Hervé Couturier EVP, SAP Technology Development

Dimension: px
Commencer à balayer dès la page:

Download "Hervé Couturier EVP, SAP Technology Development"

Transcription

1

2 Hervé Couturier EVP, SAP Technology Development

3 Hervé Biausser Directeur de l Ecole Centrale Paris

4 Bernard Liautaud Fondateur de Business Objects

5 Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

6 Enjeux scientifiques de la Business Intelligence Marie-Aude AUFAURE CHAIRE SAP BUSINESSOBJECTS DE BUSINESS INTELLIGENCE

7 Sommaire ü Quelques évolutions de la société de l information et leur impact sur la Business Intelligence ü Quelques questions posées au monde de la recherche ü Zoom sur la représentation unifiée des données structurées et non structurées

8 Business Intelligence : de la donnée à la décision Stratégie connaissance décision Per&nence Crédibilité Moyens d ac&on informa&on ac&on Séman&que Exécu&on données

9 Facteurs de Changement ü La nature de l information

10 Facteurs de Changement ü La manière d interagir ensemble et avec l information

11 Évolutions nécessaires pour la BI ü Transformer toutes les données en information ü Favoriser la simplicité d utilisation ü Faciliter la collaboration ü S intégrer avec les processus métier

12 Quelques problématiques à explorer ü Comment rendre l interaction avec l information plus simple et plus efficace? ü Comment proposer une représentation sémantique unifiée des données structurées et non structurées?

13 Interaction avec l information ü Mettre l Utilisateur au centre ü Comprendre ses intentions ü Profil, modèle utilisateur, modèle situationnel ü Visualisation décisionnelle ü Flexible et dynamique ü Visualisation de grandes masses de données ü Simplifier les interfaces ü Questions/Réponses à la Google ou Wolfram Alpha ü Recommandation et aspects collaboratifs ü Qualité de la recommandation ü Intégration des réseaux sociaux

14 Quelques problématiques à explorer ü Comment rendre l interaction avec l information plus simple et plus efficace? ü Comment proposer une représentation sémantique unifiée des données structurées et non structurées?

15 Couche Requêtes Couche Sémantique Extraction Structuration en graphe

16 Représentation sémantique unifiée ü Couche sémantique : ontologies ü Modèle de connaissances ü Description en intension et extension ü Concepts, relations, instances, axiomes ü Définies de manière plus ou moins formelle ü Construction manuelle des ontologies de domaine : processus long et coûteux ü Automatiser la construction ü Méthodologies d apprentissage existantes pour chaque type de sources de données ü Exemple : apprentissage collaboratif

17 Apprentissage collaboratif d ontologies ü Requêtes posées par 2 utilisateurs ü «What are the languages used for OLAP Analysis?» ü «What is MDX?» ü Extraction d un graphe de requête? is used for language OLAP Analysis ü Création d un module dans l ontologie Business ü Requêtes soumises au moteur de recherche ü «OLAP languages», «OLAP + Analysis», «OLAP languages + Business» ü Analyse des documents sélectionnés

18 Apprentissage collaboratif d ontologies Online analytical processing, or OLAP (pronounced /ˈoʊlæp/), is an approach to quickly answer multi-dimensional analytical queries. [1] OLAP is part of the broader category of business intelligence, which also encompasses relational reporting and data mining. [2] The typical applications of OLAP are in business reporting for sales, marketing, management reporting, business process management (BPM), budgeting and forecasting, financial reporting and similar areas. The term OLAP was created as a slight modification of the traditional database term OLTP (Online Transaction Processing). [3] Databases configured for OLAP use a multidimensional data model, allowing for complex analytical and ad-hoc queries with a rapid execution time. They borrow aspects of navigational databases and hierarchical databases that are faster than relational databases. [4] The output of an OLAP query is typically displayed in a matrix (or pivot) format. The dimensions form the rows and columns of the matrix; the measures form the values.

19 Apprentissage collaboratif d ontologies OLAP is Online analytical processing answer Part-of Part-of multi-dimensional analytical query Relational reporting Data mining OLAP application Used for OLAP database Analysis Business reporting is MDX Used for Developed by OLAP database querying marketing language Microsoft

20 Apprentissage collaboratif d ontologies What is MDX? Results MDX (Multi-Dimensional Expressions) is a language developed by Microsoft for the querying and analysis of multidimensional OLAP (On-Line Analytical Processing) databases. Used for OLAP database Analysis recommandations is MDX language Used for Developed by OLAP database querying Microsoft OLAP URL + MDX URL

21 Représentation sémantique : axes importants ü Mise en correspondance d ontologies ü Résolution d incohérences lors de l enrichissement d ontologies ü Passage à l échelle pour la construction automatisée ü Qualité des ontologies ü Requêtes complexes sur les ontologies

22 Couche Requêtes Couche Sémantique Extraction Structuration en graphe

23 Structurer le non structuré ü Clustering numérique ü Regroupement d objets dans des classes ü Basé sur des mesures de distance ü Clustering conceptuel ü Basé sur un langage de description ü Regroupe les objets en concepts selon leurs propriétés communes ü Conserve la sémantique des données

24 Treillis de Galois Contexte = triplet (O, A, I) tel que : O : ensemble fini d exemples A : ensemble fini d attributs I : relation binaire entre O et A, (I O x A) O\A Nalc non alcoolisée Cha chaude Tv Thé vert ü ü Alc alcoolisée Caf avec caféine Kf Café ü ü ü E Eau gazeuse V Vin ü ü Gaz gazeuse B Bière ü ü Co Coca ü ü ü Chp Champagne ü ü ü

25 {Tv,Kf,E,V,B,Co,Chp} Correspondance de Galois : {Tv, Kf, Soient E, Co} O i O et A i A, on définit f et g : {E, B, Co, Chp} {Nalc} {Gaz} {Tv, Kf} {Nalc, Cha} {Kf} {Nalc, Cha, Caf} Exemple de Treillis de Galois {Kf, Co} {Nalc, Caf} {E, Co} {Nalc, Gaz} {Co} {Nalc, Caf, Gaz} {Nalc, Cha, Alc, Caf, Gaz} {V, B, Chp} {Alc} f: P(O) P(A) f(o i ) = {a A / (o,a) I, o O i } intension g: P(A) P(O) g(a i ) = {o O / (o,a) I, a A i } extension (f,g) = correspondance de Galois entre P(O) et P(A) Exemple: O 1 = {Tv, Kf) A 1 = {Nalc, Cha} (O i, A i ) est un concept (fermé) ssi O i est l extension de A i et A i est l intension de O i c-à-d: O i = g(a i ) et A i = f(o i ) f (O 1 ) = {Nalc, Cha} g (A 1 ) = {Tv, Kf} {B, Chp} {Alc, Gaz}

26 Structurer le non structuré : axes importants ü Complexité des treillis ü Nombre élevé de concepts ü Coût des algorithmes de construction ü Interprétation ü Mesures de similarité (aide à la navigation) ü Mesures conceptuelles (filtrage et caractérisation du treillis) ü Visualisation ü Mise en correspondance avec la couche sémantique ü Extraction de relations

27 Couche Requêtes Couche Sémantique Extraction Structuration en graphe

28 Harmoniser la représentation des données ü Problématique : représenter les relations entre objets ü Exemple : réseau de chercheurs extrait à partir de bases de données et enrichi avec des données provenant du web ü Offrir une représentation unique pour des données de plus en plus volumineuses et hétérogènes ü Graphes : une représentation naturelle ü Adaptée aussi bien au structuré qu au non structuré ü Manipulation facile ü Mise à jour des données sans modification de la structure ü Algorithmes dédiés aux graphes : plus court chemin, sous-graphe, etc.

29 Exemple : extraction d un réseau social Firm1 Firm2 Transformation Extraction en Hypernoeuds Schéma Firm1 Works_ON Employer(Enum, Name, LastName, DNO#) Project(Pname, Pnum, Dnum#) Departement(Dname, DNO, Location) Works_On(Enum#,Pname#) Firm2 TBEmployee(EmID, EMName, EMLastName, DNO#) tbproject(pname, Pnum, Dnum#) TBLDepartement(Dname, DNO, Location) tbproject_employee(enum#,pname#) Construction du Réseau Social Transformation des données tbproject_employe e 29

30 Harmoniser la représentation : axes importants ü Mise en correspondance avec la couche sémantique ü Volumétrie ü Passage à l échelle des algorithmes ü Visualisation ü Requêtes et agrégation de graphes

31 Synthèse Couche Requêtes Couche Sémantique Extraction Structuration en graphe

32 Questions à: Marie-Aude Aufaure

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Business Intelligence www.globalservices.be www.sap-training.be

Business Intelligence www.globalservices.be www.sap-training.be Business Intelligence www.globalservices.be www.sap-training.be Global Services + Business Intelligence = perfect match! Le concept Souhaitez-vous également avoir une meilleure visibilité au niveau des

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 5 - MDX

BI = Business Intelligence Master Data-ScienceCours 5 - MDX BI = Business Intelligence Master Data-Science Cours 5 - MDX UPMC 23 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Définition OLAP En informatique, et plus particulièrement

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Equipe Business Intelligence!

Equipe Business Intelligence! Equipe Business Intelligence! Laboratoire MAS ü MAS : un laboratoire de recherche où les mathématiques et l informatique sont appliquées aux systèmes http://www.mas.ecp.fr ü Analyse, modélisation, simulation

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/ Ingénierie de Systèmes Intelligents Application : Web Intelligent Maria Malek EISTI Ingénierie de Systèmes Intelligents p. 2/ Objectif Traitement Intelligent des

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Formation BusinessObjects v.6.5. Contenu des Formations

Formation BusinessObjects v.6.5. Contenu des Formations Formation BusinessObjects v.6.5 des Formations TABLE DES MATIERES I. UTILISATEUR BO V.6.5 NIVEAU 1 & 2... 3 DESCRIPTION... 3 PREALABLE... 3 CONTENU... 3 II. INFOVIEW & WEBINTELLIGENCE V.6.5... 4 DESCRIPTION...

Plus en détail

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Agenda Vision de la BI par Microsoft SQL Server 2008 R2 Démo PowerPivot Démo Reporting Services Questions / Réponses Une plateforme

Plus en détail

2014/2015. Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : MME L.LAMRINI ANOUAR OUFQIR SMARTSIR

2014/2015. Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : MME L.LAMRINI ANOUAR OUFQIR SMARTSIR 2014/2015 Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : ANOUAR OUFQIR MME L.LAMRINI SMARTSIR Table des matières Introduction... 2 Choix de l outil pour

Plus en détail

Comment booster vos applications SAP Hana avec SQLSCRIPT

Comment booster vos applications SAP Hana avec SQLSCRIPT DE LA TECHNOLOGIE A LA PLUS VALUE METIER Comment booster vos applications SAP Hana avec SQLSCRIPT 1 Un usage optimum de SAP Hana Votre contexte SAP Hana Si vous envisagez de migrer vers les plateformes

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

Les solutions SAS pour les Petites et Moyennes Entreprises

Les solutions SAS pour les Petites et Moyennes Entreprises BROCHURE SOLUTION Les solutions SAS pour les Petites et Moyennes Entreprises Sur un marché aussi compétitif que celui des Petites et Moyennes Entreprises, le temps et l efficacité sont deux valeurs prioritaires

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Data Mining, fouille de données: Concepts et techniques. Marius Fieschi Faculté de Médecine de Marseille

Data Mining, fouille de données: Concepts et techniques. Marius Fieschi Faculté de Médecine de Marseille Data Mining, fouille de données: Concepts et techniques Marius Fieschi Faculté de Médecine de Marseille Data Mining, fouille de données: Concepts et techniques Ce cours est très proche du cours diffusé

Plus en détail

ROK SOLUTION. Intelligence Collaborative DIRECTION QUALITÉ

ROK SOLUTION. Intelligence Collaborative DIRECTION QUALITÉ ROK SOLUTION Intelligence Collaborative DIRECTION QUALITÉ SOMMAIRE o Qui sommes-nous o Présentation de la plateforme o La valeur ajoutée de ROK o Cas Pratiques o L innovation au service du collaboratif

Plus en détail

Plateforme SAS. Data & Information System

Plateforme SAS. Data & Information System Data & Information System SOMMAIRE Rédacteur : Ref: F.Barthelemy AXIO_1111_V1 PLATEFORME SAS PREREQUIS SAS GUIDE SAS WRS SAS PORTAL SAS MINER Une plateforme unique et modulable capable d exploiter l architecture

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

. Ce module offre la gamme de requête et d analyse la plus évoluée et la plus simple d utilisation du marché.

. Ce module offre la gamme de requête et d analyse la plus évoluée et la plus simple d utilisation du marché. La connaissance des facteurs-clés de réussite constitue un élément déterminant pour l amélioration des performances. Divalto intègre en standard, systématiquement Hyperion Intelligence. Ce module offre

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU Fabien Airiau ESNE-IG Rapport de travail de diplôme 2007 Page 1 sur 77

Plus en détail

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Technologies de la Recherche et standards du Web: Quel impact sur l Innovation?

Technologies de la Recherche et standards du Web: Quel impact sur l Innovation? Technologies de la Recherche et standards du Web: Quel impact sur l Innovation? GFII - 6 Décembre 2013 Bernard Odier INRIA W3C Bureau France INRIA: à la pointe de l innovation numérique Création d INRIA

Plus en détail

BI2 : Un profil UML pour les Indicateurs Décisionnels

BI2 : Un profil UML pour les Indicateurs Décisionnels BI2 : Un profil UML pour les Indicateurs Décisionnels Sandro Bimonte Irstea, TSCF, 9 Av. Blaise Pascal, 63178, Aubière, France sandro.bimonte@irstea.fr Thème de Recherche MOTIVE www.irstea.fr 2 Plan Motivations

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE «Journée Open Data» 5 Novembre 2013 Présenté par : Imen Megdiche Directeur de thèse : Pr. Olivier Teste (SIG-IRIT) Co-directeur de thèse : Mr. Alain

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches

OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches H. Mouloudi - A. Giacometti - P. Marcel LI - Université François-Rabelais de Tours L. Bellatreche LISI ENSMA -

Plus en détail

QUASAR OBILOG Décisionnel SEANCE PLENIERE > PROJET BI

QUASAR OBILOG Décisionnel SEANCE PLENIERE > PROJET BI QUASAR OBILOG Décisionnel Sommaire Définition du «BI» (Business Intelligence), Informatique Décisionnelle, en quelques mots Pourquoi mettre en place un logiciel Décisionnel Objectifs ciblés Notre démarche

Plus en détail

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques Projet personnel Thème : «Etude exploratoire des systèmes d information géographique décisionnels (SIG décisionnels)

Plus en détail

Malgré la crise, Le décisionnel en croissance en France

Malgré la crise, Le décisionnel en croissance en France Malgré la crise, Le décisionnel en croissance en France 11 juin 2009 www.idc.com Cyril Meunier IDC France Consulting Manager Copyright 2009 IDC. Reproduction is forbidden unless authorized. All rights

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

Accélérateur de votre RÉUSSITE

Accélérateur de votre RÉUSSITE Accélérateur de votre RÉUSSITE SAP Business Objects est une suite décisionnelle unifiée et complète qui connecte ses utilisateurs en éliminant les difficultés d accès à l information. Mobile Devices Browsers

Plus en détail

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données.

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données. Data Mining = Knowledge Discovery in Databases (KDD) = Fouille de données 1 Définition : Processus ou méthode qui extrait des connaissances «intéressantes» ou des motifs (patterns) à partir d une grande

Plus en détail

BUSINESS OBJECTS V5 / V6

BUSINESS OBJECTS V5 / V6 BUSINESS OBJECTS V5 / V6 Durée Objectif 2 jours L objectif de ce cours est de savoir utiliser le logiciel BUSINESS OBJECTS pour faire des interrogations multi - dimensionnelles sur les univers BO et de

Plus en détail

Vanilla. Open Source Business Intelligence. Présentation de la plateforme

Vanilla. Open Source Business Intelligence. Présentation de la plateforme Vanilla Open Source Business Intelligence Présentation de la plateforme Novembre 2008 Patrick Beaucamp BPM Conseil Contact : patrick.beaucamp@bpm-conseil.com Table des matières Introduction...3 Portail

Plus en détail

Bases de données multidimensionnelles OLAP

Bases de données multidimensionnelles OLAP Bases de données multidimensionnelles OLAP OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour l analyse multidimensionnelle. Les données sont historisées, résumées, consolidées.

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

Cognit Ive Cas d utilisation

Cognit Ive Cas d utilisation Cognit Ive Cas d utilisation 96-98, rue de Montreuil - 75011 Paris _ opicot@ _ + 33 (0)1 40 09 71 55 Sommaire Présentation de la plateforme Cognit Ive SemanticMail : Traitement sémantique des mails Projets

Plus en détail

Business Intelligence

Business Intelligence avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

NEXITY. Nexity développe une stratégie d E-reputation à 360 sur la base des données sociales fournies par BuzzWatcher. CASE STUDY

NEXITY. Nexity développe une stratégie d E-reputation à 360 sur la base des données sociales fournies par BuzzWatcher. CASE STUDY Online Intelligence Solutions NEXITY développe une stratégie d E-reputation à 360 sur la base des données sociales fournies par BuzzWatcher. CASE STUDY CASE STUDY INTRODUCTION Client Industrie Immobilier

Plus en détail

Adaptabilité d un MOOC aux styles d apprentissage. Hubert Kadima Directeur de Recherche LARIS/EISTI Email : hubert.kadima@eisti.fr

Adaptabilité d un MOOC aux styles d apprentissage. Hubert Kadima Directeur de Recherche LARIS/EISTI Email : hubert.kadima@eisti.fr Adaptabilité d un MOOC aux styles d apprentissage Hubert Kadima Directeur de Recherche LARIS/EISTI Email : hubert.kadima@eisti.fr Agenda 1. Contexte : l apprentissage dans le projet PLACIS 2. Choix du

Plus en détail

Créer le modèle multidimensionnel

Créer le modèle multidimensionnel 231 Chapitre 6 Créer le modèle multidimensionnel 1. Présentation de SSAS multidimensionnel Créer le modèle multidimensionnel SSAS (SQL Server Analysis Services) multidimensionnel est un serveur de bases

Plus en détail

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA Découverte de Règles Associatives Hiérarchiques entre termes Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA 1 Plan Problématique et État de l art Nouvelle approche Approche Conceptuelle

Plus en détail

LES TECHNOLOGIES DE L INFORMATION ET DE LA COMMUNICATION ET L ENSEIGNEMENT SUPERIEUR

LES TECHNOLOGIES DE L INFORMATION ET DE LA COMMUNICATION ET L ENSEIGNEMENT SUPERIEUR LES TECHNOLOGIES DE L INFORMATION ET DE LA COMMUNICATION ET L ENSEIGNEMENT SUPERIEUR Z. ALIMAZIGHI Laboratoire des Systèmes Informatiques Faculté d Électronique et d Informatique Département Informatique

Plus en détail

To PIM or not to PIM? Managing your Product Catalog

To PIM or not to PIM? Managing your Product Catalog To PIM or not to PIM? Managing your Product Catalog Sébastien LIEUTAUD VP Sales & Marketing Programme Le marché du PIM en pleine (r)évolution! To PIM or not to PIM: Objectifs, réalisation et bénéfices

Plus en détail

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP

CAPACITE CARTOGRAPHIQUE AUTOUR DES TECHNOLOGIES SOLAP CONSERVATOIRE NATIONAL DES ARTS ET METIERS CENTRE REGIONAL RHONE-ALPES CENTRE D'ENSEIGNEMENT DE GRENOBLE UE ENG111 - Epreuve TEST Travail d'etude et de Synthèse Technique en INFORMATIQUE CAPACITE CARTOGRAPHIQUE

Plus en détail

PARTIE 1 : ETAT DE L ART...

PARTIE 1 : ETAT DE L ART... Table des matières INTRODUCTION... 1 Contexte général de l étude... 3 Problématiques... 4 Contributions des nos travaux de recherche... 5 Organisation du mémoire... 6 PARTIE 1 : ETAT DE L ART... 9 CHAPITRE

Plus en détail

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle Concepts Présentation de Business Objects Conception d un univers Business Objects Structure générale d une

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Sommaire. Introduction. Opérations typiques. Langages. Architectures

Sommaire. Introduction. Opérations typiques. Langages. Architectures OLAP IED 2006-2007 Sommaire Introduction Opérations typiques Langages Architectures Introduction Contexte un entrepôt de données offre des données - nombreuses - homogènes - exploitables - multidimensionnelles

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Intelligence Inventive & Mapping des réseaux de Recherche. Expernova & Active Innovation Management GFII 5 Mars 2015

Intelligence Inventive & Mapping des réseaux de Recherche. Expernova & Active Innovation Management GFII 5 Mars 2015 Intelligence Inventive & Mapping des réseaux de Recherche Expernova & Active Innovation Management GFII 5 Mars 2015 Identification d experts & Mapping des Réseaux de Recherche [ expernova, qui sommes nous?]

Plus en détail

Business Objects Planning «Arrêter de jouer avec vos chiffres»

Business Objects Planning «Arrêter de jouer avec vos chiffres» Business Objects Planning «Arrêter de jouer avec vos chiffres» Roadshow Business Planning en Partenariat avec Keyrus 07 mars - Strabourg Agenda Introduction à Business Objects Planning Démonstration Mise

Plus en détail

Contexte général de l étude

Contexte général de l étude 1 2 Contexte général de l étude Les entrepôts de données associés à des outils d analyse On Line Analytical Processing (OLAP), représentent une solution effective pour l informatique décisionnelle (Immon,

Plus en détail

Skills Technology Software PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT

Skills Technology Software PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT Skills Technology Software w w w.s PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT ka ty s. co m E U OG ION L TA AT A C RM FO Accélérateur de votre RÉUSSITE 2 Formation Aujourd hui, la formation constitue

Plus en détail

AVATAR. Un profil SysML temps réel outillé

AVATAR. Un profil SysML temps réel outillé AVATAR Un profil SysML temps réel outillé Ludovic Apvrille, Pierre de Saqui-Sannes ludovic.apvrille@telecom-paristech.fr pdss@isae.fr SysML France, 6 décembre 2010 Agenda De TURTLE à AVATAR Le langage

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Business Intelligence - Introduction

Business Intelligence - Introduction Le cours Business Intelligence - Introduction Olivier Schwander UPMC 1 / 45 Le cours Organisation du cours http://www-connex.lip6.fr/~schwander/enseignement/ 2015-2016/m2stat_bi/

Plus en détail

La Business Intelligence 01/05/2012. Les Nouvelles Technologies

La Business Intelligence 01/05/2012. Les Nouvelles Technologies 2 La Business Intelligence Les Nouvelles Technologies 3 Une expertise méthodologique pour une intervention optimale sur tous les niveaux du cycle de vie d un projet 4 5 Ils nous font confiance : L ambition

Plus en détail

L apprentissage à distance. Mise en scène des contenus Innovation pédagogique et NTIC

L apprentissage à distance. Mise en scène des contenus Innovation pédagogique et NTIC L apprentissage à distance Mise en scène des contenus Innovation pédagogique et NTIC Les enjeux e-learning une nouvelle forme d apprentissage (défis culturel et pédagogique) avec des contenus non-linéaires

Plus en détail

Web Data Mining Web Usage Mining

Web Data Mining Web Usage Mining Web Data Mining p. 1/1 Web Data Mining Web Usage Mining Maria Malek Options GL, ISICO & IdSI EISTI Web Data Mining p. 2/1 Fouille des Données de la Toile?!! Web Structure Mining Découverte de la connaissance

Plus en détail

Accès au Contenu Informationnel pour les Masses de Données de Documents

Accès au Contenu Informationnel pour les Masses de Données de Documents Accès au Contenu Informationnel pour les Masses de Données de Documents Grappa LILLE 3 - UR Futurs INRIA MOSTRARE Laboratoire d Informatique de Paris 6 Laboratoire de Recherche en Informatique Orsay -

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Solutions SAP Crystal

Solutions SAP Crystal Solutions SAP Crystal Solutions SAP Crystal NOUVEAUTÉS 2011 SOMMAIRE ^ 4 Nouveautés de SAP Crystal Server 2011 4 Exploration contextuelle des données 5 Expérience utilisateur attrayante 5 Panneau d interrogation

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail