Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Dimension: px
Commencer à balayer dès la page:

Download "Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours"

Transcription

1 Information du cours Informatique décisionnelle et data mining Juan-Manuel Torres LIA/Université d Avignon Cours/TP partagés Juan-Manuel Torres / LIA Université d Avignon Francois Lentin / Autoroutes du Sud de la France Peter Peinl / Université de Fulda (Allemagne) Data Mining 3 séances théorie Total.. 4.5h 5 séances de TP s Total.. 7.5h 1 Examen... 1h30 Total.. 14h Information du cours Cours : 16 Octobre (IMOD) 18 Octobre (TAIM) Cours : 23 Octobre (IMOD) 19 Octobre (TAIM) Cours : 24 Octobre (IMOD 8 Novembre (TAIM) EXAMEN : 28 Novembre TP1 Introduction a WEKA 26 Octobre (TAIM) 29 Nov (IMOD) TP2 Arbres de décision I 28 Nov (TAIM) 6 Dec (IMOD) TP3 Arbres de décision II 7 Dec (TAIM) 11 Dec (IMOD) TP4 Clusterisation 13 Dec (TAIM) TP5 Prédiction 14 Dec (TAIM) 13 Dec (IMOD) 20 Dec (IMOD) EVALUATION DU COURS Examen Torres... 18% TP s Torres (binôme).. 15% 3 % chaque TP x 5 1 Examen Lentin.. 33% décembre (à confirmer) Examen + TP Peinl % Data mining (fouille de données) Introduction

2 Datawarehouse Datawarehouse Lieu de stockage intermédiaire des différentes données en vue de la constitution du système d'information décisionnel est appelé entrepôt de données (datawarehouse). Lieu unique de consolidation de l'ensemble des données de l'entreprises Transp Transp 8 DataWareHouse (Bill Inmon) «Collection de données thématiques, intégrées, non volatiles et historisées pour la prise de décisions» Caractéristiques : Orienté sujets. Les données collectées sont être orientées «métier» : triées par thème Données intégrées. "Nettoyage" préalable des données est nécessaire : rationnalisation et de normalisation Données non volatiles. Une donnée entrée n'a pas vocation a être supprimée Les données historisées : datées OLAP On-Line Analytical Processing Concept à mi-chemin entre le système d'information pur et les utilisateurs, permettant de faire des simulations OLTP On-Line Transactional Processing Permettre une analyse multidimensionnelle sur des bases de données volumineuses afin de mettre en évidence une analyse particulière des données (il est l'objet d'un questionnement particulier) Transp 9 Informatique décisionnelle "Business intelligence" Les outils décisionnels (parfois appelé "le décisionnel") Exploitation des données de l'entreprise dans le but de faciliter la prise de décision par les décideurs Compréhension du fonctionnement actuel et l'anticipation des action pour un pilotage éclairé de l'entreprise Basés sur l'exploitation d'un système d'information décisionnel alimenté grâce à l'extraction de données diverses à partir des données de production, d'informations concernant l'entreprise ou son entourage et de données économiques ETL (Extract, Transform and Load) est chargé d'extraire les données dans différentes source, de les nettoyer et de les charger dans un entrepôt de données Des outils d'analyse décisionnelle permettent de modéliser des représentations à base de requêtes afin de constituer des tableaux de bord : reporting Transp Transp 12

3 Le multidimensionnel Le n-cube des dimensions Transp Transp 14 La granularité des dimensions Navigation multidimensionnelle Transp Transp 16 Les vues d un n-cube Transp Transp 18

4 Bilan multidimensionnel DATA MINING (1) Le Datamining ("fouille de données") contrairement à l'analyse multidimensionnelle a pour but de mettre en évidence des corrélations éventuelles dans un volume important de données dégager des tendances Transp 19 DATA MINING (2) Le datamining s'appuie sur des techniques d'intelligence artificielle afin de mettre en évidence des liens cachés entre les données Apprentissage de Machine Arbres de décision Réseaux de neurones Support Vector Machines (SVM) Méthodes de regroupement et clusterisation Transp Transp 22 Domaines d utilisation Mécanismes de base Transp Transp 24

5 Exemple : analyse linéaire Méthodes Transp Transp 26 Classification Reglès associatives Transp Transp 28 Lexique SEMMA (SAS) Transp Transp 30

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

Choix de l outil PENTAHO

Choix de l outil PENTAHO Choix de l outil PENTAHO GROUPES : Encadrant : IDRISSI BADSSI abd al moughit Mme LEMRINI loubna HALIM hamza LARHROUCH mustapha Table des matières Business intelligence... 2 Les Outils Open source de Business

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

Tour d horizon du marché du décisionnel : se repérer dans

Tour d horizon du marché du décisionnel : se repérer dans Tour d horizon du marché du décisionnel : se repérer dans la jungle des outils et intégrateurs Sylvie Delplanque - Directrice adjointe, chargée des SI et de la téléphonie, CH de Calais Mardi 12 mai 2009

Plus en détail

Introduction à l Informatique Décisionnelle - Business Intelligence (7)

Introduction à l Informatique Décisionnelle - Business Intelligence (7) Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement

Plus en détail

Théories de la Business Intelligence

Théories de la Business Intelligence 25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II 1ère génération 13 2ème génération : Entrepôt de données / Magasin de données 15 3ème génération OLAP 16 Références Bibliographiques 18 A. 1ère génération Infocentre Tableur Base de données Infocentre

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1)

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1) Introduction à lʼinformatique Décisionnelle et la «Business Intelligence» (1) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013

Plus en détail

Durée ou Modalité: Examen! MOTS CLES : Architecture d application, Internet, Web2, RIA, Service Oriented Architecture, XML

Durée ou Modalité: Examen! MOTS CLES : Architecture d application, Internet, Web2, RIA, Service Oriented Architecture, XML DEPARTEMENT INFORMATIQUE ET GESTION S 9 PIGUE9.1 ARCHITECTURE DES SYSTEMES D INFORMATION & INTERNET! COORDINATEUR : Christophe FIORIO! EQUIPE PEDAGOGIQUE : Christophe FIORIO, Tiberiu STRATULAT! VOLUME

Plus en détail

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU Fabien Airiau ESNE-IG Rapport de travail de diplôme 2007 Page 1 sur 77

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Master MIAGE «Méthodes informatiques Appliquées à la Gestion des Entreprises» Parcours- «Système d Information et Aide à La Décision» (SIAD)

Master MIAGE «Méthodes informatiques Appliquées à la Gestion des Entreprises» Parcours- «Système d Information et Aide à La Décision» (SIAD) Master MIAGE «Méthodes informatiques Appliquées à la Gestion des Entreprises» Parcours- «Système d Information et Aide à La Décision» (SIAD) De l Université Internationale Senghor IGA-Maroc est un campus

Plus en détail

Fiche de lecture OLAP

Fiche de lecture OLAP Fiche de lecture OLAP NFE107 Urbanisation des Systèmes d Information Karim Sekri Informatique décisionnelle BI, Business Intelligence Système interprétant des données complexes permettant aux dirigeants

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI)

Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI) Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI) Imade BENELALLAM Imade.benelallam@ieee.org AU: 2012/2013 Imade Benelallam : imade.benelallam@ieee.org

Plus en détail

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages

Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Analyse de données textuelles Panorama des fonctions, des méthodes et des usages Sylvie Dalbin Assistance & Techniques Documentaires DocForum, Le 17 Novembre 2005 Déroulé de l'intervention (1) 1. Définition

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Business Intelligence

Business Intelligence Business Intelligence Enjeux, Projets, Données, Indicateurs Gilles FONTANINI g.fontanini@decision-network.eu +33 (0)6 11 21 24 53 2? Gilles Fontanini Consultant et Administrateur d un GIE d experts en

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

BI2 : Un profil UML pour les Indicateurs Décisionnels

BI2 : Un profil UML pour les Indicateurs Décisionnels BI2 : Un profil UML pour les Indicateurs Décisionnels Sandro Bimonte Irstea, TSCF, 9 Av. Blaise Pascal, 63178, Aubière, France sandro.bimonte@irstea.fr Thème de Recherche MOTIVE www.irstea.fr 2 Plan Motivations

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Décisionnel & Reporting

Décisionnel & Reporting Décisionnel & Reporting Quelle solution est la plus adaptée à mes besoins? Présentation Société EASYNEO Conseil & Intégration de solutions Décisionnelles Spécialisations : ERP (SAP en particulier) Reporting

Plus en détail

LA BUSINESS INVESTIGATION BI ++

LA BUSINESS INVESTIGATION BI ++ LA BUSINESS INVESTIGATION «labusiness investigation a pour but de répondre précisément (par des indicateurs pertinents de mesure de la performance ) à des objectifs posés par une direction» BI ++ LA BUSINESS

Plus en détail

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise Cycle de formation certifiante Business Intelligence Initiation, Approfondissement et Maîtrise Objectifs de la formation : - Maîtriser les concepts et les outils de la business intelligence - Concevoir

Plus en détail

Présentations personnelles. filière IL

Présentations personnelles. filière IL Présentations personnelles filière IL Résumé Liste de sujets de présentations personnelles. Chaque présentation aborde un sujet particulier, l'objectif étant que la lecture du rapport ainsi que l'écoute

Plus en détail

Méthodologie des S.I. : T2A, gouvernance et pilotage *** Les enjeux du Système d Information Décisionnel dans les établissements de santé

Méthodologie des S.I. : T2A, gouvernance et pilotage *** Les enjeux du Système d Information Décisionnel dans les établissements de santé Méthodologie des S.I. : T2A, gouvernance et pilotage *** Les enjeux du Système d Information d Décisionnel dans les établissements de santé Anne GAGNARD, 18 juillet 2007 Le système d'information décisionnel

Plus en détail

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008 Petit Déjeuner Pépinière du Logiciel Libre 25 juin 2008 1 / 37 Agenda Définition & Principes Les différents outils & composants Les Solutions intégrés Open-Source Vos Questions 2 / 37 Agenda Définition

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008 K. Smaïli Professeur à l université Nancy2 1/105 K. Smaïli 2008 Introduction au BI (Business Intelligence) Notion de Datawarehouse Cognos Powerplay Powerplay Transformer Impromptu Datamining Le panier

Plus en détail

COMPRENDRE LES PROBLEMATIQUES D UN PROJET DE PILOTAGE MEDICO-ECONOMIQUE

COMPRENDRE LES PROBLEMATIQUES D UN PROJET DE PILOTAGE MEDICO-ECONOMIQUE COMPRENDRE LES PROBLEMATIQUES D UN PROJET DE PILOTAGE MEDICO-ECONOMIQUE Cadrage d un domaine fonctionnel Par les experts Thomas BONTHOUX, Directeur des Systèmes d Information Sylvie DELPLANQUE, Directrice

Plus en détail

Évolution de modèle dans les entrepôts de données : existant et perspectives

Évolution de modèle dans les entrepôts de données : existant et perspectives EDA'07 3èmes journées francophones sur les Entrepôts de Données et l'analyse en ligne Poitiers, 7 et 8 Juin 2007 Évolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre,

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

Partie I : Introduction

Partie I : Introduction Partie I : Introduction Chapitre I : Introduction et Problématique 1. Introduction A l ère contemporaine, beaucoup d entreprises se sont adaptées au virage de la technologie en informatisant plusieurs

Plus en détail

L information et la technologie de l informationl

L information et la technologie de l informationl L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP CONSERVATOIRE NATIONAL DES ARTS ET METIERS CENTRE REGIONAL RHONE-ALPES CENTRE D'ENSEIGNEMENT DE GRENOBLE UE ENG111 - Epreuve TEST Travail d'etude et de Synthèse Technique en INFORMATIQUE CAPACITE CARTOGRAPHIQUE

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Remerciements. Nous tenons aussi à remercier notre encadrant professionnel : Monsieur MOHA- MED KOBAA pour son assistance et son suivi permanent.

Remerciements. Nous tenons aussi à remercier notre encadrant professionnel : Monsieur MOHA- MED KOBAA pour son assistance et son suivi permanent. Remerciements C'est avec un grand plaisir que je réserve ces lignes en signe de gratitude et de reconnaissance à tous ceux qui ont contribué de près ou de loin à l'élaboration de ce travail. Nous tenons

Plus en détail

CONCEPTION ET REALISATION D'UN GENERATEUR DE TABLEAUX DE BORD PROSPECTIFS MULTIDIMENSIONNELS

CONCEPTION ET REALISATION D'UN GENERATEUR DE TABLEAUX DE BORD PROSPECTIFS MULTIDIMENSIONNELS CONCEPTION ET REALISATION D'UN GENERATEUR DE TABLEAUX DE BORD PROSPECTIFS MULTIDIMENSIONNELS Nazih Selmoune (*), Zaia Alimazighi (*) Selmoune@lsi-usthb.dz, Alimazighi@wissal.dz (*) Laboratoire des systèmes

Plus en détail

RAPPORT ENTREPOT DE DONNEES

RAPPORT ENTREPOT DE DONNEES RAPPORT ENTREPOT DE DONNEES Informatique Décisionnelle Réalisé par : Supervisé par : Ait Skourt Brahim Bouchana Adil Ed-dahmouni Bouthayna El Issaoui Naoufal Pr. L.Lamrini Informatique décisionnelle (BI)

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Les solutions SAS pour les Petites et Moyennes Entreprises

Les solutions SAS pour les Petites et Moyennes Entreprises BROCHURE SOLUTION Les solutions SAS pour les Petites et Moyennes Entreprises Sur un marché aussi compétitif que celui des Petites et Moyennes Entreprises, le temps et l efficacité sont deux valeurs prioritaires

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel.

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. IBM Software Group Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. Lydie Peter, IBM Software Group. 2004 IBM Corporation Le principe : Identifier et réagir Filtres

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009 Le Data Mining Techniques pour exploiter l information Auteur : Dan Noël Date : 24.04.2009 Agenda de la présentation du 26.03.2009 Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

République Algérienne Démocratique et Populaire

République Algérienne Démocratique et Populaire République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de formation en Informatique Direction de la Post-Graduation et de

Plus en détail

Didacticiel Études de cas. Description succincte de Pentaho Data Integration Community Edition (Kettle).

Didacticiel Études de cas. Description succincte de Pentaho Data Integration Community Edition (Kettle). 1 Objectif Description succincte de Pentaho Data Integration Community Edition (Kettle). L informatique décisionnelle («Business Intelligence BI» en anglais, ça fait tout de suite plus glamour) fait référence

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données.

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données. Data Mining = Knowledge Discovery in Databases (KDD) = Fouille de données 1 Définition : Processus ou méthode qui extrait des connaissances «intéressantes» ou des motifs (patterns) à partir d une grande

Plus en détail

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr BI Open Source Octobre 2012 Alioune Dia, Consultant BI alioune.dia@openbridge.fr 1 Le groupe, en bref 2004 Date de création +7M * Chiffre d affaires 2012 +80 Collaborateurs au 06/2011 35% Croissance chiffre

Plus en détail

Vous avez une problématique, nous avons la solution.

Vous avez une problématique, nous avons la solution. Vous avez une problématique, nous avons la solution. SOMMAIRE Notre agence marketing...3 Etudes & analyses......4 Geomarketing......5 Webmarketing......6 Traitement des données...7 Décisionnel......8 Notre

Plus en détail

III. Entrepôts de. données. Définition. Orientées sujet. Intégrées, Variables dans le temps, Non volatiles

III. Entrepôts de. données. Définition. Orientées sujet. Intégrées, Variables dans le temps, Non volatiles Entrepôts de III - données III Définition Un entrepôt de données est une collection de données orientées sujet, intégrées, variables dans le temps et non volatiles, en soutien au processus de prise de

Plus en détail

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise

En synthèse. HVR pour garantir les échanges sensibles de l'entreprise En synthèse HVR pour garantir les échanges sensibles de l'entreprise Le logiciel HVR fournit des solutions pour résoudre les problèmes clés de l'entreprise dans les domaines suivants : Haute Disponibilité

Plus en détail

Cycles de formation certifiante du CIEMS

Cycles de formation certifiante du CIEMS Cycles de formation certifiante du CIEMS Casablanca, Agadir, Tanger Calendrier 2016 Cycle de formation certifiante Etudes Quantitatives & Qualitatives En partenariat avec Le Sphinx Initiation, Approfondissement

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail