Intégration de la dimension sémantique dans les réseaux sociaux

Dimension: px
Commencer à balayer dès la page:

Download "Intégration de la dimension sémantique dans les réseaux sociaux"

Transcription

1 Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI

2 1 Contexte : Recommandation dans les réseaux sociaux 2 L algorithme de recommandation Techniques utilisées Algorithme exhaustif de recherche de toutes les solutions Algorithme guidé pour la recherche d une solution Validation de l algorithme 3 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie 4

3 Analyse des réseaux sociaux : domaines d application Étudier des propriétés de la structure et son rôle ainsi que la position et le prestige de chaque acteur social le marketing viral, détection des nœuds faibles (ou ponts) dans un réseau (virus informatiques, terrorisme, etc.), tri des résultats d un moteur de recherche ( le fameux PageRank). Recherche des différents types de sous-graphes : les communautés formées par des groupes d acteurs ayant des intérêts commun. isoler les groupes de densités élevées. Élaboration de recommandations (algorithmes d exploration de chemins, d analyse de degrés) : Trouver un expert dans un domaine donné, Suggérer des produits à vendre, proposer un ami, etc.

4 Objectif du système L algorithme de recommandation Hypothèse : notre réseau est composé d un ensemble de personnes ayant des liens professionnels. Proposition d un système de recommandation : Requête posée par un utilisateur X : un acteur dans le réseau social. Proposer (recommander) un ou plusieurs acteurs répondant au mieux aux critères demandés. Exemple : Recherche d une personne ayant des compétences données pour un poste, Recherche d une collaboration scientifique, etc.

5 Idée de l algorithme L algorithme de recommandation Algorithme qui combine la sémantique, la structure & les propriétés des réseaux sociaux : Sémantique : L information stockée sur la personne (l acteur) d une façon décentralisée au niveau de chaque nœud, peut être représentée en utilisant une ontologie : profil utilisateur. Structure : L information décrite par la structure du réseau même : technique de l arbre couvrant minimum (ou maximum). Propriétés du réseau : L intermédiarité des acteurs passants par les chemins retenus : acteurs prestigieux.

6 Application - réseau de collaborations L algorithme de recommandation Le couplage bibliographique &la matrice de co-citation sont dèfinis par : B ij = n k=1 L ik L jk & C ij = n k=1 L ki L kj

7 Application : réseau bibliographique L algorithme de recommandation Étude d un réseaux de références bibliographiques Modélisation par un graphe non dirigé : Les nœuds de ce graphe étant les auteurs. au niveau de chaque acteur-auteur un vecteur pondéré de mots clefs, exprimant sont profil est stocké. Une relation (arête dans un graphe) entre deux auteurs exprime une similarité de comportement signifie qu il existe un nombre suffisant de références citées par eux et/ou un nombre suffisant d auteurs qui les ont cités. Deux auteurs ont une relation professionnelles s ils utilisent nombreux supports en commun (couplage bibliographique) Deux auteurs ont une relation professionnelles s ils sont cités par nombreux auteurs (co-citation).

8 L algorithme de recommandation L algorithme de recommandation Entrée : une requête posée par l auteur X formulée par une suite de mots (termes) clés : Sortie : une suite pondérée d auteurs {(Z 1, P 1 ), (Z 2, P 2 ),.., (Z n, P n )} correspondants au mieux à la requête ainsi que : la chaîne sémantique reliant les deux auteurs. Une chaîne sémantique reliant deux auteurs X, Z i est constituée de la liste de mots (termes) clefs se trouvant dans la suite des sommets reliant X à Z i. Étapes de l algorithme L arbre couvrant maximum (par rapport aux poids des arêtes) étant déjà calculé, les intermédiarités des nœuds étant déjà calculées et stockées, Extraire de cet arbre une liste de sommets triée à recommander.

9 L algorithme de recommandation L algorithme de recommandation - Illustration Parcours en largeur d abord dans l arbre couvrant. Exemple d une liste d auteurs à recommander [Z 4, Z 3, Z 1, Z 2 ] triés par leurs poids ( rating ). Le chemin sémantique entre X et Z 4 est [pro(x ), pro(y 1 ), pro(y 2 ), pro(z 4 )]

10 L algorithme de recommandation Éléments de l algorithme - Partie sémantique : mesure de similarité R X la requête posée par le sommet X sous forme d un ensemble de termes T i : R X = {T 1, T 2.., T n } Pro Z, le profil associé à un sommet donné Z donné également par un ensemble de termes pondérés :Pro Z = {(T 1, P 1 ), (T 2, P 2 ).., (T m, P m )}. Nous définissons la similarité (la pertinence) entre la requête R X et le profil du sommet Pro Z par : Pro Z.P j sim(r X, Pro Z ) = j inter(r X,Pro Z ) m Pro Z.P j + R X \ Pro Z i=1. avec : inter(r X, Por Z ) = {k {1,..m}, Pro Z.T k R X }

11 L algorithme de recommandation Éléments de l algorithme - Partie sociale : intermédiarités des nœuds Deux nœuds non adjacents k & j qui se communiquent et si le nœud i se trouve sur le chemin de communication : i est un acteur itérmédiaire. intermediarite(i) = j<k p jk (i) p jk p jk le nombre des chemins les plus cours entre j et k, p jk (i) le nombre des chemins les plus cours entre j et k passant par i.

12 Version 1 : Algorithme exhaustif L algorithme de recommandation La liste de sommets à recommander [(Z 4, P 4 ), (Z 3, P 3 ), (Z 1, P 1 ), (Z 2, P 2 )] P l j=1 P i = sim(r X, Pro Zi ) intermediarite(y j ) l si l >= 1 P i = sim(r X, Pro Zi ) sinon

13 Version 2 : Algorithme guidé L algorithme de recommandation Deuxième version permettant de trouver une solution d une façon plus efficace. Trouver le chemin de la recherche dans l arbre couvrant A. Utilisations d une heuristique permettant de choisir le sommet à visiter parmi un ensemble de sommets candidats : Algorithme de type A*, permettant de passer à chaque étape par le sommet Y minimisant l heuristique : h(y ) = (seuil sim(pro X, Pro Y )) intermediarite(y ), Jusqu à ce qu on arrive à un sommet Z à recommander pour lequel nous avons :. sim(x, Z) >= seuil

14 Validation & Expérimentations - 1 L algorithme de recommandation Évaluer la version guidée par rapport à la version exhaustive. Élaborer un ensemble de 10 requêtes à tester par un auteur X en utilisant les termes trouvés dans la communauté. Pour chaque requête appliquer les deux versions de l algorithme et relever les mesures suivantes : Le rang de l auteur trouvé par l algorithme guidé par rapport à l algorithme exhaustive. Le nombre de sommets parcours par l algorithme guidé. etc. Résultats Pour 8 expériences le rang numéro 1 est trouvé par la version guidée. L espace de recherche est réduit de de 11% jusqu à 49%..

15 Validation & Expérimentations - 2 L algorithme de recommandation N The exhaustive algorithm Recommended author Rating Computation time 1 Andrew Emili ,41s 2 G V Belle ,35s 3 Hans A Kestler ,41s 4 Jimin Pei ,61s 5 John F Canny ,99s 6 C Wang ,37s 7 J Michael Brady ,68s 8 Peter G Neumann ,72s 9 Peter Eades ,95s 10 Liang Chen s N The A* algorithm Recommended author Computation time explored graph 1 Andrew Emili (1) 109,27s 39.25% 2 G V Belle (1) 17,45s 21.13% 3 Yuichi Asahiro (2) 11,66s 13.86% 4 Jimin Pei (1) 32,52s 20.02% 5 John F Canny (1) 21,77s 11.77% 6 C Wang (1) 233,99s 49.13% 7 J Michael Brady (1) 118,74s 41.14% 8 Elizabeth J O neil (2) 40,49s 24.88% 9 Peter Eades (1) 54,47s 30.95% 10 Liang Chen (1) 14,14s 16.67%

16 Intégration d une ontologie de domaine Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie d après la thèse de V. Schickel-Zuber, EPFL, 2007 : Ontology Filtering Extension de la définition du profil utilisateur(deux représentations) Profil de base : vecteur pondéré de termes. Profil sémantique : extrait à partir du profil de base en l annotant par l ontologie de domaine ; peut être représenté par un vecteur pondéré de concept. Définition d une mesure de similarité sémantique : 1 Paramétres extraits de la structure taxonomique de l ontologie : l ancêtre le plus commun entre deux nœuds concepts ; l APS d un nœud concept ; l inférence dans l ontologie. Re-formulation de requêtes

17 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Graphes Bipartites & Réseaux collaboration Recommandation de produits = prédiction de liens dans le graphe bipartite.

18 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Exemple d une ontologie : la taxonomie de Amazon

19 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Profil de base et Profil sémantique : exemple Préférences de base Items Socre I1 5 I2 5 I6 5 I7 5 I8 1 Préférences sémantiques Concepts Socre 4 (I2 et I8) ((1+0.2)/2)=0.6 5 (I1 et I7) ((1+1)/2)=1 9 (I1 et I6) ((1+1)/2)=1

20 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les mesures structurelles - 1 : l ancêtre le plus commun b est l ancêtre le plus commun de g et i

21 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les mesures structurelles - 2 : a-priori score La probabilité que le score d un concept soit supérieur à un seuil x :P(S(C) > x) = 1 x En prenant en compte les descendants d un concept n c : P(S(C) > x) = (1 x) nc+1 Par conséquent : P(S(C) x) = (1 (1 x) nc+1 ) En passant par la fonction densité : f c (x) = d((1 (1 x)nc +1 ) dx = (n c + 1) (1 x) nc L estimation de la limite inférieure du score est : E(S(C)) = (n c + 1) 1 0 x(1 x)nc dx = 1 n c+2 APS(X ) = 1 n c+2

22 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les mesures structurelles - 2 : Exemple du APS Concepts n c APS x 0 1/2 u 0 1/2 z 0 1/2 s 1 1/3 t 2 1/4 y 5 1/7 APS(X ) = 1 n c+2

23 Les inférences dans l ontologie - 1 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Inférence de généralisation S(y x) = α(x, y)s(x), α(x, y) étant une mesure décrivant les caractéristiques en commun entre x et y. α(x, Y ) = APS(Y ) APS(X ). Inférence de spécialisation S(y x) = S(x) + β(y, x), β(y, x) étant une mesure décrivant les caractéristiques de Y mais pas celles de x. β(y, X ) = APS(Y ) APS(X ). Inférence mixte.

24 Les inférences dans l ontologie - 2 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Inférence de généralisation. Inférence de spécialisation. Inférence mixte S(y z) = S(z) + β(y, z) S(y x) = α(x, z)s(x) + β(y, z) S(y x) = α(x, LCA(x, y))s(x) + β(y, LCA(x, y))

25 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les inférences dans l ontologie : Exemple Concepts n c APS Propagation Score x 0 1/2-1 s 1 1/3 1x( 1/3 1/2 ) = 2 3 y 5 1/7 1x( 1/7 1/2 ) = 2 7 t 2 1/4 1x( 1/7 1/2 ) + ( ) = u 0 1/2 1x( 1/7 1/2 ) + ( ) = 14 9 z 0 1/2 1x( 1/7 1/2 ) + ( ) = 14 9

26 Exemple de recommandation hybride Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Idée : Hybridation entre Score et Popularité : HS(c) = ps(c) + (1 p)p(c) item Concepts n c APS Propagation Score popularité score hybride k y 5 1/ j u 0 1/ i t 2 1/

27 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Le transfert d un score d un concept x vers y T (x, y) = S(y x) S(x) T(x,y) peut être décomposé selon : T(x,z)= α(x, z) si x z T (z, y) = 1 + β(z,y) S(z) 1 + 2β(z, y) si z y et tel que T (x, y) = T (x, z)t (z, y) La distance entre deux concepts D(x, y) = log(1 + 2β(y, z)) log(α(x, z)) maxd D(x, y) = log(1+2β(y,lca(x,y))) log(α(x,lca(x,y))) maxd

28 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Intégration d une ontologie de domaine - Application : Amazon - 1 Un graphe de collaboration extrait des données de Amazon : le graphe de co-achats : produits. Description des données : 1 Deux identificateurs : Id, ASIN. 2 Titre, groupe : (book, DVD, video ou music), rang de vente. 3 Ensemble des produits similaires. 4 Les catégories : niveau dans la hiérarchie des produits. 5 Les données de reviews : temps, user id, rating, nombre total des votes, etc. Préparations des données 1 Élaboration de la taxonomie des produits. 2 Extraction du graphe de collaboration (les nœuds sont les utilisateurs). 3 Élaboration du profil de base et du profil sémantique.

29 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Intégration d une ontologie de domaine - Application : Amazon - 2 Un graphe de collaboration extrait des données de Amazon : le graphe de co-achats : produits.. Préparations des données 1 Élaboration de la taxonomie des produits. 2 Extraction du graphe de collaboration (les nœuds sont les utilisateurs). 3 Élaboration du profil de base et du profil sémantique. Vers un système de recommandation social et sémantique : Intégration de la mesure de similarité sémantique dans l heuristique qui permet une navigation efficace dans l arbre couvrant. Aider l utilisateur à reformuler ses requêtes.

30 Conclusion & perspectives Proposition de deux algorithmes de recommandation : exhaustif et guidé : Partie structure : exploration de l arbre couvrant maximum. Partie sémantique : similarité entre la requête et le profil utilisateur. Partie sociale : utilisation de la mesure d intermédiarité. Perspectives... Élaboration plus fine du profil utilisateur. Étendre l algorithme pour des recommandations inter-communautés. Utiliser l arbre couvrant pour des fins sémantiques : Proposer ou affiner une ontologie d un domaine. Découvrir des rapprochements sémantiques entre les communautés (arbre couvrant et chemins sémantiques).

Recommandation dans les réseaux sociaux professionnels

Recommandation dans les réseaux sociaux professionnels Recommandation dans les réseaux sociaux professionnels Application sur un réseau bibliographique 6 mai 2010 Objectif et Motivation Techniques utilisées Algorithme exhaustive de recherche de toutes les

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux (ARS) 18 mars 2010 Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Etude des entités sociales (les

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Localisation de ressources dans les réseaux CDN

Localisation de ressources dans les réseaux CDN Cas de la VoD LIP6 DESIR - FT R&D Octobre 2008 Plan Introduction 1 Introduction 2 3 4 Introduction DESIR : DÉcision, Systèmes Intelligents et Recherche opérationnelle La recherche opérationnelle : (boite

Plus en détail

AT41 - «Métropoles et réseaux»

AT41 - «Métropoles et réseaux» AT41 - «Métropoles et réseaux» Une approche par la théorie des graphes Plan Problématiques Quelques définitions Théorie des graphes: 1. Partitionnement de graphe : ex. les communautés 2. Analyse des réseaux

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

Une nouvelle approche de détection de communautés dans les réseaux sociaux

Une nouvelle approche de détection de communautés dans les réseaux sociaux UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Une nouvelle approche de détection de communautés dans les réseaux sociaux Mémoire (INF 6021) pour l obtention du grade de Maîtrise

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Comment marche le Web?

Comment marche le Web? Comment marche le Web? Sara Alouf Chargée de Recherche, INRIA 6 décembre 2012 Lycée Henri Matisse, Vence Comment marche le Web? Introduction du Web et de l Internet Aperçu historique Comment marche le

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Etat de la connaissance sur le web usage mining

Etat de la connaissance sur le web usage mining pêche écologique en Guinée B7-6200/99-03/DEV/ENV rapport Op.47 : apprentissage CI Etat de la connaissance sur le web usage mining Rédacteur : Cheikh BA Date création 07.10.02 Dernière modif. 02/11/02 23:39

Plus en détail

IC05 2004 Analyse de Réseaux Sociaux : perspective algorithmique

IC05 2004 Analyse de Réseaux Sociaux : perspective algorithmique IC05 2004 Analyse de Réseaux Sociaux : perspective algorithmique Eustache DIEMERT Université de Technologie de Compiègne - Réseaux, Territoires et Géographie de l Information 11 mai 2004 Réseaux Sociaux?

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE PROBLEME DE L ARBRE RECOUVRANT MINIMAL I - INTRODUCTION (1) Définitions (2) Propriétés, Conditions d existence II ALGORITHMES (1) Algorithme de KRUSKAL (2) Algorithme de PRIM I

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Recherche d informations et veille marketing. Beth Krasna 17.10.2003. What you mean is what you get.

Recherche d informations et veille marketing. Beth Krasna 17.10.2003. What you mean is what you get. Recherche d informations et veille marketing Beth Krasna 17.10.2003. Le Cycle de Connaissance KM Adapter Organiser Utiliser Collaboration Publier Analyser Collecter MI Données Information Connaissance

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux Introduction à l Analyse des Réseaux Sociaux Erick Stattner Laboratoire LAMIA Université des Antilles et de la Guyane, France erick.stattner@univ-ag.fr Guadeloupe, Novembre 2012 Erick Stattner Introduction

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Notes de cours Moteurs de recherche : Master 2 Pro, Université Paris Diderot

Notes de cours Moteurs de recherche : Master 2 Pro, Université Paris Diderot Notes de cours Moteurs de recherche : Master 2 Pro, Université Paris Diderot Michel Habib and Antoine Meyer 22 janvier 2009 1 Introduction Ce document a été rédigé à partir des trois mémoires de thèses

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Fouille de données spatiales Mr Dib Abderrahim & Dr Mohamed-Khireddine KHOLLADI

Fouille de données spatiales Mr Dib Abderrahim & Dr Mohamed-Khireddine KHOLLADI Fouille de données spatiales Mr Dib Abderrahim & Dr Mohamed-Khireddine KHOLLADI Introduction On assiste de plus en plus à la création d entrepôts de données. Les raisons sont multiples : 1. le tout numérique

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Cours de Data Mining PageRank et HITS

Cours de Data Mining PageRank et HITS Cours de Data Mining PageRank et HITS Andreea Dragut Univ. Aix-Marseille, IUT d Aix-en-Provence Andreea Dragut Cours de Data Mining PageRank et HITS 1 / 48 Plan du cours Présentation Andreea Dragut Cours

Plus en détail

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1 De la donnée à la décision Sofian MAABOUT LaBRI. Université Bordeaux 1 1 Décider c est choisir, parmi plusieurs actes possibles, celui qui apparaît comme le plus pertinent pour atteindre un résultat envisagé,

Plus en détail

Gestion des Clés Publiques (PKI)

Gestion des Clés Publiques (PKI) Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 13 L exploration des données 13.1. Présentation de la semaine L exploration de données (ou data mining) est souvent associée à l intelligence

Plus en détail

Systèmes de Recommandation. David Loup

Systèmes de Recommandation. David Loup Systèmes de Recommandation David Loup Systèmes de recommandation Plan Définition Motivations Domaine : Films Techniques / Approches Exemples Problèmes Evolution future 2/33 Définition Une plateforme pour

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments A- 0/0 Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com

Plus en détail

Algorithmes de recommandation, Cours Master 2, février 2011

Algorithmes de recommandation, Cours Master 2, février 2011 , Cours Master 2, février 2011 Michel Habib habib@liafa.jussieu.fr http://www.liafa.jussieu.fr/~habib février 2011 Plan 1. Recommander un nouvel ami (ex : Facebook) 2. Recommander une nouvelle relation

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Construction et enrichissement automatique d ontologie à partir de ressources externes

Construction et enrichissement automatique d ontologie à partir de ressources externes Construction et enrichissement automatique d ontologie à partir de ressources externes JFO 2009 Jeudi 3 décembre 2009 E. Kergosien (LIUPPA, Pau) M. Kamel (IRIT- UPS, Toulouse) M. Sallabery (LIUPPA, Pau)

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015 Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/ Ingénierie de Systèmes Intelligents Application : Web Intelligent Maria Malek EISTI Ingénierie de Systèmes Intelligents p. 2/ Objectif Traitement Intelligent des

Plus en détail

Segmentation basée sur les vecteurs propres : vue unifiée

Segmentation basée sur les vecteurs propres : vue unifiée Segmentation basée sur les vecteurs propres : vue unifiée Papier Y. Weiss : Segmentation using eigenvectors: a unifying view Proceedings IEEE International Conference on Computer Vision p. 975-982 (1999)

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX Jean-Loup Guillaume Le cours http://jlguillaume.free.fr/www/teaching/syrres/ Exemple 1 : Expérience de Milgram Objectif faire transiter une lettre depuis les Nebraska à un

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

Le Web sémantique, une infrastructure d'intégration de sources de données

Le Web sémantique, une infrastructure d'intégration de sources de données Le Web sémantique, une infrastructure d'intégration de sources de données Chantal Reynaud Université Paris X & LRI (Université Paris-Sud & CNRS), UR INRIA Futurs Plan de l'exposé 1. Importance du point

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro]

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro] [] Indexation conceptuelle application au domaine biomédical Mesures de similarité dans les ontologies Sylvie Ranwez Sébastien Harispe LGI2P de l école des mines d Alès équipe KID (Knowledge and Image

Plus en détail

Web Data Mining Web Usage Mining

Web Data Mining Web Usage Mining Web Data Mining p. 1/1 Web Data Mining Web Usage Mining Maria Malek Options GL, ISICO & IdSI EISTI Web Data Mining p. 2/1 Fouille des Données de la Toile?!! Web Structure Mining Découverte de la connaissance

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Le Web Social 2011. Cécile Favre Laboratoire ERIC, Université Lyon 2 France. Ludovic Denoyer LIP 6, Université Pierre et Marie Curie France

Le Web Social 2011. Cécile Favre Laboratoire ERIC, Université Lyon 2 France. Ludovic Denoyer LIP 6, Université Pierre et Marie Curie France Le Web Social 2011 En conjonction avec 11ème Conférence Internationale Francophone sur l'extraction et la Gestion des Connaissances (EGC 2011). Organisé par : Hakim Hacid Alcatel-Lucent Bell Labs France

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Règles d'association. Définition. Processus

Règles d'association. Définition. Processus Data Mining «Extraction de connaissances valides et exploitables à partir de grands volumes de données hétérogènes provenant de sources et de bases diverses» Règles d'association Définition Extraction

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Apprentissage de structure dans les réseaux bayésiens pour

Apprentissage de structure dans les réseaux bayésiens pour Apprentissage de structure dans les réseaux bayésiens pour la détection d événements vidéo Siwar Baghdadi 1, Claire-Hélène Demarty 1, Guillaume Gravier 2, et Patrick Gros 3 1 Thomson R&D France, 1 av Belle

Plus en détail

Diagnostic et décision

Diagnostic et décision Diagnostic et décision Bibliographie J. N. Chatain, DIagnostic par Système Expert, Traité des Nouvelles Technologies, série Diagnostic et Maintenance, édition Hermes 1993. B. Dubuisson, Diagnostic, intelligence

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA Découverte de Règles Associatives Hiérarchiques entre termes Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA 1 Plan Problématique et État de l art Nouvelle approche Approche Conceptuelle

Plus en détail

Améliorer les performances du site par l'utilisation de techniques de Web Mining

Améliorer les performances du site par l'utilisation de techniques de Web Mining Améliorer les performances du site par l'utilisation de techniques de Web Mining CLUB SAS 2001 17/18 octobre 2001 Stéfan Galissie LINCOLN stefan.galissie@lincoln.fr contact@web-datamining.net 2001 Sommaire

Plus en détail

Fouille de données de mobilité

Fouille de données de mobilité Fouille de données de mobilité Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Laurent Etienne Ecole Navale (Brest) Laurent.etienne@ecole-navale.fr La fouille de donnée

Plus en détail

Systèmes de confiance et de réputation. Talel.Abdessalem@telecom-paristech.fr http://dbweb.enst.fr. Confiance

Systèmes de confiance et de réputation. Talel.Abdessalem@telecom-paristech.fr http://dbweb.enst.fr. Confiance Systèmes de confiance et de réputation Talel.Abdessalem@telecom-paristech.fr http://dbweb.enst.fr Une multitude de sens et de définitions : 1. Valeur subjective (sentiment, croyance) qu on associe à la

Plus en détail

Modélisation et Optimisation de la Planification de Réseaux Sans Fil

Modélisation et Optimisation de la Planification de Réseaux Sans Fil Modélisation et Optimisation de la Planification de Réseaux Sans Fil Thèse soutenue le 8 décembre 2008 par Alexandre GONDRAN Devant le Jury : M. Jean-Marie GORCE rapporteur Pr, INSA Lyon M. Olivier HUDRY

Plus en détail

De la créativité publicitaire à la créativité numérique

De la créativité publicitaire à la créativité numérique Soutenance en vue de l obtention de l habilitation à diriger des recherches de Maria Mercanti-Guérin De la créativité publicitaire à la créativité numérique Modélisation et influences sur le consommateur

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Notes de cours (ENS Lyon, M1) Chapitre 4 : Internet et le Web

Notes de cours (ENS Lyon, M1) Chapitre 4 : Internet et le Web Notes de cours (ENS Lyon, M1) Chapitre 4 : Internet et le Web Table des matières 4 Internet et le Web 68 4.1 Le graphe du Web.......................... 68 4.1.1 Structure du Web...................... 68

Plus en détail

Factorisation des matrices creuses

Factorisation des matrices creuses Chapitre 5 Factorisation des matrices creuses 5.1 Matrices creuses La plupart des codes de simulation numérique en mécanique des fluides ou des structures et en électromagnétisme utilisent des discrétisations

