OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE

Dimension: px
Commencer à balayer dès la page:

Download "OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE"

Transcription

1 OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE «Journée Open Data» 5 Novembre 2013 Présenté par : Imen Megdiche Directeur de thèse : Pr. Olivier Teste (SIG-IRIT) Co-directeur de thèse : Mr. Alain Berro (VORTEX-IRIT)

2 Plan Contexte général Challenges d entreposage Problématique Solution proposée Perspectives

3 Contexte général : Open data Open data (ou données ouvertes) sont des données disponibles sous licence libre destinées à la réutilisation et à la redistribution par n importe quelle personne. Source :

4 Contexte général : Open Data Acteurs Catégorie Secteurs publics (gouvernements..) Producteurs Ré-utilisateurs Entreprises Médias, bloggeurs Chercheurs Intermédiaires Usages : Visualisation des données : cartographie ( OpenStreetMap..) Applications spécifiques (mobile,..) basées sur les données (exp : transports, tourisme, santé, accéssibilité ) Liaison sémantique des données ( Linked Open Data ) Analyse des données (Business Intelligence)

5 Challenges d entreposage d Open Data Challenges d entreposaged OpenData Linked Open Data Ontologie Automatiser la découverte de schémas Alignement.. Modèle d intégration flexible

6 Open data 1 Accidents Par sous-type Open data 2 Accidents par type Accidents total

7 Quelques travaux.. Approches Google Refine[1] Google fusion [2] OpenII[5] WebSmatch[3] Stratégie d intégration Extensionet/ou fusionnement des sources Identification et matchingde schémas Identification et matchingde schémas Format fichier Excel -Non structurées Limites - Les attributs doivent être surla première ligne Excel -Pasdeschémas -Un seul tableau par - Les plus utilisées parfeuille les producteurs de calcul Excel, RDF, XML - Matching entre - Les formats les plus présents deux schémas ( -Visualisation GovWild[4] LinkedOpen Data RDF, XML, HTML, CSV -Les relations du schéma sont -Structurées prédéfinis Midas [6] Matchingavec un schémacible prédéfini - Présences de schémas Texte, HTML, XML -Scénariospécifique -Nécessite un long travail (données en background financières) pour les producteurs - intégration manuelle (annotation des données )

8 Problématique Analyse multidimensionnelle (OLAP) des Open Data Axes de recherche Phase ETL : Automatiser le plus loin possible le processus d intégration des Open Data dans une structure flexible permettant la découverte d un schéma mutlidimensionnel Phase analyse des données OLAP

9 Architecture d entreposage d Open Data Valide Détection automatique des zones de données mesures Définition des relations entre les données structurelles (hiérarchie, instance ) Sources Open Data Détection des données temporelles Analyse des sources

10 Architecture d entreposage d Open Data Sources Open Data Détection automatique des zones de données mesures Définition des relations entre les données structurelles (hiérarchie, instance ) Détection des données spatio-temporelles Analyse des sources Valide Construction automatique graphes Graphes des sources G(V,E) G(V,E) : relations entre les mesures et les données structurelles V : Intégration des graphes E : par classification conceptuelle (treillis de Galois) Graphe Intégré V_lab(i,j) : sommets des données structurels (dimensions?) V_nbr(i,j) : sommets des données mesures (cellules cube?) E_dim: arcs entre les données structurels (instance, hiérarchie ) E_fact: arcs entre mesures et dimensions

11 Architecture d entreposage d Open Data

12 Architecture d entreposage d Open Data Détection automatique des zones de données mesures Valide Graphe Intégré Schéma multidimensionnel Sources Open Data Définition des relations entre les données structurelles (hiérarchie, instance ) Détection des données spatio-temporelles Analyse des sources Construction automatique graphes Graphes des sources G(V,E) Intégration des graphes par classification conceptuelle (treillis de Galois) Définition incrémentale et semi-automatique des composants multidimensionnels

13 Architecture d entreposage d Open Data

14 Perspectives Approfondir la démarche en cours extraction des structures, amélioration de l intégration. Simuler des données manquantes issues de l alignement des données de différents niveaux de granularité. Traiter le problème d historisation des open data Mise à jour de la même source Intégration d une nouvelle source

15 Références [1] [2] [3] Coletta R, Castanier E, Valduriez P, et al. (2012) Public Data Integration with WebSmatch. CoRR [4] Böhm C, Freitag M, Heise A, et al. (2012) GovWILD: integrating open government data for transparency. WWW (Companion Volume). pp [5] Seligman and al. OpenII: an open source information integration toolkit. In Int, SIGMOd Conference, pages , 2010 [6] Balakrishnan S. et al. Midas : inetgrating public financial data. In SIGMOD 10, pages , New York, Usa, ACM.

16 Merci pour votre attention Questions?

Transformer les Open Data brutes en graphes enrichis en vue d une intégration dans les systèmes OLAP

Transformer les Open Data brutes en graphes enrichis en vue d une intégration dans les systèmes OLAP Transformer les Open Data brutes en graphes enrichis en vue d une intégration dans les systèmes OLAP Alain Berro 1, Imen Megdiche 2, Olivier Teste 3 (1) (2) (3) Manufacture des Tabacs, Université Toulouse

Plus en détail

PARTIE 1 : ETAT DE L ART...

PARTIE 1 : ETAT DE L ART... Table des matières INTRODUCTION... 1 Contexte général de l étude... 3 Problématiques... 4 Contributions des nos travaux de recherche... 5 Organisation du mémoire... 6 PARTIE 1 : ETAT DE L ART... 9 CHAPITRE

Plus en détail

Système OLAP Fresqueau

Système OLAP Fresqueau Système OLAP Fresqueau Kamal BOULIL Journées 20 mars Strasbourg Réunion plénière -Fresqueau 07-08 octobre 2013 1 Plan 1. Introduction 1. Projet ANR Fresqueau 2. Systèmes OLAP 2. Système OLAP Fresqueau

Plus en détail

Contexte général de l étude

Contexte général de l étude 1 2 Contexte général de l étude Les entrepôts de données associés à des outils d analyse On Line Analytical Processing (OLAP), représentent une solution effective pour l informatique décisionnelle (Immon,

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

Vanilla. Open Source Business Intelligence. Présentation de la plateforme

Vanilla. Open Source Business Intelligence. Présentation de la plateforme Vanilla Open Source Business Intelligence Présentation de la plateforme Novembre 2008 Patrick Beaucamp BPM Conseil Contact : patrick.beaucamp@bpm-conseil.com Table des matières Introduction...3 Portail

Plus en détail

PITAGORE. Pour tout renseignement complémentaire, veuillez contacter le Pôle de Compétences PITAGORE

PITAGORE. Pour tout renseignement complémentaire, veuillez contacter le Pôle de Compétences PITAGORE MINISTÈRE DE LA DÉFENSE MINISTÈRE DE LA DÉFENSE Pour tout renseignement complémentaire, veuillez contacter le Pôle de Compétences Téléphone : 01 44 42 51 04 Télécopie : 01 44 42 51 21 Messagerie : pitagore-pc@sga.defense.gouv.fr

Plus en détail

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 1 UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 31 janvier 2012 Bordeaux Présentée par :Mme SABRI Aziza Encadrée par : Mme KJIRI Laila Plan 2 Contexte Problématique

Plus en détail

Évolution de modèle dans les entrepôts de données : existant et perspectives

Évolution de modèle dans les entrepôts de données : existant et perspectives EDA'07 3èmes journées francophones sur les Entrepôts de Données et l'analyse en ligne Poitiers, 7 et 8 Juin 2007 Évolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre,

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Constituer des profils d'experts scientifiques, de centres de recherche et d entreprises innovantes

Constituer des profils d'experts scientifiques, de centres de recherche et d entreprises innovantes Constituer des profils d'experts scientifiques, de centres de recherche et d entreprises innovantes Conférence GFII 12 Février 2014 www.expernova.com [ Le contexte ] Stratégie R&D Projets collaboratifs

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Intégration de données complexes pour une vision 360 du client. Chloé Clavel EDF R&D Département ICAME

Intégration de données complexes pour une vision 360 du client. Chloé Clavel EDF R&D Département ICAME Intégration de données complexes pour une vision 360 du client Chloé Clavel EDF R&D Département ICAME Contexte : projet R&D sur l intégration de données complexes pour la connaissance client Objectif :

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Problématiques de recherche. Figure Research Agenda for service-oriented computing

Problématiques de recherche. Figure Research Agenda for service-oriented computing Problématiques de recherche 90 Figure Research Agenda for service-oriented computing Conférences dans le domaine ICWS (International Conference on Web Services) Web services specifications and enhancements

Plus en détail

Construction d un environnement destiné à l'aide au pilotage

Construction d un environnement destiné à l'aide au pilotage Retour d expérience Construction d un environnement destiné à l'aide au pilotage 1 «Journée sur le décisionnel et pilotage autour du SI de son référentiel» Marseille 26 juin Construction d un environnement

Plus en détail

Noureddine Kerzazi noureddine.kerzazi@polymtl.ca

Noureddine Kerzazi noureddine.kerzazi@polymtl.ca Domaine de la modélisation des processus pour le génie logiciel. Noureddine Kerzazi noureddine.kerzazi@polymtl.ca DSL4SPM Domain-Specific-Language for Software Process Modeling Il s agit d un nouveau cadre

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

RAPPORT ENTREPOT DE DONNEES

RAPPORT ENTREPOT DE DONNEES RAPPORT ENTREPOT DE DONNEES Informatique Décisionnelle Réalisé par : Supervisé par : Ait Skourt Brahim Bouchana Adil Ed-dahmouni Bouthayna El Issaoui Naoufal Pr. L.Lamrini Informatique décisionnelle (BI)

Plus en détail

Cisco Expo 2007. De Netflow à l Expertise Décisionnelle. On Demand IT Expertise

Cisco Expo 2007. De Netflow à l Expertise Décisionnelle. On Demand IT Expertise Cisco Expo 2007 De Netflow à l Expertise Décisionnelle On Demand IT Expertise accellent, l entreprise Notre métier L expertise des flux d applications et de services voix et données sur les réseaux et

Plus en détail

Publication et intégration de données ouvertes

Publication et intégration de données ouvertes Publication et intégration de données ouvertes François Scharffe LIRMM, UM2 Gazouillez #lechatpito #datalift 1 Qu est-ce qu une donnée ouverte? Une donnée accessible sur le web sous une licence ouverte.

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

Fusion des ontologies par classification hiérarchique pour la conception d un entrepôt de données à la volée

Fusion des ontologies par classification hiérarchique pour la conception d un entrepôt de données à la volée Fusion des ontologies par classification hiérarchique pour la conception d un entrepôt de données à la volée Nora Maiz, Omar Boussaid, Fadila Bentayeb Laboratoire ERIC Lyon2 nmaiz@eric.univ-lyon2.fr Atelier

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Compteurs de nouvelle génération

Compteurs de nouvelle génération Compteurs de nouvelle génération Intégration des données dans l'environnement PI System Alexandre Bouffard, chercheur Institut de recherche d Hydro-Québec (IREQ) 18 juin 2013 Aperçu 1. À propos d Hydro-Québec

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

1.1 Exemple introductif d un cube de données... 2

1.1 Exemple introductif d un cube de données... 2 1.1 Exemple introductif d un cube de données............... 2 2.1 Pré-traitement des données avec les outils OLAP [MHW00]...... 14 2.2 Architecture d un système intégrant SGBD, OLAP et MOLAP [Fu05] 16

Plus en détail

Aide à la conception de Système d Information Collaboratif, support de l interopérabilité des entreprises

Aide à la conception de Système d Information Collaboratif, support de l interopérabilité des entreprises Aide à la conception de Système d Information Collaboratif, support de l interopérabilité des entreprises Jihed Touzi, Frédérick Bénaben, Hervé Pingaud Thèse soutenue au Centre de Génie Industriel - 9

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Liaison et évolution collaborative d'une Ressource Termino-Ontologique sur le Web de données

Liaison et évolution collaborative d'une Ressource Termino-Ontologique sur le Web de données Master 2 R. Informatique: Systèmes intelligents Liaison et évolution collaborative d'une Ressource Termino-Ontologique sur le Web de données Auteur: Thomas Hecht Encadrants: Juliette Dibie-Barthélémy Patrice

Plus en détail

Open Data. François Bancilhon twitter.com/fbancilhon www.data-publica.com. Printemps de la recherche EDF R&D 28/9/12

Open Data. François Bancilhon twitter.com/fbancilhon www.data-publica.com. Printemps de la recherche EDF R&D 28/9/12 Open Data François Bancilhon twitter.com/fbancilhon www.data-publica.com Printemps de la recherche EDF R&D 28/9/12 Plan Open data Que faire des données de l open data? Eco-système de la données Data Publica

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

La qualité des données géographiques Gilles Troispoux - CERTU - AFIGEO

La qualité des données géographiques Gilles Troispoux - CERTU - AFIGEO La qualité des données géographiques Gilles Troispoux - CERTU - AFIGEO Ministère de l'écologie, du Développement durable et de l Énergie Plan de la présentation Le contexte Les outils pour mesurer la qualité

Plus en détail

Bureautique. 1 Journée. Référence: BUR-EXC-001. Public: Débutant. Formation Individuelle. Formation Inter ou Intra-Entreprise OBJECTIFS

Bureautique. 1 Journée. Référence: BUR-EXC-001. Public: Débutant. Formation Individuelle. Formation Inter ou Intra-Entreprise OBJECTIFS Bureautique Savoir utiliser les principales fonctionnalités d un tableur lors de la réalisation de tableau et de calculs Introduction - Définir le programme - Présentation de l interface - Le classeur

Plus en détail

Adapter les systèmes d information pour répondre aux nouveaux enjeux de la Direction Financière

Adapter les systèmes d information pour répondre aux nouveaux enjeux de la Direction Financière Adapter les systèmes d information pour répondre aux nouveaux enjeux de la Direction Financière Conférence IDC Ernst & Young Hervé Dulac, Associé Christophe Beliali, Senior Manager «Technologies, management

Plus en détail

Le pilotage des collaborations et l interopérabilité des systèmes d information Vers une démarche intégrée

Le pilotage des collaborations et l interopérabilité des systèmes d information Vers une démarche intégrée Colloque : Systèmes Complexes d Information et Gestion des Risques pour l Aide à la Décision Le pilotage des collaborations et l interopérabilité des systèmes d information Vers une démarche intégrée BELKADI

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel

Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel Utiliser SQL Server 2008 R2 Reporting Services comme source de donne es pour Microsoft Excel Excel est un des meilleurs outils de manipulation de données et parfois il est nécessaire d exploiter des données

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

france.ni.com Journée technique Du contrôle d instruments au banc de test

france.ni.com Journée technique Du contrôle d instruments au banc de test Journée technique Du contrôle d instruments au banc de test Quelles approches pour analyser vos données, Excel, LabVIEW, fichiers scripts, NI DIAdem National Instruments France Industries et applications

Plus en détail

Conseil de développement durable (C2D) Plénière d ouverture 17 décembre 2014

Conseil de développement durable (C2D) Plénière d ouverture 17 décembre 2014 Conseil de développement durable (C2D) Plénière d ouverture 17 décembre 2014 Anthony Guillerm opendata.hauts-de-seine.net I. La plateforme Open Data du département : stratégie d ouverture II. Présentation

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

PILOTER ET MESURER MAÎTRISER L ORGANISATION PAR LES TABLEAUX DE BORD RH

PILOTER ET MESURER MAÎTRISER L ORGANISATION PAR LES TABLEAUX DE BORD RH PILOTER ET MESURER MAÎTRISER L ORGANISATION PAR LES TABLEAUX DE BORD RH HR Public 9 juin 2011 INTRODUCTION Piloter = Mesurer Comment? Via les tableaux de bord RH Réduire l incertitude Stabiliser l information

Plus en détail

Fouille de données de mobilité

Fouille de données de mobilité Fouille de données de mobilité Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Laurent Etienne Ecole Navale (Brest) Laurent.etienne@ecole-navale.fr La fouille de donnée

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

La Banque Nationale de Données Maladies Rares

La Banque Nationale de Données Maladies Rares La Banque Nationale de Données Maladies Rares Conférence des Directeurs Généraux de CHRU P Landais, R Choquet & R Bourret Pour le Comité de pilotage BNDMR Paris, le jeudi 4 septembre 2014 1 La BNDMR :

Plus en détail

Business Intelligence simple et efficace avec Excel et PowerPivot

Business Intelligence simple et efficace avec Excel et PowerPivot Présentation de PowerPivot A. L analyse de données 7 1. Activité 7 2. Définitions 8 a. Mesures et dimensions 8 b. Traitement et analyse 8 c. Robustesse et confiance 9 B. Des solutions pour les gros volumes

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

quand le lien fait sens

quand le lien fait sens Fabien Gandon - @fabien_gandon - http://fabien.info Wimmics (Inria, I3S, CNRS, Université de Nice) W3C AC Rep pour Inria Données liées et Web sémantique quand le lien fait sens étendre la mémoire humaine

Plus en détail

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition L'apport de la sémantique et de la linguistique statistique pour le SEO SEO Camp'us -4 et 5 février 2009 Philippe YONNET Directeur du pôle métiers Aposition Président de l association SEOCamp Comment classer

Plus en détail

Modèles de données pour l intermodalité des réseaux de transport de surface

Modèles de données pour l intermodalité des réseaux de transport de surface Modèles de données pour l intermodalité des réseaux de transport de surface Gérard SCEMAMA Olivier CARLES 19 janvier 2006 1 Contexte : Claire-SITI 2 Plan Travaux de modélisation des réseaux de transport

Plus en détail

Cycles de formation certifiante du CIEMS

Cycles de formation certifiante du CIEMS Cycles de formation certifiante du CIEMS Casablanca, Agadir, Tanger Calendrier 2016 Cycle de formation certifiante Etudes Quantitatives & Qualitatives En partenariat avec Le Sphinx Initiation, Approfondissement

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

Jedox u lise ses propres ou ls pédagogiques. La forma on est axée sur les besoins de l'u lisateur

Jedox u lise ses propres ou ls pédagogiques. La forma on est axée sur les besoins de l'u lisateur INTÉGRÉE, INTERACTIVE ET DYNAMIQUE Voulez vous rer par e de votre projet de business intelligence ou management de la performance? Vous voulez assurer une mise en œuvre facile et adéquate? Vous voulez

Plus en détail

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration

Plus en détail

Guide de référence pour l achat de Business Analytics

Guide de référence pour l achat de Business Analytics Guide de référence pour l achat de Business Analytics Comment évaluer une solution de décisionnel pour votre petite ou moyenne entreprise : Quelles sont les questions à se poser et que faut-il rechercher?

Plus en détail

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise Cycle de formation certifiante Business Intelligence Initiation, Approfondissement et Maîtrise Objectifs de la formation : - Maîtriser les concepts et les outils de la business intelligence - Concevoir

Plus en détail

XCube XML For Data Warehouses

XCube XML For Data Warehouses XCube XML For Data Warehouses Auteurs : Wolfgang Hümmer Andreas Bauer Gunnar Harde Présenté par : David TA KIM 2005-12-05 Sommaire Sommaire I Introduction au Datawarehouse Sommaire I Introduction au Datawarehouse

Plus en détail

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France 12 juin 2013 Atelier SOLAP @EDA2013 Démarrage Projet MIDAS - 29 Janvier 2008 1 Plan Projet Fresqueau Objectifs généraux

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Open Data. Enjeux et perspectives dans les télécommunications

Open Data. Enjeux et perspectives dans les télécommunications Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open

Plus en détail

LabCom SMILK. Social Media Intelligence and Linked Knowledge. ISTE 2013 Keynote thumb wrestling

LabCom SMILK. Social Media Intelligence and Linked Knowledge. ISTE 2013 Keynote thumb wrestling LabCom SMILK Social Media Intelligence and Linked Knowledge ISTE 2013 Keynote thumb wrestling un lab quoi? un Laboratoire de recherche Commun (LabCom) entre un organisme de recherche et une entreprise

Plus en détail

INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par

INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par Séminaire de formation INTRODUCTION A LA B.I AVEC PENTAHO BUSINESS ANALYTICS Formation animée par M. Dia Alioune Expert consultant BI OPEN SOURCE Directeur BADIA OA GROUP : OpenAfriki France Du 09 au 11

Plus en détail

Conception de systèmes d'information et d'entrepôts de données

Conception de systèmes d'information et d'entrepôts de données Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conception de systèmes d'information et d'entrepôts de données Vers des structures

Plus en détail

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre Avant-propos 1. Objectif du livre 17 2. Illustrations des exemples de ce livre 18 2.1 Office 365 comme plateforme technologique pour une digital workplace 18 2.2 SharePoint et Yammer à l honneur 18 3.

Plus en détail

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Thèse présentée par Cécile FAVRE pour obtenir le titre de Docteur en Informatique

Plus en détail

Projet CASI: Master Data Management

Projet CASI: Master Data Management Projet CASI: Master Data Management Mardi 17 janvier 2011 Laetitia Ader ya - Ali Lazaar-Youssef Hafi-Chun Jin Projet CASI: Master Data Management 1 / 22 1 2 3 4 5 6 Laetitia Ader ya - Ali Lazaar-Youssef

Plus en détail

Etat de l art sur l utilisation des techniques Web Sémantique en ECD

Etat de l art sur l utilisation des techniques Web Sémantique en ECD Etat de l art sur l utilisation des techniques Web Sémantique en ECD Hicham Behja ENSAM Meknès(1,2,3) Brigitte Trousse Projet AxIS INRIA Sophia Antipolis (2) Abdelaziz Marzak Faculté des sciences Casablanca

Plus en détail

Raisonner le Web Sémantique avec des graphes : Application à un cas industriel

Raisonner le Web Sémantique avec des graphes : Application à un cas industriel Raisonner le Web Sémantique avec des graphes : Application à un cas industriel Olivier Carloni LIRMM, Université de Montpellier II, 161, rue Ada, F-34392 Montpellier cedex - France carloni@lirmm.fr Mondeca,

Plus en détail

ThémaMap : un outil de cartographie thématique

ThémaMap : un outil de cartographie thématique ThémaMap : un outil de cartographie thématique Un exemple de mise en œuvre sur les pêches artisanales péruviennes. G. Domalain, C. Rodriguez (IRD-UMR EME-Sète) J. Madelaine, J. Chauveau GREYC - CNRS UMR

Plus en détail

Des données brutes au Web des données liées Le projet Datalift

Des données brutes au Web des données liées Le projet Datalift Des données brutes au Web des données liées Le projet Datalift Seminaire INTech ouverture des donnees 5 Juin 2012 INRIA Grenoble Rhône-Alpes François Scharffe Francois.scharffe@lirmm.fr @lechatpito Présentation

Plus en détail

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration

Plus en détail

LA BUSINESS INVESTIGATION BI ++

LA BUSINESS INVESTIGATION BI ++ LA BUSINESS INVESTIGATION «labusiness investigation a pour but de répondre précisément (par des indicateurs pertinents de mesure de la performance ) à des objectifs posés par une direction» BI ++ LA BUSINESS

Plus en détail

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU CommentWatcher plateforme Web open-source pour analyser les discussions sur des forums en ligne Marian-Andrei RIZOIU 2ème octobre 2013 BLEND 2013 Lyon, France Contexte Laboratoire ERIC Université Lumière

Plus en détail

Choix de l outil PENTAHO

Choix de l outil PENTAHO Choix de l outil PENTAHO GROUPES : Encadrant : IDRISSI BADSSI abd al moughit Mme LEMRINI loubna HALIM hamza LARHROUCH mustapha Table des matières Business intelligence... 2 Les Outils Open source de Business

Plus en détail

Bases de données multidimensionnelles OLAP

Bases de données multidimensionnelles OLAP Bases de données multidimensionnelles OLAP OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour l analyse multidimensionnelle. Les données sont historisées, résumées, consolidées.

Plus en détail

Annotation contextuelle en situation de mobilité et Génération de Systèmes d'information Spatio-Temporelle

Annotation contextuelle en situation de mobilité et Génération de Systèmes d'information Spatio-Temporelle Annotation contextuelle en situation de mobilité et Génération de Systèmes d'information Spatio-Temporelle Paule-Annick Davoine, Bogdan Moisuc et Jérôme Gensel Laboratoire d Informatique de Grenoble Equipe

Plus en détail

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA Découverte de Règles Associatives Hiérarchiques entre termes Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA 1 Plan Problématique et État de l art Nouvelle approche Approche Conceptuelle

Plus en détail

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin

Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques. Projet personnel. Thème : Présenté par IOGO Valentin Master Professionnel Informatique Appliquée aux Systèmes d Informations Géographiques Projet personnel Thème : «Etude exploratoire des systèmes d information géographique décisionnels (SIG décisionnels)

Plus en détail

AVATAR. Un profil SysML temps réel outillé

AVATAR. Un profil SysML temps réel outillé AVATAR Un profil SysML temps réel outillé Ludovic Apvrille, Pierre de Saqui-Sannes ludovic.apvrille@telecom-paristech.fr pdss@isae.fr SysML France, 6 décembre 2010 Agenda De TURTLE à AVATAR Le langage

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

itop : la solution ITSM Open Source

itop : la solution ITSM Open Source itop : la solution ITSM Open Source itop est un portail web multi-clients conçu pour les fournisseurs de services et les entreprises. Simple et facile d utilisation il permet de gérer dans une CMDB flexible

Plus en détail

Etude méthodologique comparative de solutions d entreposage de données de santé à des fins décisionnelles

Etude méthodologique comparative de solutions d entreposage de données de santé à des fins décisionnelles Etude méthodologique comparative de solutions d entreposage de données de santé à des fins décisionnelles Rémy Choquet 1, Christel Daniel 1, Omar Boussaid 2, Mariechristine Jaulent 1. 1 INSERM UMR_S 872

Plus en détail

Accélérateur de votre RÉUSSITE

Accélérateur de votre RÉUSSITE Accélérateur de votre RÉUSSITE SAP Business Objects est une suite décisionnelle unifiée et complète qui connecte ses utilisateurs en éliminant les difficultés d accès à l information. Mobile Devices Browsers

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

Faculté Polytechnique

Faculté Polytechnique Faculté Polytechnique RMLL 2014 Etude du secteur des prestataires FLOSS en Belgique Dr Ir Robert Viseur Montpellier, 09 juillet 2014 Introduction 2 Qui suis-je? Robert Viseur Ingénieur Civil, Mastère en

Plus en détail

Business Intelligence simple et efficace

Business Intelligence simple et efficace Business Intelligence simple et efficace avec Excel et PowerPivot Jean-Philippe GOUIGOUX Table des matières 1 Chapitre 1 Présentation de PowerPivot A. L analyse de données.....................................................

Plus en détail

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données.

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données. Data Mining = Knowledge Discovery in Databases (KDD) = Fouille de données 1 Définition : Processus ou méthode qui extrait des connaissances «intéressantes» ou des motifs (patterns) à partir d une grande

Plus en détail

Parcours DIWEB : (Données, Interaction et Web)

Parcours DIWEB : (Données, Interaction et Web) Parcours DIWEB : (Données, Interaction et Web) Semestre 2 (et vue sur le M2) Pierre Pompidor Faculté des Sciences Novembre 2010 Pierre Pompidor (Université Montpellier 2) Master Informatique - Spécialité

Plus en détail