Bases de Données OLAP

Dimension: px
Commencer à balayer dès la page:

Download "Bases de Données OLAP"

Transcription

1 Bases de Données OLAP Hiver 2013/2014 Melanie Herschel Université Paris Sud, LRI Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre 2 Credit: Michael Marcol

2 Horaires et Site Web Cours Horaire Dates lundi, 13h30 à 16h30 23/9 jeudi, 13h30 à 16h30 3/10, 10/10,17/10, 24/10, 7/11, 21/11, 28/11 Travaux dirigés Horaire Dates lundi, 13h30 à 16h30 7/10, 14/10, 21/10, 4/11, 25/11, 2/12 jeudi, 13h30 à 16h30 14/11, 5/12 mer., 13h30 à 16h30 16/10 Les transparents et autres informations concernant le cours seront accessibles sur ce site 3 Connaissances Connaissances requises: Introduction aux Bases de Données Modèle relationnel Modèle entité association SQL Connaissances préférables: Implémentation de Bases de Données Implémentations de jointures Optimisation de requêtes 4

3 Travaux Dirigés Pendant chaque heure de TD, une feuille d exercices sera distribuée. Vous pouvez résoudre les exercices dans une première partie du TD par groupe de deux étudiants. Je suis bien sur là pour répondre à toutes vos questions. Dans la seconde partie du TD, les exercices sont présentés par les étudiants et discutés. Dans certains cas, des informations approfondies seront données qui complèteront le cours. 5 Examen et Contrôle Continu Examen Sous forme écrite Durée: 90 minutes Aucune aide ni ressource n est autorisée Date à déterminer Contrôle continu Partiels le 4 novembre 2013 (13h30-15h00) Feuille d exercices similaires aux exercices des feuilles de TD Travail individuel, situation d examen 6

4 Concernant ces Transparents... Petits quiz Définition Prenez des notes Exemple Code 7 Litérature Christian S. Jensen, Torben Bach Pedersen und Christian Thomsen. Multidimensional Databases and Data Warehousing. Synthesis Lecture on Data Management, Morgan & Claypool. Voir également les liens cités en cours 8

5 Questions & Feedback N hésitez pas à poser des questions! Pendant le cours Par ou par téléphone Feedback et suggestions sont les bienvenus! Transparents Informations sur le Web... 9 Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre 10 Credit: Michael Marcol

6 Systèmes OLAP OLAP = Online Analytical Processing Requêtes effectuant des analyses complexes sur des données. Informatique décisionnelle Business intelligence (BI) Dans ce cours, nous nous limitons Aux données relationnelles Aux données stockées dans des entrepôts de données (data warehouses (DW)) 11 Applications de Systèmes OLAP Gestion de risques chez les assurances Analyse de marché chez WalMart et Co. à travers toutes les filiales Gestion de la relation client (customer relationship management (CRM)) chez Amazon et partenaires Logistique mondiale chez UPS Analyse de données scientifiques (physiques, biologiques, etc.) acquises à travers le monde... Propriétés essentielles Intégration de données provenant de sources multiples afin d obtenir une vue globale. Analyse de larges volumes de données (peta ebay, Walmart, etc.). 12

7 Vendeurs Commerciaux IBM Teradata Oracle SAP... Open source Talend Clover Définition d un Entrepôt de Données Définition originale de William H. Inmon A data warehouse is a subject oriented, integrated, time variant, non-volatile collection of data in support of management s decision making process. [Inmon92] subject oriented: dédié à un type d entité précis. Exemples: des ventes, des produits ou des magasins. integrated: les données proviennent de plusieurs systèmes de bases de données, dis de source. Exemples: Différents catalogues de La Redoute, stocks à travers la France, chiffre d affaires dans différents pays. time-variant: l entrepôt de données (DW) montre l évolution temporelle de l entité observée. non-volatile: Les données ne sont pas effacées ou modifiées ultérieurement, la seule modifications de l ensemble des données est l ajout de données. 14

8 Exemple Motivant l Utilisation d un DW Une ou plusieurs bases de données (similaires) stockant des informations concernant la vente de livres. Les données opérationnelles sont souvent actualisées.! Par chaque commande! Par des modifications de catalogue quotidiennes Le management requiert de l aide à la décision (decision support) Ceci engendre des requêtes complexes sur les données. 15 Exemple Motivant l Utilisation d un DW Commande de livres par internet SQL 16

9 Exemple Motivant l Utilisation d un DW Commande de livres par internet portefeuille ventes publicité SQL 16 Exemple Motivant l Utilisation d un DW Commande de livres par internet sauvegarde, débit, équilibrage de charge portefeuille ventes publicité SQL 16

10 Exemple Motivant l Utilisation d un DW Commande de livres par internet sauvegarde, débit, équilibrage de charge conflit d objectifs portefeuille ventes publicité SQL 16 Exemple Motivant l Utilisation d un DW La base de données correspondante Year id year Month Id Month year_id Day Id day month_id Order Order_id book_id amount single_price Orders Id Day_id Customer_id Total_amt Bookgroup id name Book id Book_group_id Customer id name 17

11 Exemple Motivant l Utilisation d un DW Question du directeur du marketing Combien de commandes avons nous clôturées dans le mois précédant Noël en fonction du groupe de produit? Year id year Month Id Month year_id Day Id day month_id Order Order_id book_id amount single_price Orders Id Day_id Customer_id Total_amt Bookgroup id name Book id Book_group_id Customer id name 18 Exemple Motivant l Utilisation d un DW Question du directeur du marketing Combien de commandes avons nous clôturées dans le mois précédant Noël en fonction du groupe de produit? Year id year Month Id Month year_id Day Id day month_id Order Order_id book_id amount single_price Orders Id Day_id Customer_id Total_amt Bookgroup id name Book id Book_group_id Customer id name 18

12 Exemple Motivant l Utilisation d un DW Implémentation Requête SQL du directeur de marketing SELECT! Y.year, BG.name, COUNT(B.id) FROM year Y, month M, day D, order O, orders OS, book B, bookgroup BG WHERE! M.year = Y.id and! M.id = D.month and! O.day_id = D.id and! OS.order_id = O.id and! B.id = O.book_id and! B.book_group_id = BG.id and! day < 24 and month = 12 GROUP BY Y.year, PG.product_name ORDER BY Y.year 19 Exemple Motivant l Utilisation d un DW Implémentation Requête SQL du directeur de marketing SELECT! Y.year, BG.name, COUNT(B.id) FROM year Y, month M, day D, order O, orders OS, book B, bookgroup BG WHERE! M.year = Y.id and! M.id = D.month and! O.day_id = D.id and! OS.order_id = O.id and! B.id = O.book_id and! B.book_group_id = BG.id and! day < 24 and month = 12 GROUP BY Y.year, PG.product_name ORDER BY Y.year 6 jointures Year: 10 tuples Month: 120 tuples Day: 3650 tuples Orders: tuples Order: tuples Books: tuples Bookgroups: 100 tuples Problème! Optimisation de requête (ordre des jointures) Résultats intermédiaires peuvent être gigantesques (dépend du plan d exécution choisi) Requêtes similaires résultats intermédiaires comparables 19

13 Exemple Motivant l Utilisation d un DW En réalité... Il y a les bases de données des différents pays, par exemple: Amazon.fr Amazon.de Amazon.it... Requête distribuée COUNT et UNION sur plusieurs requêtes identiques executées sur différentes bases de données? 20 Exemple Motivant l Utilisation d un DW En réalité... FR DE IT UK PL 21

14 Exemple Motivant l Utilisation d un DW Implémentation (utilisation d une vue) Définition d une vue CREATE VIEW christmas AS! SELECT! Y.year, PG.name, count(b.id) FROM!! DE.year Y, DE.month M, DE.day D, DE.order O,... WHERE! M.year = Y.id and... GROUP BY!Y.year, PG.product_name ORDER BY! Y.year UNION! SELECT! Y.year, PG.name, count(b.id) FROM! EN.year Y, EN.month M, EN.day D, DE.order O,... WHERE! M.year = Y.id and Exemple Motivant l Utilisation d un DW Implémentation (utilisation d une vue) Définition d une vue CREATE VIEW christmas AS! SELECT! Y.year, PG.name, count(b.id) FROM!! DE.year Y, DE.month M, DE.day D, DE.order O,... WHERE! M.year = Y.id and... GROUP BY!Y.year, PG.product_name ORDER BY! Y.year UNION! SELECT! Y.year, PG.name, count(b.id) FROM! EN.year Y, EN.month M, EN.day D, DE.order O,... WHERE! M.year = Y.id and... Utilisation de la vue dans une requête SQL SELECT! year, name, SUM(B.id) FROM!! christmas GROUP BY! year, name ORDER BY! year! 22

15 Exemple Motivant l Utilisation d un DW Implémentation (utilisation d une vue) Définition d une vue CREATE VIEW christmas AS! SELECT! Y.year, PG.name, count(b.id) FROM!! DE.year Y, DE.month M, DE.day D, DE.order O,... WHERE! M.year = Y.id and... GROUP BY!Y.year, PG.product_name ORDER BY! Y.year UNION! SELECT! Y.year, PG.name, count(b.id) FROM! EN.year Y, EN.month M, EN.day D, DE.order O,... WHERE! M.year = Y.id and... Utilisation de la vue dans une requête SQL SELECT! year, name, SUM(B.id) FROM!! christmas GROUP BY! year, name ORDER BY! year! 22 Exemple Motivant l Utilisation d un DW Problèmes de la solution présentée Question 1: COUNT et UNION sur des bases de données distribuées? Problème d hétérogénéité Le sources adaptent leurs schémas Cas particuliers de différents pays à modeler (format d adresse, TVA, frais d envoi, soldes,...) Des différences de schéma peuvent refléter des différences sémantiques entre les données stockées. Question 2: Calcul de gigantesques résultats intermédiaires? Problème de volume des données Transport de ces données sur le réseau Vue historique -Le volume de données augmente régulièrement Des bases de données opérationnelles n ont pas besoin de données historiques Objectif: Effacer les données le plus vite possible (commandes clôturées) Manager n a pas besoin de toutes les données opérationnelles Objectif: Garder toutes les données intéressantes 23

16 Exemple Motivant l Utilisation d un DW Solution au Problème d Hétérogénéité? FR DE IT BD centrale Problèmes: Toutes les agences doivent utiliser le réseau pour leurs opérations d écriture Long temps de réponse en mode opérationnel Problème du volume de données non résolu. 24 Exemple Motivant l Utilisation d un DW Solution au Problème d Hétérogénéité? FR DE IT BD centrale Problèmes: Toutes les agences doivent utiliser le réseau pour leurs opérations d écriture Long temps de réponse en mode opérationnel Problème du volume de données non résolu. 24

17 Exemple Motivant l Utilisation d un DW Solution au Problème du Temps de Réponse en Mode Opérationnel? IT Problèmes: Requêtes locales en mode opérationnel rapides Mais long temps de réponse pour des requêtes d analyse stratégique. Problème de l hétérogénéité non résolu 25 Exemple Motivant l Utilisation d un DW Solution au Problème du Temps de Réponse en Mode Opérationnel? FR DE IT Problèmes: Requêtes locales en mode opérationnel rapides Mais long temps de réponse pour des requêtes d analyse stratégique. Problème de l hétérogénéité non résolu 25

18 Exemple Motivant l Utilisation d un DW Solution au Problème du Temps de Réponse en mode analytique? Replikation Replikation A Problèmes: Requêtes locales travaillent sur de très grandes relations Temps de réponse augmente en mode opérationnel Long temps de réponse également pour les requêtes analytiques, car priorité doit être données au fonctionnement opérationnel 26 Exemple Motivant l Utilisation d un DW Solution au Problème du Temps de Réponse en mode analytique? A Replikation A Replikation A Problèmes: Requêtes locales travaillent sur de très grandes relations Temps de réponse augmente en mode opérationnel Long temps de réponse également pour les requêtes analytiques, car priorité doit être données au fonctionnement opérationnel 26

19 Exemple Motivant l Utilisation d un DW Solution réelle Construction d un Data Warehouse Données redondantes (dans systèmes opérationnels et DW) DW stocke des données sélectionnées et transformées Modélisation spéciale Actualisation des données asynchrone 27 BDs Opérationnelles vs. Entrepôt de Données Du point de vue de l application Utilisateur Durée et type d interaction Structure d une requête Etendue d une reqête Nombre d accès concurrents Nombre d utilisateurs BDs opérationnelles adjoint administratif très courte (>= quelques secondes) Insert, Update, Delete simple (par exemple peu de jointures) un nombre de tuples modéré (souvent, un seul tuple est concerné) beaucoup (des milliers) beaucoup Entrepôt de données Manager, contrôleur, analyste Requêtes d analyse longues (minutes voir heures) Lecture, ajout périodiques complexe, mais suivant en général un schéma défini au préalable beaucoup de tuples (pour la plupart des requêtes de plage de données) peu (des centeines) peu ( <= quelques centaines) 28

20 BDs Opérationnelles vs. Entrepôt de Données Du point de vue du stockage de données Sources de données Conception du schéma Propriétés des données Volume de données Temps de réponse typique Disponibilité BDs opérationnelles un seul système BD indépendante du type de requête (3FN) originales actuelles autonomes dynamiques méga-octets - giga-octets ms - s très haute disponibilité (Arrêt peut couter des millions!) Entrepôt de données plusieurs systèmes BD indépendants basée sur les requêtes analytiques envisagées dérivées/ consolidées historiques intégrées stables (pré-)agrégée partiellement tera-octets - peta-octets s - min haute disponibilité souhaitée, mais n est en générale pas critique 29 BDs Opérationnelles vs. Entrepôt de Données Du point de vue de l architecture BDs opérationnelles Architecture à 3 bandes ANSI-SPARC Se prête aux données d une source de données pas d hétérogénéité Entrepôt de données Un DW intègre des données de plusieurs sources. Ces sources sont typiquement hétérogènes (au niveau du schéma, par exemple nom vs. non de famille; dans les données, par exemple vs. 01/06,...) Architecture se prêtant à l intégration de données de différentes sources Détails au chapitre 2 30

21 BDs Opérationnelles vs. Entrepôt de Données Du point de vue du modèle de stockage BDs opérationnelles Evitent redondance / anomalies Schéma en 3FN Schéma conçu indépendamment des requêtes année Entrepôt de données Modèle utilisant des dimensions et mesures, basées sur les requêtes analytiques envisagées. Redondance possible voir désirée Modèle multidimensionnel Détails au chapitre Books CDs DVDs... région... North America Asia Europe groupe de produit 31 BDs Opérationnelles vs. Entrepôt de Données Du point de vue des requêtes BDs opérationnelles Requêtes transactionnelles Insertion, modification, effacement, selection Requêtes accédant à un / peu de tuples Optimisation de requête classique UPDATE Order SET amount = amount + 1 WHERE OrderID = 1 AND BookID = 204 Data Warehouse Requêtes analytiques Chargement en masse(bulk-insert) et selection Requêtes typiques (drill down, slice, dice,...) Techniques d optimisation de requêtes spécialisées Details au chapitres 4 et 5 année Books CDs DVDs... région... North America Asia Europe groupe de produit 32

22 Extraction-Transformation-Chargement (ETC) Extract-Transform-Load (ETL) Comment ajouter les données au DW? Extraction de données pertinentes des sources. Transformation des données extraites pour conformer au schéma du DW et aux exigences à la qualité de données. Chargement des données transformées dans le DW. 33 Processus de Développement d un DW Intégration de plusieurs sources de données, souvent autonomes, requiert les mesures suivantes: Intégration / concours des départements spécialisés Faire adopter les exigences à la qualité de données Langage commun Garantir que le processus peut être suivi facilement Penser du produit vers le processus 34

23 Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre 35 Credit: Michael Marcol Agenda de ce Cours Chapitre 1: Introduction Définition d un entrepôt de données (DW) Motivation pour construire un DW Différences entre bases de données opérationnelles et DW Chapitre 2: Architectures de systèmes DW Composantes d un système DW Configurations Facilitation de l intégration Chapitre 3:Modélisation Modèle multidimensionnel (dimensions, mesures, cubes) Implémentation relationnelle du modèle (star-schema, snowflake-schema) 36

24 Agenda de ce Cours Chapitre 4: Requêtes Types de requêtes (slice, dice, drill-down,...) Spécification de requêtes (extensions SQL, MDX) Chapitre 5: Traitement de requêtes et optimisation Partitionnement Vue matérialisées 37 Questions? Sur le contenu de ce cours? Sur le contrôle continu / l examen? Sur le déroulement?... 38

Bases de Données OLAP. Bienvenue. Chapitre 1 Introduction. Horaires et Site Web. Melanie Herschel. Hiver 2011/2012

Bases de Données OLAP. Bienvenue. Chapitre 1 Introduction. Horaires et Site Web. Melanie Herschel. Hiver 2011/2012 Bases de Données OLAP Hiver 2011/2012 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, Groupe Bases de Données, LRI Bienvenue Je suis... 2000-2003 2003-2007 D origine lorraine et bavaroise

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK Oracle Décisionnel : Modèle OLAP et Vue matérialisée SOMMAIRE Introduction Le modèle en étoiles Requêtes OLAP Vue matérialisée Fonctions Roll up et Cube Application Introduction Data Warehouse Moteur OLAP

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Partie 1 : Notion de bases de données (Conception

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 5 - MDX

BI = Business Intelligence Master Data-ScienceCours 5 - MDX BI = Business Intelligence Master Data-Science Cours 5 - MDX UPMC 23 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Définition OLAP En informatique, et plus particulièrement

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II 1ère génération 13 2ème génération : Entrepôt de données / Magasin de données 15 3ème génération OLAP 16 Références Bibliographiques 18 A. 1ère génération Infocentre Tableur Base de données Infocentre

Plus en détail

Bases de données multidimensionnelles OLAP

Bases de données multidimensionnelles OLAP Bases de données multidimensionnelles OLAP OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour l analyse multidimensionnelle. Les données sont historisées, résumées, consolidées.

Plus en détail

Sommaire. Introduction. Opérations typiques. Langages. Architectures

Sommaire. Introduction. Opérations typiques. Langages. Architectures OLAP IED 2006-2007 Sommaire Introduction Opérations typiques Langages Architectures Introduction Contexte un entrepôt de données offre des données - nombreuses - homogènes - exploitables - multidimensionnelles

Plus en détail

Bases de Données OLAP. Systèmes Opérationnels vs. Entrepôts de Données Requêtes. Donné un Modèle Multidimensionnel

Bases de Données OLAP. Systèmes Opérationnels vs. Entrepôts de Données Requêtes. Donné un Modèle Multidimensionnel 007 006 00 00 00 00 Books s s North America Asia Europe Bases de Données OLAP Hiver 0/0 Melanie Herschel melanie.herschel@lri.fr Université Sud, Groupe Bases de Données, LRI Systèmes Opérationnels vs.

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 013/014 Melanie Herschel melanie.herschel@lri.fr Université Sud, Groupe Bases de Données, LRI Systèmes Opérationnels vs. Entrepôts de Données Requêtes Requêtes BD opérationnelles

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Datawarehousing and OLAP

Datawarehousing and OLAP Datawarehousing and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today introduction definition data integration model Introduction introduction

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Indépendance données / applications

Indépendance données / applications Vues 1/27 Indépendance données / applications Les 3 niveaux d abstraction: Plusieurs vues, un seul schéma conceptuel (logique) et schéma physique. Les vues décrivent comment certains utilisateurs/groupes

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise

Cycle de formation certifiante Business Intelligence. Initiation, Approfondissement et Maîtrise Cycle de formation certifiante Business Intelligence Initiation, Approfondissement et Maîtrise Objectifs de la formation : - Maîtriser les concepts et les outils de la business intelligence - Concevoir

Plus en détail

La place de la Géomatique Décisionnelle dans le processus de décision

La place de la Géomatique Décisionnelle dans le processus de décision Géomatique décisionnelle La place de la Géomatique Décisionnelle dans le processus de décision - Arnaud Van De Casteele Mines ParisTech - CRC Arnaud {dot} van_de_casteele {at} mines-paristech.fr Les rencontres

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Conception de systèmes d'information et d'entrepôts de données

Conception de systèmes d'information et d'entrepôts de données Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conception de systèmes d'information et d'entrepôts de données Vers des structures

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste Christian Soutou Avec la participation d Olivier Teste SQL pour Oracle 4 e édition Groupe eyrolles, 2004, 2005, 2008, 2010, is BN : 978-2-212-12794-2 Partie III SQL avancé La table suivante organisée en

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Bases de données multidimensionnelles et mise en œuvre dans Oracle

Bases de données multidimensionnelles et mise en œuvre dans Oracle Bases de données multidimensionnelles et mise en œuvre dans Oracle 1 Introduction et Description générale Les bases de données relationnelles sont très performantes pour les systèmes opérationnels (ou

Plus en détail

Introduction à l Informatique Décisionnelle - Business Intelligence (7)

Introduction à l Informatique Décisionnelle - Business Intelligence (7) Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

Introduc;on à l intelligence d affaires et aux entrepôts de données

Introduc;on à l intelligence d affaires et aux entrepôts de données MTI820 Entrepôts de données et intelligence d affaires Introduc;on à l intelligence d affaires et aux entrepôts de données C. Desrosiers Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaBi,

Plus en détail

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

IFT3030 Base de données. Chapitre 1 Introduction

IFT3030 Base de données. Chapitre 1 Introduction IFT3030 Chapitre 1 Introduction Plan du cours Introduction Architecture Modèles de données Modèle relationnel Algèbre relationnelle SQL Conception Fonctions avancées Concepts avancés Modèle des objets

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

L2 sciences et technologies, mention informatique SQL

L2 sciences et technologies, mention informatique SQL Bases de données L2 sciences et technologies, mention informatique SQL ou : le côté obscure de la jolie théorie films titre réalisateur année starwars lucas 1977 nikita besson 1990 locataires ki-duk 2005

Plus en détail

Bases de données. Modèle décisionnel. Jérôme Rocheteau. Lecture 8. Institut Catholique d Arts et Métiers Site de Nantes

Bases de données. Modèle décisionnel. Jérôme Rocheteau. Lecture 8. Institut Catholique d Arts et Métiers Site de Nantes Bases de données Lecture 8 1 / 25 Bases de données Modèle décisionnel Jérôme Rocheteau Institut Catholique d Arts et Métiers Site de Nantes Lecture 8 Bases de données Lecture 8 2 / 25 1 Structure multidimensionnelle

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU Fabien Airiau ESNE-IG Rapport de travail de diplôme 2007 Page 1 sur 77

Plus en détail

Présentation du cours

Présentation du cours LOG660 - Bases de données de haute performance Présentation du cours Automne 2015 Lévis Thériault Département de génie logiciel et des TI LOG660 Hiver 2012 C. Desrosiers 1 Informations de base Titre: Chargé

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

Les bases de données

Les bases de données Les bases de données Introduction aux fonctions de tableur et logiciels ou langages spécialisés (MS-Access, Base, SQL ) Yves Roggeman Boulevard du Triomphe CP 212 B-1050 Bruxelles (Belgium) Idée intuitive

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse Datawarehouse 1 Plan Ce qu est le datawarehouse? Un modèle multidimensionnel Architecture d un datawarehouse Implémentation d un datawarehouse Autres développements de la technologie data cube 2 Ce qu

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

Information utiles. cinzia.digiusto@gmail.com. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/

Information utiles. cinzia.digiusto@gmail.com. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/ Systèmes de gestion de bases de données Introduction Université d Evry Val d Essonne, IBISC utiles email : cinzia.digiusto@gmail.com webpage : http://www.ibisc.univ-evry.fr/ digiusto/ Google+ : https://plus.google.com/u/0/b/103572780965897723237/

Plus en détail

Introduction au domaine du décisionnel et aux data warehouses

Introduction au domaine du décisionnel et aux data warehouses Data warehouse Introduction au domaine du décisionnel et aux data warehouses http://dwh.crzt.fr STÉPHANE CROZAT Paternité - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-sa/2.0/fr/

Plus en détail

Bases de Données OLAP. Chapitre 2 Architecture. La Perspective d Oiseau. Perspective Détaillée ... Hiver 2011/2012

Bases de Données OLAP. Chapitre 2 Architecture. La Perspective d Oiseau. Perspective Détaillée ... Hiver 2011/2012 Bases de Données OLAP Hiver 2011/2012 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, Groupe Bases de Données, LRI Chapitre 2 Architecture Composantes d un DW ETC 2 La Perspective d Oiseau

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Architectures d'intégration de données

Architectures d'intégration de données Architectures d'intégration de données Dan VODISLAV Université de Cergy-ontoise Master Informatique M1 Cours IED lan Intégration de données Objectifs, principes, caractéristiques Architectures type d'intégration

Plus en détail

Intégration de données

Intégration de données Intégration de données Dan VODISLAV Université de Cergy-Pontoise Master Informatique M2 Plan Objectifs, principes, enjeux, applications Architectures d intégration de données Médiateurs et entrepôts Traitement

Plus en détail

Construction d un EDD avec SQL 2008 R2. D. Ploix - M2 Miage - EDD - Création

Construction d un EDD avec SQL 2008 R2. D. Ploix - M2 Miage - EDD - Création Construction d un EDD avec SQL 2008 R2 Plan Analyse du DW construit Construction de la base DW dans SQL 2008 Construction des tables de faits et dimensions Injection des données Étapes de l injection des

Plus en détail

Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème

Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème Chapitre IX L intégration de données Le problème De façon très générale, le problème de l intégration de données (data integration) est de permettre un accès cohérent à des données d origine, de structuration

Plus en détail

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1)

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1) Introduction à lʼinformatique Décisionnelle et la «Business Intelligence» (1) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013

Plus en détail

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France 12 juin 2013 Atelier SOLAP @EDA2013 Démarrage Projet MIDAS - 29 Janvier 2008 1 Plan Projet Fresqueau Objectifs généraux

Plus en détail

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008 K. Smaïli Professeur à l université Nancy2 1/105 K. Smaïli 2008 Introduction au BI (Business Intelligence) Notion de Datawarehouse Cognos Powerplay Powerplay Transformer Impromptu Datamining Le panier

Plus en détail

Système OLAP Fresqueau

Système OLAP Fresqueau Système OLAP Fresqueau Kamal BOULIL Journées 20 mars Strasbourg Réunion plénière -Fresqueau 07-08 octobre 2013 1 Plan 1. Introduction 1. Projet ANR Fresqueau 2. Systèmes OLAP 2. Système OLAP Fresqueau

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

Introduction aux S.G.B.D.

Introduction aux S.G.B.D. NFE113 Administration et configuration des bases de données - 2010 Introduction aux S.G.B.D. Eric Boniface Sommaire L origine La gestion de fichiers Les S.G.B.D. : définition, principes et architecture

Plus en détail

ERP & Processus. lacreuse@unistra.fr

ERP & Processus. lacreuse@unistra.fr ERP & Processus Métiers lacreuse@unistra.fr Processus : «Système d activités qui utilise des ressources pour transformer des éléments d entrée en résultat» Iso9000 Approche par processus Axes de modélisation

Plus en détail

BASES DE DONNÉES AVANCÉES

BASES DE DONNÉES AVANCÉES L3 Informatique Option : ISIL BASES DE DONNÉES AVANCÉES RAMDANI MED U-BOUIRA M. R A M D A N I @ U N I V - B O U I R A. D Z P E R S O. L I V E H O S T. F R Cours 5 : Evaluation et optimisation des requêtes

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Modèle relationnel Création et modification des relations en SQL

Modèle relationnel Création et modification des relations en SQL Modèle relationnel Création et modification des relations en SQL ENT - Clé sql2009 BD - Mírian Halfeld-Ferrari p. 1 Insertion dans une relation Pour insérer un tuple dans une relation: insert into Sailors

Plus en détail

Principes et mise en œuvre du modèle OLAP. -1 ère Partie- La modélisation multidimensionnelle

Principes et mise en œuvre du modèle OLAP. -1 ère Partie- La modélisation multidimensionnelle Principes et mise en œuvre du modèle OLAP -1 ère Partie- La modélisation multidimensionnelle 1 Le modèle multidimensionnel (1) Le modèle multidimensionnel est bien adapté pour représenter des données qui

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

GPC Computer Science

GPC Computer Science CYCLE ISMIN P2015 GPC Computer Science P LALEVÉE lalevee@emse.fr @p_lalevee A3.01 0442616715 C YUGMA yugma@emse.fr A3.01 0442616715 01/09/2014 Présentation GPC CS - Ph. Lalevée - C Yugma 1 Scolarité Site

Plus en détail

SQL : création et mises-à-jour de schémas et de données

SQL : création et mises-à-jour de schémas et de données SQL : création et mises-à-jour de schémas et de données Commandes de définition de données (DDL) Commandes de mise-à-jour de données (DML) Vues SQL-MAJ, vues-1 / 33 Exemple Définition de la relation

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Maintenance de charge pour l optimisation des entrepôts de données évolutifs : aide à l administrateur

Maintenance de charge pour l optimisation des entrepôts de données évolutifs : aide à l administrateur Maintenance de charge pour l optimisation des entrepôts de données évolutifs : aide à l administrateur Cécile Favre, Fadila Bentayeb, Omar Boussaid Université de Lyon (Laboratoire ERIC - Lyon 2) 5 av.

Plus en détail

L information et la technologie de l informationl

L information et la technologie de l informationl L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements

Plus en détail

La Business Intelligence & le monde des assurances

La Business Intelligence & le monde des assurances Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 La Business Intelligence & le monde des assurances Karim NAFIE Regional Presales Manager EEMEA Operations

Plus en détail