OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE
|
|
|
- Claudette Rochette
- il y a 10 ans
- Total affichages :
Transcription
1 OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE «Journée Open Data» 5 Novembre 2013 Présenté par : Imen Megdiche Directeur de thèse : Pr. Olivier Teste (SIG-IRIT) Co-directeur de thèse : Mr. Alain Berro (VORTEX-IRIT)
2 Plan Contexte général Challenges d entreposage Problématique Solution proposée Perspectives
3 Contexte général : Open data Open data (ou données ouvertes) sont des données disponibles sous licence libre destinées à la réutilisation et à la redistribution par n importe quelle personne. Source :
4 Contexte général : Open Data Acteurs Catégorie Secteurs publics (gouvernements..) Producteurs Ré-utilisateurs Entreprises Médias, bloggeurs Chercheurs Intermédiaires Usages : Visualisation des données : cartographie ( OpenStreetMap..) Applications spécifiques (mobile,..) basées sur les données (exp : transports, tourisme, santé, accéssibilité ) Liaison sémantique des données ( Linked Open Data ) Analyse des données (Business Intelligence)
5 Challenges d entreposage d Open Data Challenges d entreposaged OpenData Linked Open Data Ontologie Automatiser la découverte de schémas Alignement.. Modèle d intégration flexible
6 Open data 1 Accidents Par sous-type Open data 2 Accidents par type Accidents total
7 Quelques travaux.. Approches Google Refine[1] Google fusion [2] OpenII[5] WebSmatch[3] Stratégie d intégration Extensionet/ou fusionnement des sources Identification et matchingde schémas Identification et matchingde schémas Format fichier Excel -Non structurées Limites - Les attributs doivent être surla première ligne Excel -Pasdeschémas -Un seul tableau par - Les plus utilisées parfeuille les producteurs de calcul Excel, RDF, XML - Matching entre - Les formats les plus présents deux schémas ( -Visualisation GovWild[4] LinkedOpen Data RDF, XML, HTML, CSV -Les relations du schéma sont -Structurées prédéfinis Midas [6] Matchingavec un schémacible prédéfini - Présences de schémas Texte, HTML, XML -Scénariospécifique -Nécessite un long travail (données en background financières) pour les producteurs - intégration manuelle (annotation des données )
8 Problématique Analyse multidimensionnelle (OLAP) des Open Data Axes de recherche Phase ETL : Automatiser le plus loin possible le processus d intégration des Open Data dans une structure flexible permettant la découverte d un schéma mutlidimensionnel Phase analyse des données OLAP
9 Architecture d entreposage d Open Data Valide Détection automatique des zones de données mesures Définition des relations entre les données structurelles (hiérarchie, instance ) Sources Open Data Détection des données temporelles Analyse des sources
10 Architecture d entreposage d Open Data Sources Open Data Détection automatique des zones de données mesures Définition des relations entre les données structurelles (hiérarchie, instance ) Détection des données spatio-temporelles Analyse des sources Valide Construction automatique graphes Graphes des sources G(V,E) G(V,E) : relations entre les mesures et les données structurelles V : Intégration des graphes E : par classification conceptuelle (treillis de Galois) Graphe Intégré V_lab(i,j) : sommets des données structurels (dimensions?) V_nbr(i,j) : sommets des données mesures (cellules cube?) E_dim: arcs entre les données structurels (instance, hiérarchie ) E_fact: arcs entre mesures et dimensions
11 Architecture d entreposage d Open Data
12 Architecture d entreposage d Open Data Détection automatique des zones de données mesures Valide Graphe Intégré Schéma multidimensionnel Sources Open Data Définition des relations entre les données structurelles (hiérarchie, instance ) Détection des données spatio-temporelles Analyse des sources Construction automatique graphes Graphes des sources G(V,E) Intégration des graphes par classification conceptuelle (treillis de Galois) Définition incrémentale et semi-automatique des composants multidimensionnels
13 Architecture d entreposage d Open Data
14 Perspectives Approfondir la démarche en cours extraction des structures, amélioration de l intégration. Simuler des données manquantes issues de l alignement des données de différents niveaux de granularité. Traiter le problème d historisation des open data Mise à jour de la même source Intégration d une nouvelle source
15 Références [1] [2] [3] Coletta R, Castanier E, Valduriez P, et al. (2012) Public Data Integration with WebSmatch. CoRR [4] Böhm C, Freitag M, Heise A, et al. (2012) GovWILD: integrating open government data for transparency. WWW (Companion Volume). pp [5] Seligman and al. OpenII: an open source information integration toolkit. In Int, SIGMOd Conference, pages , 2010 [6] Balakrishnan S. et al. Midas : inetgrating public financial data. In SIGMOD 10, pages , New York, Usa, ACM.
16 Merci pour votre attention Questions?
Hervé Couturier EVP, SAP Technology Development
Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud
Intégration de données complexes pour une vision 360 du client. Chloé Clavel EDF R&D Département ICAME
Intégration de données complexes pour une vision 360 du client Chloé Clavel EDF R&D Département ICAME Contexte : projet R&D sur l intégration de données complexes pour la connaissance client Objectif :
Les Entrepôts de Données
Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations
SQL SERVER 2008, BUSINESS INTELLIGENCE
SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business
Business Intelligence avec Excel, Power BI et Office 365
Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10
Analyse comparative entre différents outils de BI (Business Intelligence) :
Analyse comparative entre différents outils de BI (Business Intelligence) : Réalisé par: NAMIR YASSINE RAGUI ACHRAF Encadré par: PR. L. LAMRINI Dans le domaine d économies des Big Data et Open Data, comment
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation
Catalogue des formations Edition 2015
Antidot - Formations Catalogue des formations Edition 2015 : catalogue_formation_2015 Révision du 06.01.2015 Sommaire!!"##$%&'( )! $*$+,(-'(."##'+.'&( /!,'.0+"1"2%'( /!!."3'( /! $(3&"3"!(-4(5(.$,$1"24'(-'!(6"&#$,%"+!(7('-%,%"+()89:(;(
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3
TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de
Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar [email protected]
Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar [email protected] Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines
Urbanisation des SI-NFE107
OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle
SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)
Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence
Guide de référence pour l achat de Business Analytics
Guide de référence pour l achat de Business Analytics Comment évaluer une solution de décisionnel pour votre petite ou moyenne entreprise : Quelles sont les questions à se poser et que faut-il rechercher?
ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE
ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE Editeur - Intégrateur de solutions de gestion Notre stratégie d édition et d intégration : un niveau élevé de Recherche & Développement au
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise
BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la
ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE
ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE (BUSINESS INTELLIGENCE PACKAGE) Ce document propose une présentation générale des fonctions de Business Intelligence
Intégration de données hétérogènes et réparties. Anne Doucet [email protected]
Intégration de données hétérogènes et réparties Anne Doucet [email protected] 1 Plan Intégration de données Architectures d intégration Approche matérialisée Approche virtuelle Médiateurs Conception
Cahier des charges de l application visant à effectuer un suivi de consommation énergétique pour les communes. Partenaires du projet :
Cahier des charges de l application visant à effectuer un suivi de consommation énergétique pour les communes Partenaires du projet : 1 Sommaire A) Contexte... 3 B) Description de la demande... 4 1. Les
Business Intelligence
avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................
Suite Jedox La Business-Driven Intelligence avec Jedox
Suite La Business-Driven Intelligence avec Une solution intégrée pour la simulation, l analyse et le reporting vous offre la possibilité d analyser vos données et de gérer votre planification selon vos
Guide de référence pour l achat de Business Analytics
Guide de référence pour l achat de Business Analytics Comment évaluer une solution de décisionnel pour votre petite ou moyenne entreprise : Quelles sont les questions à se poser et que faut-il rechercher?
Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation
Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions
L A B U S I N E S S. d a t a g i n f o r m a t i o n g a c t i o n
L A B U S I N E S S I N T E L L I G E N C E D U X X I e m e S I E C L E A T A W A D * d a t a g i n f o r m a t i o n g a c t i o n domaines d expertise : Modélisation des données Intégration des données
Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé
ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,
Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1
Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA
Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016
Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques
Ici, le titre de la. Tableaux de bords de conférence
Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur
Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique
Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché
Entreposage de données complexes pour la médecine d anticipation personnalisée
Manuscrit auteur, publié dans "9th International Conference on System Science in Health Care (ICSSHC 08), Lyon : France (2008)" Entreposage de données complexes pour la médecine d anticipation personnalisée
QU EST-CE QUE LE DECISIONNEL?
La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce
Constituer des profils d'experts scientifiques, de centres de recherche et d entreprises innovantes
Constituer des profils d'experts scientifiques, de centres de recherche et d entreprises innovantes Conférence GFII 12 Février 2014 www.expernova.com [ Le contexte ] Stratégie R&D Projets collaboratifs
Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani
Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................
Le signalement des acquisitions numériques à l échelle nationale Le rôle du hub de métadonnées scénarios et prototype
Le signalement des acquisitions numériques à l échelle nationale Le rôle du hub de métadonnées scénarios et prototype Raymond BERARD, directeur de l ABES 0 Sommaire 1. La genèse du projet 2. Etude de faisabilité
LES ENTREPOTS DE DONNEES
Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des
BUSINESS INTELLIGENCE
GUIDE COMPARATIF BUSINESS INTELLIGENCE www.viseo.com Table des matières Business Intelligence :... 2 Contexte et objectifs... 2 Une architecture spécifique... 2 Les outils de Business intelligence... 3
DESCRIPTIF DE MODULE S5 GSI
Option SIM DESCRIPTIF DE MODULE S5 GSI : Gouvernance et Systèmes d Information COORDONNATEUR DU MODULE : Département : Ce module a pour but d enseigner les méthodes, les règles et les pratiques nécessaires
Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:
Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc
Open Data. François Bancilhon twitter.com/fbancilhon www.data-publica.com. Printemps de la recherche EDF R&D 28/9/12
Open Data François Bancilhon twitter.com/fbancilhon www.data-publica.com Printemps de la recherche EDF R&D 28/9/12 Plan Open data Que faire des données de l open data? Eco-système de la données Data Publica
Formations Qlikview et Infini Conseil. Business Intelligence
et Infini Conseil Filière Déveloper BIQVDEVV11 : Qlikview Developer v11 BIQVDEAV11 : Qlikview Developer Avancé v11 2 jours 1 jour Filière Déveloper BIQVQBI : QBI 2 jours Filière Design BIQVDESV11 : Qlikview
BI2 : Un profil UML pour les Indicateurs Décisionnels
BI2 : Un profil UML pour les Indicateurs Décisionnels Sandro Bimonte Irstea, TSCF, 9 Av. Blaise Pascal, 63178, Aubière, France [email protected] Thème de Recherche MOTIVE www.irstea.fr 2 Plan Motivations
Introduction à la B.I. Avec SQL Server 2008
Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide
Pourquoi signer votre Accord Entreprise Microsoft avec SHI?
Pourquoi signer votre Accord Entreprise Microsoft avec SHI? Notre Mission Mission SHI : Un leader mondial du Logiciel Fournisseur global de produits, solutions informatiques et services (SSDI), leader
SQL Server 2012 et SQL Server 2014
SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation
Parcours DIWEB : (Données, Interaction et Web)
Parcours DIWEB : (Données, Interaction et Web) Semestre 2 (et vue sur le M2) Pierre Pompidor Faculté des Sciences Novembre 2010 Pierre Pompidor (Université Montpellier 2) Master Informatique - Spécialité
Accélérateur de votre RÉUSSITE
Accélérateur de votre RÉUSSITE SAP Business Objects est une suite décisionnelle unifiée et complète qui connecte ses utilisateurs en éliminant les difficultés d accès à l information. Mobile Devices Browsers
Construction d un environnement destiné à l'aide au pilotage
Retour d expérience Construction d un environnement destiné à l'aide au pilotage 1 «Journée sur le décisionnel et pilotage autour du SI de son référentiel» Marseille 26 juin Construction d un environnement
«Innovation Intelligence» La valorisation des données massives au service des partenariats R&D. Expernova Université d été GFII 11-09-2014
«Innovation Intelligence» La valorisation des données massives au service des partenariats R&D Expernova Université d été GFII 11-09-2014 [Une tendance forte à l Open Innovation ] «Le monde est devenu
Datawarehouse and OLAP
Datawarehouse and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today architecture ETL refreshing warehousing projects architecture architecture
1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.
1 Actuate Corporation 2012 + de données. + d analyses. + d utilisateurs. Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT
un module de simulation des évolutions urbaines http://geopensim.ign.fr Présentation
un module de simulation des évolutions urbaines http://geopensim.ign.fr 12 mars 2009 Anne Ruas Annabelle Mas Julien Perret Présentation Plateforme open source d analyse et de simulation des évolutions
Problématiques de recherche. Figure Research Agenda for service-oriented computing
Problématiques de recherche 90 Figure Research Agenda for service-oriented computing Conférences dans le domaine ICWS (International Conference on Web Services) Web services specifications and enhancements
Planification, Elaboration budgétaire, Simulation, Analyse Temps Réel BAO02. Cognos TM1. Pascal DELVAL, Customer Technical Professional
Planification, Elaboration budgétaire, Simulation, Analyse Temps Réel BAO02 Cognos TM1 Pascal DELVAL, Customer Technical Professional 2010 IBM Corporation 3 Ensemble complet de Fonctionnalités BI Requête
Le Web de Données Dan VODISLAV Université de Cergy-Pontoise Master Informatique M2 Plan
Le Web de Données Dan VODISLAV Université de Cergy-Pontoise Master Informatique M2 Plan RDF sur le Web Micro-formats Micro-données RDFa Vocabulaires communs Dublin Core, FOAF, SKOS Linked Open Data Architecture
Entrepôt de données 1. Introduction
Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de
et les Systèmes Multidimensionnels
Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées
Regards Citoyens L'Open Data par et pour les citoyens
L'Open Data par et pour les citoyens Bonnes pratiques & exemples à ne pas suivre Benjamin Ooghe-Tabanou Formation "Partager et utiliser des données publiques numériques" ENA Paris 19 mai 2015 ? Des férus
JEDOX FACTSHEETS SELF-SERVICE BUSINESS INTELLIGENCE, ANALYTICS & PERFORMANCE MANAGEMENT
1. Excel Add-In 2. 3. 4. OLAP-Server 5. ETL 6. SAP 7. 8. Profil JEDOX FACTSHEETS SELF-SERVICE BUSINESS INTELLIGENCE, ANALYTICS & PERFORMANCE MANAGEMENT Excel OLAP Server ETL SAP JEDOX EXCEL ADD-IN Transformer
Cursus Sage ERP X3 Outils & Développement. Le parcours pédagogique Sage ERP X3 Outils et Développement
Cursus Outils & Développement Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons
Chapitre 9 : Informatique décisionnelle
Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle
BI : GESTION GESTION, PRODUCTION STRATEGIE DE BI. Un livre blanc d Hyperion
Un livre blanc d Hyperion LES TROIS PILIERS DE LA REUSSITE D UNE D STRATEGIE DE BI ET DIFFUSION DE L INFORMATIONL BI : GESTION GESTION, PRODUCTION Si votre société est comme la plupart des moyennes et
XCube XML For Data Warehouses
XCube XML For Data Warehouses Auteurs : Wolfgang Hümmer Andreas Bauer Gunnar Harde Présenté par : David TA KIM 2005-12-05 Sommaire Sommaire I Introduction au Datawarehouse Sommaire I Introduction au Datawarehouse
Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012
Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des
Open Data. Enjeux et perspectives dans les télécommunications
Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open
THOT - Extraction de données et de schémas d un SGBD
THOT - Extraction de données et de schémas d un SGBD Pierre-Jean DOUSSET (France), Benoît ALBAREIL (France) [email protected], [email protected] Mots clefs : Fouille d information, base de données, système
Jedox rafraîchit les rapports du fabricant de boissons MBG
Jedox rafraîchit les rapports du fabricant de boissons MBG «Nous pouvons désormais réaliser plus efficacement notre reporting et la planifi cation de nos ventes grâce à Jedox, et avons même soif de plus
De l OpenData aux citoyens : potentiel et limites des plateformes collaboratives
De l OpenData aux citoyens : potentiel et limites des plateformes collaboratives Jean-François Gigand, Geonef Raphaël Velt, IRI http://geonef.fr/sigll-opendata L'Institut de Recherche et d'innovation (IRI)
Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours
Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres [email protected] LIA/Université d Avignon Cours/TP
HYPERVISION. Supervision 2.0. RMLL Strasbourg 2011. 2011 - monitoring-fr.org
HYPERVISION Supervision 2.0 RMLL Strasbourg 2011 2011 - monitoring-fr.org Votre interlocuteur Olivier Jan Membre fondateur CFSL Auteur du livre «Nagios 3 au cœur de la supervision Open Source» Architecte
Projet CASI: Master Data Management
Projet CASI: Master Data Management Mardi 17 janvier 2011 Laetitia Ader ya - Ali Lazaar-Youssef Hafi-Chun Jin Projet CASI: Master Data Management 1 / 22 1 2 3 4 5 6 Laetitia Ader ya - Ali Lazaar-Youssef
Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel
Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel Excel est un des meilleurs outils de manipulation de données et parfois il est nécessaire d exploiter des données
Linked Open Data. Le Web de données Réseau, usages, perspectives. Eric Charton. Eric Charton
Linked Open Data Le Web de données Réseau, usages, perspectives Sommaire Histoire du Linked Open Data Structure et évolution du réseau Utilisations du Linked Open Data Présence sur le réseau LOD Futurs
SWISS ORACLE US ER GRO UP. www.soug.ch. Newsletter 5/2014 Sonderausgabe. OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features
SWISS ORACLE US ER GRO UP www.soug.ch Newsletter 5/2014 Sonderausgabe OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features 42 TIPS&TECHNIQUES Alexandre Tacchini, Benjamin Gaillard, Fabien
INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par
Séminaire de formation INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par M. Dia Alioune Expert consultant BI OPEN SOURCE Directeur BADIA OA GROUP : OpenAfriki France Du 09 au 11
Bases de données pour la recherche : quels enjeux et quel rôle pour les patients?
Bases de données pour la recherche : quels enjeux et quel rôle pour les patients? Paul Landais Université Montpellier 1 Responsable de la Banque Nationale de Données Maladies Rares (BNDMR) Co-coordonnateur
HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences.
Notre alliance, Votre atout. HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. C est de cette philosophie qu est née notre partenariat avec la société toulousaine (31) Bewise,
Solution d intelligence marketing et CRM
Solution d intelligence marketing et CRM L entreprise d aujourd hui est littéralement ensevelie sous une masse d information générée par son activité commerciale et par les liens qu elle tisse avec ses
Didier MOUNIEN Samantha MOINEAUX
Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?
BIG DATA et DONNéES SEO
BIG DATA et DONNéES SEO Vincent Heuschling [email protected] @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte
Modélisation d objets mobiles dans un entrepôt de données
Tao Wan, Karine Zeitouni Laboratoire PRISM, Université de Versailles 45, avenue des Etats-Unis, 78035 Versailles Cedex, France [email protected], [email protected] http://www.prism.uvsq.fr/users/karima/
BI = Business Intelligence Master Data-ScienceCours 3 - Data
BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage
Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008
Petit Déjeuner Pépinière du Logiciel Libre 25 juin 2008 1 / 37 Agenda Définition & Principes Les différents outils & composants Les Solutions intégrés Open-Source Vos Questions 2 / 37 Agenda Définition
Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)
Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant
CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU
CommentWatcher plateforme Web open-source pour analyser les discussions sur des forums en ligne Marian-Andrei RIZOIU 2ème octobre 2013 BLEND 2013 Lyon, France Contexte Laboratoire ERIC Université Lumière
Business & High Technology
UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...
Evolution et architecture des systèmes d'information, de l'internet. Impact sur les IDS. IDS2014, Nailloux 26-28/05/2014 pascal.dayre@enseeiht.
Evolution et architecture des systèmes d'information, de l'internet. Impact sur les IDS IDS2014, Nailloux 26-28/05/2014 [email protected] 1 MVC et le web 27/05/14 2 L'évolution des systèmes informatiques
Présentation du 23 mai 2013 Barcarolle/Prangins AGENDA. 1. INTRODUCTION 2. CALYPS 3. QlikView by QlikTech 4. ANALYSE AVEC QLIKVIEW
Présentation du 23 mai 2013 Barcarolle/Prangins CALYPS SA : 5/2013 Tony Germini CEO Gérald Tedeschi Sales Director Nicolas Paccaud Senior Consultant Alessandro Baseggio Senior Consultant AGENDA 1. INTRODUCTION
Big Data On Line Analytics
Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics
Département Génie Informatique
Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin
Pentaho : Comparatif fonctionnel entre la version Communautaire (gratuite) et la version Entreprise (payante) Table des matières
Pentaho : Comparatif fonctionnel entre la version Communautaire (gratuite) et la version Entreprise (payante) Table des matières 1 2 3 4 PRÉSENTATION DE PENTAHO...2 LISTING DES COMPOSANTS DE LA PLATE-FORME...4
Architectures d'intégration de données
Architectures d'intégration de données Dan VODISLAV Université de Cergy-ontoise Master Informatique M1 Cours IED lan Intégration de données Objectifs, principes, caractéristiques Architectures type d'intégration
SAP BusinessObjects Web Intelligence (WebI) BI 4
Présentation de la Business Intelligence 1. Outils de Business Intelligence 15 2. Historique des logiciels décisionnels 16 3. La suite de logiciels SAP BusinessObjects Business Intelligence Platform 18
Développer une stratégie SIG Entreprise efficace avec ESRI et ArcGIS
Développer une stratégie SIG Entreprise efficace avec ESRI et ArcGIS Gaëtan Lavenu Jean-Thomas Rouzin Les grandes lignes Le SIG dans un contexte «Entreprise»: contexte, considérations et challenges. Les
Modélisation Multidimensionnelle des Tableaux de Bord Prospectifs
Modélisation Multidimensionnelle des Tableaux de Bord Prospectifs Zaia Alimazighi (*), Nazih Selmoune (*) (Alimazighi, Selmoune)@wissal.dz (*) Laboratoire des systèmes informatiques (LSI), Faculté d Electronique
Pentaho Business Analytics Intégrer > Explorer > Prévoir
Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux