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Automates Claude Moulin Université de Technologie de Compiègne Printemps 2013 Sommaire 1 Automate fini 2 Automate et langages réguliers 3 Automate à pile Automate fini déterministe

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le Qui je suis Innovation Utilisation des réseaux sociaux pour le data mining Business & Decision Françoise Soulié Fogelman francoise.soulie@outlook.com Atos KDD_US CNAM Séminaire de Statistique appliquée

Plus en détail

Méthodes de distances Formation CNRS «Phylogénie moléculaire»

Méthodes de distances Formation CNRS «Phylogénie moléculaire» Méthodes de distances Formation CNRS «Phylogénie moléculaire» Guy Perrière Laboratoire de Biométrie et Biologie Évolutive UMR CNRS n 5558 Université Claude Bernard Lyon 1 2 mars 213 Guy Perrière (BBE)

Plus en détail

ASMADE : Automated Schema MApping for Documents Exchange

ASMADE : Automated Schema MApping for Documents Exchange Equipe 22I IS du LIRIS Amghar Youssef (responsable d'équipe) Benharkat Aïcha-Nabila Boukhebouze Mohamed Rifaieh Rami Sellami Sana ASMADE : Automated Schema MApping for Documents Exchange La couche Matching

Plus en détail

Protection de la vie privée dans les réseaux sociaux

Protection de la vie privée dans les réseaux sociaux Sébastien Gambs Protection de la vie privée : cours 9 1 Protection de la vie privée dans les réseaux sociaux Sébastien Gambs sgambs@irisa.fr 4 décembre 2015 Sébastien Gambs Protection de la vie privée

Plus en détail

SONDY : une plateforme open-source d analyse et de fouille pour les réseaux sociaux en ligne

SONDY : une plateforme open-source d analyse et de fouille pour les réseaux sociaux en ligne SONDY : une plateforme open-source d analyse et de fouille pour les réseaux sociaux en ligne Adrien GUILLE, C. Favre, Djamel Abdelkader Zighed To cite this version: Adrien GUILLE, C. Favre, Djamel Abdelkader

Plus en détail

Présentation SSDM : Semantically Similar Data Miner

Présentation SSDM : Semantically Similar Data Miner Présentation SSDM : Semantically Similar Data Miner Guillaume Calas Henri-François Chadeisson EPITA SCIA 2009 16 Juillet 2008 calas g - chadei h SSDM : Semantically

Plus en détail

IBM SPSS Modeler Social Network Analysis 15 Guide de l utilisateur

IBM SPSS Modeler Social Network Analysis 15 Guide de l utilisateur IBM SPSS Modeler Social Network Analysis 15 Guide de l utilisateur Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Avis sur p. 24.

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Raisonnement symbolique et géométrique pour la robotique mobile

Raisonnement symbolique et géométrique pour la robotique mobile Introduction à la réunion finale Raisonnement symbolique et géométrique pour la robotique mobile J. Guitton, J.L. Farges Control Architectures of Robots - Bourges - 30 mai 2008 1 Plan Introduction Vers

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur

Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur 18/12/2003 p.1/50 Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur Julien DOMBRE Laboratoire IRCOM-SIC, UMR-CNRS 6615. En partenariat avec le

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Systèmes de recommandation de produits Projet CADI Composants Avancés pour la DIstribution

Systèmes de recommandation de produits Projet CADI Composants Avancés pour la DIstribution Journée DAPA du 26 mars 2009 Systèmes de recommandation de produits Projet CADI Composants Avancés pour la DIstribution Michel de Bollivier michel.debollivier@kxen.com Agenda Projet CADI La recommandation

Plus en détail

Les principaux domaines de l informatique

Les principaux domaines de l informatique Les principaux domaines de l informatique... abordés dans le cadre de ce cours: La Programmation Les Systèmes d Exploitation Les Systèmes d Information La Conception d Interfaces Le Calcul Scientifique

Plus en détail

INDEXATION des IMAGES

INDEXATION des IMAGES INDEXATION des IMAGES Marine Campedel www.tsi.enst.fr/~campedel mars 2005 Plan du cours Généralités Méthodes Indexation textuelle Indexation par le contenu Récupération de l information (retrieval) Feedback

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014 Langage C/C++ TD 3-4 : Création dynamique d objets Hubert Godfroy 7 novembre 014 1 Tableaux Question 1 : Écrire une fonction prenant un paramètre n et créant un tableau de taille n (contenant des entiers).

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail