du 17 Novembre 2011 Déroulement de la présentation Etat des lieux du marché des Job boards et Médias Sociaux Les

Plus en détail

BIG DATA VOUS N Y ÉCHAPPEREZ PAS!

BIG DATA VOUS N Y ÉCHAPPEREZ PAS! BIG DATA VOUS N Y ÉCHAPPEREZ PAS!! PHILIPPE NIEUWBOURG @NIEUWBOURG! COLLOQUE ITIS BIG DATA / OPEN DATA QUÉBEC, 29 AVRIL 2014 1 Bonjour, Bienvenue dans le monde des données volumineuses ou massives.! Qui

Plus en détail

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 1 Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 2 Introduction Pourquoi pair à pair? Utilisation de ressources

Plus en détail

LA CARTE MOBIB. MoBIB, RFID et la protection des données

LA CARTE MOBIB. MoBIB, RFID et la protection des données Big Brother est partout! Bon nombre d institutions, de personnes et d organisations ne sont pas très regardantes quant à la viee privée des citoyens. De Liga voor Mensenrechten et La Ligue des droits de

Plus en détail

Respect de la vie privée dans la société de l information

Respect de la vie privée dans la société de l information Sébastien Gambs Respect de la vie privée 1 Respect de la vie privée dans la société de l information Sébastien Gambs Chaire de recherche en Sécurité des Systèmes d Information Université de Rennes 1 -

Plus en détail

Transformez vos données en opportunités. avec Microsoft Big Data

Transformez vos données en opportunités. avec Microsoft Big Data Transformez vos données en opportunités avec Microsoft Big Data 1 VOLUME Augmentation du volume de données tous les cinq ans Vélocité x10 4,3 Nombre d appareils connectés par adulte VARIÉTÉ 85% Part des

Plus en détail

July 1, 2013. Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15

July 1, 2013. Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15 Mastère Spécialisé Big Data Stéphan Clémençon Télécom ParisTech July 1, 2013 Stéphan Clémençon (Télécom ParisTech) Mastère Big Data July 1, 2013 1 / 15 Agenda Contexte et Opportunité Les grandes lignes

Plus en détail

Solutions de protection du vivant. Oasis MC. Un aperçu des demandes de règlement d assurance contre les maladies graves

Solutions de protection du vivant. Oasis MC. Un aperçu des demandes de règlement d assurance contre les maladies graves Solutions de protection du vivant Oasis MC Un aperçu des demandes de règlement d assurance contre les maladies graves Les gens vivent plus longtemps. Si vous êtes un jour atteint d une maladie grave, il

Plus en détail

Open Data. Enjeux et perspectives dans les télécommunications

Open Data. Enjeux et perspectives dans les télécommunications Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open

Plus en détail

BIG Data et R: opportunités et perspectives

BIG Data et R: opportunités et perspectives BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, rguati@gmail.com 2 Ecole des Sciences Géomatiques, IAV Rabat,

Plus en détail

Journée Scientifique Onera

Journée Scientifique Onera [[À la croisée des révolutions numériques]] Journée Scientifique Onera Date : 20 mai 2014 Lieu : ONERA - Centre de Châtillon - 29 avenue de la Division Leclerc, 92322 Inscription : Gratuite Obligatoire.

Plus en détail

Étude sur la compétitivité des administrations cantonales

Étude sur la compétitivité des administrations cantonales Étude sur la compétitivité des administrations cantonales réalisée pour les Chambres de commerce latines Avril 2015 2 1. Descriptif de la recherche Contexte et méthodologie 3 La 7 ème vague de l étude

Plus en détail

Analyse détaillée des trajets effectués en Transports en commun en Ile-de-France

Analyse détaillée des trajets effectués en Transports en commun en Ile-de-France Etude sur les déplacements Analyse détaillée des trajets effectués en Transports en commun en Ile-de-France 18 Septembre 2014 ixxi-mobility.com 2 Transformer le temps de transport en temps utile Le temps

Plus en détail

LES DONNÉES : VOTRE AVANTAGE CONCURRENTIEL

LES DONNÉES : VOTRE AVANTAGE CONCURRENTIEL Bonjour, LES DONNÉES : VOTRE AVANTAGE CONCURRENTIEL! PHILIPPE NIEUWBOURG @NIEUWBOURG! SAS FORUM ANALYTIQUE MONTRÉAL, 27 MAI 2014 Bienvenue dans le monde des données volumineuses ou massives.! Qui a un

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP

BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP BIG DATA : comment étendre et gérer la connaissance client? François Nguyen SFR Directeur SI décisionnel & Mkt relationnel GP SFR en quelques chiffres Le Dataware Client GP de SFR en août 2011 150 applications

Plus en détail