Intégration de la dimension sémantique dans les réseaux sociaux

Dimension: px
Commencer à balayer dès la page:

Download "Intégration de la dimension sémantique dans les réseaux sociaux"

Transcription

1 Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI

2 1 Contexte : Recommandation dans les réseaux sociaux 2 L algorithme de recommandation Techniques utilisées Algorithme exhaustif de recherche de toutes les solutions Algorithme guidé pour la recherche d une solution Validation de l algorithme 3 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie 4

3 Analyse des réseaux sociaux : domaines d application Étudier des propriétés de la structure et son rôle ainsi que la position et le prestige de chaque acteur social le marketing viral, détection des nœuds faibles (ou ponts) dans un réseau (virus informatiques, terrorisme, etc.), tri des résultats d un moteur de recherche ( le fameux PageRank). Recherche des différents types de sous-graphes : les communautés formées par des groupes d acteurs ayant des intérêts commun. isoler les groupes de densités élevées. Élaboration de recommandations (algorithmes d exploration de chemins, d analyse de degrés) : Trouver un expert dans un domaine donné, Suggérer des produits à vendre, proposer un ami, etc.

4 Objectif du système L algorithme de recommandation Hypothèse : notre réseau est composé d un ensemble de personnes ayant des liens professionnels. Proposition d un système de recommandation : Requête posée par un utilisateur X : un acteur dans le réseau social. Proposer (recommander) un ou plusieurs acteurs répondant au mieux aux critères demandés. Exemple : Recherche d une personne ayant des compétences données pour un poste, Recherche d une collaboration scientifique, etc.

5 Idée de l algorithme L algorithme de recommandation Algorithme qui combine la sémantique, la structure & les propriétés des réseaux sociaux : Sémantique : L information stockée sur la personne (l acteur) d une façon décentralisée au niveau de chaque nœud, peut être représentée en utilisant une ontologie : profil utilisateur. Structure : L information décrite par la structure du réseau même : technique de l arbre couvrant minimum (ou maximum). Propriétés du réseau : L intermédiarité des acteurs passants par les chemins retenus : acteurs prestigieux.

6 Application - réseau de collaborations L algorithme de recommandation Le couplage bibliographique &la matrice de co-citation sont dèfinis par : B ij = n k=1 L ik L jk & C ij = n k=1 L ki L kj

7 Application : réseau bibliographique L algorithme de recommandation Étude d un réseaux de références bibliographiques Modélisation par un graphe non dirigé : Les nœuds de ce graphe étant les auteurs. au niveau de chaque acteur-auteur un vecteur pondéré de mots clefs, exprimant sont profil est stocké. Une relation (arête dans un graphe) entre deux auteurs exprime une similarité de comportement signifie qu il existe un nombre suffisant de références citées par eux et/ou un nombre suffisant d auteurs qui les ont cités. Deux auteurs ont une relation professionnelles s ils utilisent nombreux supports en commun (couplage bibliographique) Deux auteurs ont une relation professionnelles s ils sont cités par nombreux auteurs (co-citation).

8 L algorithme de recommandation L algorithme de recommandation Entrée : une requête posée par l auteur X formulée par une suite de mots (termes) clés : Sortie : une suite pondérée d auteurs {(Z 1, P 1 ), (Z 2, P 2 ),.., (Z n, P n )} correspondants au mieux à la requête ainsi que : la chaîne sémantique reliant les deux auteurs. Une chaîne sémantique reliant deux auteurs X, Z i est constituée de la liste de mots (termes) clefs se trouvant dans la suite des sommets reliant X à Z i. Étapes de l algorithme L arbre couvrant maximum (par rapport aux poids des arêtes) étant déjà calculé, les intermédiarités des nœuds étant déjà calculées et stockées, Extraire de cet arbre une liste de sommets triée à recommander.

9 L algorithme de recommandation L algorithme de recommandation - Illustration Parcours en largeur d abord dans l arbre couvrant. Exemple d une liste d auteurs à recommander [Z 4, Z 3, Z 1, Z 2 ] triés par leurs poids ( rating ). Le chemin sémantique entre X et Z 4 est [pro(x ), pro(y 1 ), pro(y 2 ), pro(z 4 )]

10 L algorithme de recommandation Éléments de l algorithme - Partie sémantique : mesure de similarité R X la requête posée par le sommet X sous forme d un ensemble de termes T i : R X = {T 1, T 2.., T n } Pro Z, le profil associé à un sommet donné Z donné également par un ensemble de termes pondérés :Pro Z = {(T 1, P 1 ), (T 2, P 2 ).., (T m, P m )}. Nous définissons la similarité (la pertinence) entre la requête R X et le profil du sommet Pro Z par : Pro Z.P j sim(r X, Pro Z ) = j inter(r X,Pro Z ) m Pro Z.P j + R X \ Pro Z i=1. avec : inter(r X, Por Z ) = {k {1,..m}, Pro Z.T k R X }

11 L algorithme de recommandation Éléments de l algorithme - Partie sociale : intermédiarités des nœuds Deux nœuds non adjacents k & j qui se communiquent et si le nœud i se trouve sur le chemin de communication : i est un acteur itérmédiaire. intermediarite(i) = j<k p jk (i) p jk p jk le nombre des chemins les plus cours entre j et k, p jk (i) le nombre des chemins les plus cours entre j et k passant par i.

12 Version 1 : Algorithme exhaustif L algorithme de recommandation La liste de sommets à recommander [(Z 4, P 4 ), (Z 3, P 3 ), (Z 1, P 1 ), (Z 2, P 2 )] P l j=1 P i = sim(r X, Pro Zi ) intermediarite(y j ) l si l >= 1 P i = sim(r X, Pro Zi ) sinon

13 Version 2 : Algorithme guidé L algorithme de recommandation Deuxième version permettant de trouver une solution d une façon plus efficace. Trouver le chemin de la recherche dans l arbre couvrant A. Utilisations d une heuristique permettant de choisir le sommet à visiter parmi un ensemble de sommets candidats : Algorithme de type A*, permettant de passer à chaque étape par le sommet Y minimisant l heuristique : h(y ) = (seuil sim(pro X, Pro Y )) intermediarite(y ), Jusqu à ce qu on arrive à un sommet Z à recommander pour lequel nous avons :. sim(x, Z) >= seuil

14 Validation & Expérimentations - 1 L algorithme de recommandation Évaluer la version guidée par rapport à la version exhaustive. Élaborer un ensemble de 10 requêtes à tester par un auteur X en utilisant les termes trouvés dans la communauté. Pour chaque requête appliquer les deux versions de l algorithme et relever les mesures suivantes : Le rang de l auteur trouvé par l algorithme guidé par rapport à l algorithme exhaustive. Le nombre de sommets parcours par l algorithme guidé. etc. Résultats Pour 8 expériences le rang numéro 1 est trouvé par la version guidée. L espace de recherche est réduit de de 11% jusqu à 49%..

15 Validation & Expérimentations - 2 L algorithme de recommandation N The exhaustive algorithm Recommended author Rating Computation time 1 Andrew Emili ,41s 2 G V Belle ,35s 3 Hans A Kestler ,41s 4 Jimin Pei ,61s 5 John F Canny ,99s 6 C Wang ,37s 7 J Michael Brady ,68s 8 Peter G Neumann ,72s 9 Peter Eades ,95s 10 Liang Chen s N The A* algorithm Recommended author Computation time explored graph 1 Andrew Emili (1) 109,27s 39.25% 2 G V Belle (1) 17,45s 21.13% 3 Yuichi Asahiro (2) 11,66s 13.86% 4 Jimin Pei (1) 32,52s 20.02% 5 John F Canny (1) 21,77s 11.77% 6 C Wang (1) 233,99s 49.13% 7 J Michael Brady (1) 118,74s 41.14% 8 Elizabeth J O neil (2) 40,49s 24.88% 9 Peter Eades (1) 54,47s 30.95% 10 Liang Chen (1) 14,14s 16.67%

16 Intégration d une ontologie de domaine Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie d après la thèse de V. Schickel-Zuber, EPFL, 2007 : Ontology Filtering Extension de la définition du profil utilisateur(deux représentations) Profil de base : vecteur pondéré de termes. Profil sémantique : extrait à partir du profil de base en l annotant par l ontologie de domaine ; peut être représenté par un vecteur pondéré de concept. Définition d une mesure de similarité sémantique : 1 Paramétres extraits de la structure taxonomique de l ontologie : l ancêtre le plus commun entre deux nœuds concepts ; l APS d un nœud concept ; l inférence dans l ontologie. Re-formulation de requêtes

17 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Graphes Bipartites & Réseaux collaboration Recommandation de produits = prédiction de liens dans le graphe bipartite.

18 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Exemple d une ontologie : la taxonomie de Amazon

19 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Profil de base et Profil sémantique : exemple Préférences de base Items Socre I1 5 I2 5 I6 5 I7 5 I8 1 Préférences sémantiques Concepts Socre 4 (I2 et I8) ((1+0.2)/2)=0.6 5 (I1 et I7) ((1+1)/2)=1 9 (I1 et I6) ((1+1)/2)=1

20 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les mesures structurelles - 1 : l ancêtre le plus commun b est l ancêtre le plus commun de g et i

21 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les mesures structurelles - 2 : a-priori score La probabilité que le score d un concept soit supérieur à un seuil x :P(S(C) > x) = 1 x En prenant en compte les descendants d un concept n c : P(S(C) > x) = (1 x) nc+1 Par conséquent : P(S(C) x) = (1 (1 x) nc+1 ) En passant par la fonction densité : f c (x) = d((1 (1 x)nc +1 ) dx = (n c + 1) (1 x) nc L estimation de la limite inférieure du score est : E(S(C)) = (n c + 1) 1 0 x(1 x)nc dx = 1 n c+2 APS(X ) = 1 n c+2

22 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les mesures structurelles - 2 : Exemple du APS Concepts n c APS x 0 1/2 u 0 1/2 z 0 1/2 s 1 1/3 t 2 1/4 y 5 1/7 APS(X ) = 1 n c+2

23 Les inférences dans l ontologie - 1 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Inférence de généralisation S(y x) = α(x, y)s(x), α(x, y) étant une mesure décrivant les caractéristiques en commun entre x et y. α(x, Y ) = APS(Y ) APS(X ). Inférence de spécialisation S(y x) = S(x) + β(y, x), β(y, x) étant une mesure décrivant les caractéristiques de Y mais pas celles de x. β(y, X ) = APS(Y ) APS(X ). Inférence mixte.

24 Les inférences dans l ontologie - 2 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Inférence de généralisation. Inférence de spécialisation. Inférence mixte S(y z) = S(z) + β(y, z) S(y x) = α(x, z)s(x) + β(y, z) S(y x) = α(x, LCA(x, y))s(x) + β(y, LCA(x, y))

25 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Les inférences dans l ontologie : Exemple Concepts n c APS Propagation Score x 0 1/2-1 s 1 1/3 1x( 1/3 1/2 ) = 2 3 y 5 1/7 1x( 1/7 1/2 ) = 2 7 t 2 1/4 1x( 1/7 1/2 ) + ( ) = u 0 1/2 1x( 1/7 1/2 ) + ( ) = 14 9 z 0 1/2 1x( 1/7 1/2 ) + ( ) = 14 9

26 Exemple de recommandation hybride Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Idée : Hybridation entre Score et Popularité : HS(c) = ps(c) + (1 p)p(c) item Concepts n c APS Propagation Score popularité score hybride k y 5 1/ j u 0 1/ i t 2 1/

27 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Le transfert d un score d un concept x vers y T (x, y) = S(y x) S(x) T(x,y) peut être décomposé selon : T(x,z)= α(x, z) si x z T (z, y) = 1 + β(z,y) S(z) 1 + 2β(z, y) si z y et tel que T (x, y) = T (x, z)t (z, y) La distance entre deux concepts D(x, y) = log(1 + 2β(y, z)) log(α(x, z)) maxd D(x, y) = log(1+2β(y,lca(x,y))) log(α(x,lca(x,y))) maxd

28 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Intégration d une ontologie de domaine - Application : Amazon - 1 Un graphe de collaboration extrait des données de Amazon : le graphe de co-achats : produits. Description des données : 1 Deux identificateurs : Id, ASIN. 2 Titre, groupe : (book, DVD, video ou music), rang de vente. 3 Ensemble des produits similaires. 4 Les catégories : niveau dans la hiérarchie des produits. 5 Les données de reviews : temps, user id, rating, nombre total des votes, etc. Préparations des données 1 Élaboration de la taxonomie des produits. 2 Extraction du graphe de collaboration (les nœuds sont les utilisateurs). 3 Élaboration du profil de base et du profil sémantique.

29 Extraction du profil sémantique Les mesures structurelles dans une taxonomie Les inférences dans une taxonomie Intégration d une ontologie de domaine - Application : Amazon - 2 Un graphe de collaboration extrait des données de Amazon : le graphe de co-achats : produits.. Préparations des données 1 Élaboration de la taxonomie des produits. 2 Extraction du graphe de collaboration (les nœuds sont les utilisateurs). 3 Élaboration du profil de base et du profil sémantique. Vers un système de recommandation social et sémantique : Intégration de la mesure de similarité sémantique dans l heuristique qui permet une navigation efficace dans l arbre couvrant. Aider l utilisateur à reformuler ses requêtes.

30 Conclusion & perspectives Proposition de deux algorithmes de recommandation : exhaustif et guidé : Partie structure : exploration de l arbre couvrant maximum. Partie sémantique : similarité entre la requête et le profil utilisateur. Partie sociale : utilisation de la mesure d intermédiarité. Perspectives... Élaboration plus fine du profil utilisateur. Étendre l algorithme pour des recommandations inter-communautés. Utiliser l arbre couvrant pour des fins sémantiques : Proposer ou affiner une ontologie d un domaine. Découvrir des rapprochements sémantiques entre les communautés (arbre couvrant et chemins sémantiques).

Recommandation dans les réseaux sociaux professionnels

Recommandation dans les réseaux sociaux professionnels Recommandation dans les réseaux sociaux professionnels Application sur un réseau bibliographique 6 mai 2010 Objectif et Motivation Techniques utilisées Algorithme exhaustive de recherche de toutes les

Plus en détail

Système de recommandation dans un réseau social professionnel : Phase 2

Système de recommandation dans un réseau social professionnel : Phase 2 Système de recommandation dans un réseau social professionnel : Phase Maria Malek 3 février 010 1 Traitement du réseau des citations Nous rappelons que le réseau que nous venons d extraire à partir du

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux (ARS) 18 mars 2010 Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Analyse des réseaux sociaux Définition Propriétés Utilisation & Applications Etude des entités sociales (les

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Systèmes de Recommandation. David Loup

Systèmes de Recommandation. David Loup Systèmes de Recommandation David Loup Systèmes de recommandation Plan Définition Motivations Domaine : Films Techniques / Approches Exemples Problèmes Evolution future 2/33 Définition Une plateforme pour

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1 De la donnée à la décision Sofian MAABOUT LaBRI. Université Bordeaux 1 1 Décider c est choisir, parmi plusieurs actes possibles, celui qui apparaît comme le plus pertinent pour atteindre un résultat envisagé,

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Web Data Mining Web Usage Mining

Web Data Mining Web Usage Mining Web Data Mining p. 1/1 Web Data Mining Web Usage Mining Maria Malek Options GL, ISICO & IdSI EISTI Web Data Mining p. 2/1 Fouille des Données de la Toile?!! Web Structure Mining Découverte de la connaissance

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/ Ingénierie de Systèmes Intelligents Application : Web Intelligent Maria Malek EISTI Ingénierie de Systèmes Intelligents p. 2/ Objectif Traitement Intelligent des

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Construction et enrichissement automatique d ontologie à partir de ressources externes

Construction et enrichissement automatique d ontologie à partir de ressources externes Construction et enrichissement automatique d ontologie à partir de ressources externes JFO 2009 Jeudi 3 décembre 2009 E. Kergosien (LIUPPA, Pau) M. Kamel (IRIT- UPS, Toulouse) M. Sallabery (LIUPPA, Pau)

Plus en détail

Chapitre 2 : Conception de base de données relationnelle

Chapitre 2 : Conception de base de données relationnelle Chapitre 2 : Conception de base de données relationnelle Le modèle entité-association 1. Les concepts de base 1.1 Introduction Avant que la base de données ne prenne une forme utilisable par le SGBD il

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 13 L exploration des données 13.1. Présentation de la semaine L exploration de données (ou data mining) est souvent associée à l intelligence

Plus en détail

Écrire un livre et se faire publier

Écrire un livre et se faire publier Laurence Bourgeois Écrire un livre et se faire publier, 2012 ISBN : 978-2-212-55484-7 Table des matières Sommaire... 5 Introduction... 7 Première partie Concevoir un livre pratique : un projet à la portée

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

DES SAVOIRS PROFESSIONNELS DU TRAVAIL SOCIAL Définition, construction, contenus, validation, Questions épistémologiques

DES SAVOIRS PROFESSIONNELS DU TRAVAIL SOCIAL Définition, construction, contenus, validation, Questions épistémologiques 2328 DES SAVOIRS PROFESSIONNELS DU TRAVAIL SOCIAL Définition, construction, contenus, validation, Questions épistémologiques I ENJEU SOCIAL : UN DEBAT DANS LE CHAMP PROFESSIONNEL Il existe un débat récurrent

Plus en détail

IC05 2004 Analyse de Réseaux Sociaux : perspective algorithmique

IC05 2004 Analyse de Réseaux Sociaux : perspective algorithmique IC05 2004 Analyse de Réseaux Sociaux : perspective algorithmique Eustache DIEMERT Université de Technologie de Compiègne - Réseaux, Territoires et Géographie de l Information 11 mai 2004 Réseaux Sociaux?

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA Découverte de Règles Associatives Hiérarchiques entre termes Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA 1 Plan Problématique et État de l art Nouvelle approche Approche Conceptuelle

Plus en détail

Graphes, réseaux et internet

Graphes, réseaux et internet Graphes, réseaux et internet Clémence Magnien clemence.magnien@lip6.fr LIP6 CNRS et Université Pierre et Marie Curie (UPMC Paris 6) avec Matthieu Latapy, Frédéric Ouédraogo, Guillaume Valadon, Assia Hamzaoui,...

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

INTRODUCTION AU DATA MINING. Cina MOTAMED

INTRODUCTION AU DATA MINING. Cina MOTAMED INTRODUCTION AU DATA MINING Cina MOTAMED 2 Data Mining : contexte Âge numérique : explosion des volumes de données Transactions commerciales Opérations bancaires Navigation Internet Indicateurs démographiques

Plus en détail

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON L analytique joue un rôle désormais primordial dans la réussite d une entreprise. Les pouvoirs qu elle délivre sont incontestables, cependant

Plus en détail

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre

Digital Workplace et Gestion des connaissances Concepts et mise en oeuvre Avant-propos 1. Objectif du livre 17 2. Illustrations des exemples de ce livre 18 2.1 Office 365 comme plateforme technologique pour une digital workplace 18 2.2 SharePoint et Yammer à l honneur 18 3.

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Projet : Plan Assurance Qualité

Projet : Plan Assurance Qualité Projet : Document : Plan Assurance Qualité 2UP_SPEC_DEV1 VERSION 1.00 Objet Ce document a pour objectif de définir la démarche d analyse et de conception objet ainsi les activités liées. Auteur Eric PAPET

Plus en détail

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 2. Quadrimestre 2. Pondération 4. Nombre de crédits 4

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 2. Quadrimestre 2. Pondération 4. Nombre de crédits 4 Informations de l'unité d'enseignement Implantation Cursus de Intitulé Code Institut Paul Lambin Bachelier en informatique de gestion Programmation Avancée en Java I2020 Cycle 1 Bloc 2 Quadrimestre 2 Pondération

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX Jean-Loup Guillaume Le cours http://jlguillaume.free.fr/www/teaching/syrres/ Exemple 1 : Expérience de Milgram Objectif faire transiter une lettre depuis les Nebraska à un

Plus en détail

Recherche d informations et veille marketing. Beth Krasna 17.10.2003. What you mean is what you get.

Recherche d informations et veille marketing. Beth Krasna 17.10.2003. What you mean is what you get. Recherche d informations et veille marketing Beth Krasna 17.10.2003. Le Cycle de Connaissance KM Adapter Organiser Utiliser Collaboration Publier Analyser Collecter MI Données Information Connaissance

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues Maud Ehrmann Joint Research Centre Ispra, Italie. Guillaume Jacquet Xerox

Plus en détail

Lab s Dating 56 Rencontre entreprises et laboratoires de l Université de Bretagne-Sud 07 février 2014

Lab s Dating 56 Rencontre entreprises et laboratoires de l Université de Bretagne-Sud 07 février 2014 Organisé par Lab s Dating 56 Rencontre entreprises et laboratoires de l Université de Bretagne-Sud 07 février 2014 Les relations entreprises université à travers l expérience «recherche et développement»

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Gestion des Clés Publiques (PKI)

Gestion des Clés Publiques (PKI) Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des

Plus en détail

Systèmes de recommandation de produits Projet CADI Composants Avancés pour la DIstribution

Systèmes de recommandation de produits Projet CADI Composants Avancés pour la DIstribution Journée DAPA du 26 mars 2009 Systèmes de recommandation de produits Projet CADI Composants Avancés pour la DIstribution Michel de Bollivier michel.debollivier@kxen.com Agenda Projet CADI La recommandation

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

Introduction à la méthodologie de la recherche

Introduction à la méthodologie de la recherche MASTER DE RECHERCHE Relations Économiques Internationales 2006-2007 Introduction à la méthodologie de la recherche geraldine.kutas@sciences-po.org Les Etapes de la Recherche Les étapes de la démarche Etape

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Systèmes de confiance et de réputation. Talel.Abdessalem@telecom-paristech.fr http://dbweb.enst.fr. Confiance

Systèmes de confiance et de réputation. Talel.Abdessalem@telecom-paristech.fr http://dbweb.enst.fr. Confiance Systèmes de confiance et de réputation Talel.Abdessalem@telecom-paristech.fr http://dbweb.enst.fr Une multitude de sens et de définitions : 1. Valeur subjective (sentiment, croyance) qu on associe à la

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE PROBLEME DE L ARBRE RECOUVRANT MINIMAL I - INTRODUCTION (1) Définitions (2) Propriétés, Conditions d existence II ALGORITHMES (1) Algorithme de KRUSKAL (2) Algorithme de PRIM I

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Catalogue des PFE. Comment postuler

Catalogue des PFE. Comment postuler Catalogue des PFE 2012 2013 IP-TECH propose plusieurs sujets pour des stages de PFE. Ce fascicule est destiné aux étudiants et aux professeurs de l enseignement supérieur. Il commence par un aperçu rapide

Plus en détail

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 1 UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 31 janvier 2012 Bordeaux Présentée par :Mme SABRI Aziza Encadrée par : Mme KJIRI Laila Plan 2 Contexte Problématique

Plus en détail

Supervision des réseaux et services pair à pair

Supervision des réseaux et services pair à pair Supervision des réseaux et services pair à pair Présentation des travaux de Thèse Guillaume Doyen LORIA - Université Henri Poincaré pour l obtention du Doctorat en Informatique de l université Henri Poincaré

Plus en détail

Choix de modèle en régression linéaire

Choix de modèle en régression linéaire Master pro Fouille de données Philippe Besse 1 Objectif Choix de modèle en régression linéaire La construction d un score d appétence sur les données bancaires correspond au choix et à l estimation d un

Plus en détail

Introduction aux épreuves de logique des concours ACCÈS et SESAME

Introduction aux épreuves de logique des concours ACCÈS et SESAME Introduction aux épreuves de logique des concours ACCÈS et SESAME «La chance aide parfois, le travail toujours» Vous vous apprêtez à vous lancer dans cette course contre la montre qu est l admission en

Plus en détail

Une nouvelle approche de détection de communautés dans les réseaux sociaux

Une nouvelle approche de détection de communautés dans les réseaux sociaux UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Une nouvelle approche de détection de communautés dans les réseaux sociaux Mémoire (INF 6021) pour l obtention du grade de Maîtrise

Plus en détail

Guide de recherche documentaire à l usage des doctorants. Partie 1 : Exploiter les bases de données académiques

Guide de recherche documentaire à l usage des doctorants. Partie 1 : Exploiter les bases de données académiques Guide de recherche documentaire à l usage des doctorants Partie : Exploiter les bases de données académiques Sylvia Cheminel Dernière mise à jour : décembre 04 PANORAMA DES SOURCES DOCUMENTAIRES ACADEMIQUES...

Plus en détail

Le Web sémantique, une infrastructure d'intégration de sources de données

Le Web sémantique, une infrastructure d'intégration de sources de données Le Web sémantique, une infrastructure d'intégration de sources de données Chantal Reynaud Université Paris X & LRI (Université Paris-Sud & CNRS), UR INRIA Futurs Plan de l'exposé 1. Importance du point

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro]

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro] [] Indexation conceptuelle application au domaine biomédical Mesures de similarité dans les ontologies Sylvie Ranwez Sébastien Harispe LGI2P de l école des mines d Alès équipe KID (Knowledge and Image

Plus en détail

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition L'apport de la sémantique et de la linguistique statistique pour le SEO SEO Camp'us -4 et 5 février 2009 Philippe YONNET Directeur du pôle métiers Aposition Président de l association SEOCamp Comment classer

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Technologies et Knowledge Management. Knowledge Management. Panorama des technologies. Gilles Balmisse. Journée EGIDE - 4 mars 2003 1

Technologies et Knowledge Management. Knowledge Management. Panorama des technologies. Gilles Balmisse. Journée EGIDE - 4 mars 2003 1 Journée EGIDE - 4 mars 2003 1 Knowledge Management Panorama des technologies Journée EGIDE - 4 mars 2003 2 AU SOMMAIRE Introduction PARTIE 1 Panorama des technologies PARTIE 2 Portail de KM Conclusion

Plus en détail

Instructions relatives à la soumission d une question sur le sujet d étude

Instructions relatives à la soumission d une question sur le sujet d étude Programme de bourses de recherche Amy Mahan pour évaluer l impact de l accès public aux TIC Instructions relatives à la soumission d une question sur le sujet d étude Table des matières À propos la Question

Plus en détail

Raisonnement symbolique et géométrique pour la robotique mobile

Raisonnement symbolique et géométrique pour la robotique mobile Introduction à la réunion finale Raisonnement symbolique et géométrique pour la robotique mobile J. Guitton, J.L. Farges Control Architectures of Robots - Bourges - 30 mai 2008 1 Plan Introduction Vers

Plus en détail

Réseau Sociaux Plan. 1. Historique. 2. Définition et fonctionnalités. 3. Usages actuels. 4. Tendances. 5. Problématiques de recherche

Réseau Sociaux Plan. 1. Historique. 2. Définition et fonctionnalités. 3. Usages actuels. 4. Tendances. 5. Problématiques de recherche Réseaux Sociaux Révolution des usages sur Internet, et nouvelles problématiques de recherche Pierre Maret, Laboratoire Hubert Curien, St-Etienne Adrien Joly, Alcatel-Lucent Bell Labs France, Villarceaux

Plus en détail

AT41 - «Métropoles et réseaux»

AT41 - «Métropoles et réseaux» AT41 - «Métropoles et réseaux» Une approche par la théorie des graphes Plan Problématiques Quelques définitions Théorie des graphes: 1. Partitionnement de graphe : ex. les communautés 2. Analyse des réseaux

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Journée Rencontres Académiques SCS

Journée Rencontres Académiques SCS Journée Rencontres Académiques SCS 24/01/2012 Prof. Frédéric Precioso Knowledge Extraction, Integration & Algorithms (KEIA) http://keia.i3s.unice.fr/ 2 /35 Permanents Célia Pereira da Costa, Christel Dartigues,

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Stratégie webmarketing

Stratégie webmarketing Stratégie webmarketing OBJECTIFS - Comprendre et maîtriser les différents techniques et leviers de promotion online utilisés par les professionnels Chefs d entreprise, créateurs d entreprise, webmasters,

Plus en détail

Partie I Stratégies relationnelles et principes d organisation... 23

Partie I Stratégies relationnelles et principes d organisation... 23 Introduction......................................................................... 1 1. Définition........................................................................ 2 1.1 Le CRM comme processus

Plus en détail

Les apports de Praxeme et son articulation avec les référentiels de pratiques

Les apports de Praxeme et son articulation avec les référentiels de pratiques Les apports de Praxeme et son articulation avec les référentiels de pratiques Praxeme dans le paysage de la méthodologie Référence PxSLB-SYD-06 Version 1.0 www.praxeme.org info@praxeme.org Objectif de

Plus en détail

La définition de l examen critique par les pairs dans le contexte du processus AEO

La définition de l examen critique par les pairs dans le contexte du processus AEO Module 5 Examen critique par les pairs Aperçu Ce module souligne l importance de l examen critique par les pairs de l évaluation et du rapport environnemental intégrés, notamment pour en assurer la crédibilité

Plus en détail

Les classements des revues SHS, affichés sur le site de l AERES. Le cas des revues de psychologie

Les classements des revues SHS, affichés sur le site de l AERES. Le cas des revues de psychologie Les classements des revues SHS, affichés sur le site de l AERES. Le cas des revues de psychologie Classement dans les 15 domaines SHS Domaine Mise en ligne Catégories Anthropologie - Ethnologie 10/02/10

Plus en détail

Localisation de ressources dans les réseaux CDN

Localisation de ressources dans les réseaux CDN Cas de la VoD LIP6 DESIR - FT R&D Octobre 2008 Plan Introduction 1 Introduction 2 3 4 Introduction DESIR : DÉcision, Systèmes Intelligents et Recherche opérationnelle La recherche opérationnelle : (boite

Plus en détail

Méthodes de Résolution de problèmes En Intelligence Artificielle

Méthodes de Résolution de problèmes En Intelligence Artificielle Méthodes de Résolution de problèmes En Intelligence Artificielle Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une

Plus en détail

Intelligence Artificielle Jeux

Intelligence Artificielle Jeux Intelligence Artificielle Jeux Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes Programmation

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail

CENTRE FORMATION CONTINUE PANTHEON SORBONNE DIPLÔME D UNIVERSITE A.C.O.P.

CENTRE FORMATION CONTINUE PANTHEON SORBONNE DIPLÔME D UNIVERSITE A.C.O.P. CENTRE FORMATION CONTINUE PANTHEON SORBONNE DIPLÔME D UNIVERSITE A.C.O.P. «A U D I T & C O N T R Ô L E DES O R G A N I S A T I O N S P U B L I Q U E S» U N I V E R S I T E P A R I S 1 P A N T H E O N -

Plus en détail

Management par les processus Les facteurs clés de succès. Lionel Di Maggio Master 1 MIAGE

Management par les processus Les facteurs clés de succès. Lionel Di Maggio Master 1 MIAGE Management par les processus Les facteurs clés de succès Lionel Di Maggio Master 1 MIAGE 1 1. Objectifs et définitions 2. Le retour sur investissement des démarches 3. Les éléments structurants 4. Mise

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

TERMES DE REFERENCE. Pour le recrutement de 3 consultants pour l élaboration d un guide de gouvernance au profit de la société civile

TERMES DE REFERENCE. Pour le recrutement de 3 consultants pour l élaboration d un guide de gouvernance au profit de la société civile TERMES DE REFERENCE Pour le recrutement de 3 consultants pour l élaboration d un guide de gouvernance au profit de la société civile Date : à partir du 10 novembre 2014 Projet d appui au processus constitutionnel,

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015 Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x

Plus en détail

Toute la puissance de DoYouBuzz pour votre école. Présentation de DoYouBuzz Campus

Toute la puissance de DoYouBuzz pour votre école. Présentation de DoYouBuzz Campus Toute la puissance de pour votre école Présentation de Campus Présentation du service de CVthèque est un service web simple et intuitif qui permet à chaque étudiant de se créer son propre CV web. Notre

Plus en détail

Apprentissage de structure dans les réseaux bayésiens pour

Apprentissage de structure dans les réseaux bayésiens pour Apprentissage de structure dans les réseaux bayésiens pour la détection d événements vidéo Siwar Baghdadi 1, Claire-Hélène Demarty 1, Guillaume Gravier 2, et Patrick Gros 3 1 Thomson R&D France, 1 av Belle

Plus en détail

Rédiger un rapport technique

Rédiger un rapport technique Rédiger un rapport technique Prof. N. Fatemi Plan Introduction Présentation écrite Programmation du travail Rédaction Conseils génériques Références 2 Introduction Objectifs du cours Savoir étudier un

Plus en détail

Segmentation basée sur les vecteurs propres : vue unifiée

Segmentation basée sur les vecteurs propres : vue unifiée Segmentation basée sur les vecteurs propres : vue unifiée Papier Y. Weiss : Segmentation using eigenvectors: a unifying view Proceedings IEEE International Conference on Computer Vision p. 975-982 (1999)

Plus en détail

Modélisation et Optimisation de la Planification de Réseaux Sans Fil

Modélisation et Optimisation de la Planification de Réseaux Sans Fil Modélisation et Optimisation de la Planification de Réseaux Sans Fil Thèse soutenue le 8 décembre 2008 par Alexandre GONDRAN Devant le Jury : M. Jean-Marie GORCE rapporteur Pr, INSA Lyon M. Olivier HUDRY

Plus en détail

ENT : usages pédagogiques

ENT : usages pédagogiques B Bureau des Missions Pédagogiques ENT : usages pédagogiques Préparer des TPE* Paternité Date, version 2013, 1.12 Académie de Montpellier, Bureau des Missions Pédagogiques Enseignement obligatoire en classe

Plus en détail

Optimisation d'itinéraire dans les espaces ouverts : application du SIG à la course d'orientation

Optimisation d'itinéraire dans les espaces ouverts : application du SIG à la course d'orientation Optimisation d'itinéraire dans les espaces ouverts : application du SIG à la course d'orientation Hervé QUINQUENEL IGN\ENSG Octobre 2013 1 Plan L ENSG Contexte de l étude Méthode Résultats Conclusions

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux Introduction à l Analyse des Réseaux Sociaux Erick Stattner Laboratoire LAMIA Université des Antilles et de la Guyane, France erick.stattner@univ-ag.fr Guadeloupe, Novembre 2012 Erick Stattner Introduction

Plus en détail

Concevoir un produit facile à utiliser

Concevoir un produit facile à utiliser Éric BRANGIER et Javier B ARCENILLA Concevoir un produit facile à utiliser Adapter les technologies à l homme Éditions d Organisation, 2003 ISBN : 2-7081-2900-7 Sommaire AVANT-PROPOS...1 Chapitre 1 LA

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Méthode d extraction des signaux faibles

Méthode d extraction des signaux faibles Méthode d extraction des signaux faibles Cristelle ROUX GFI Bénélux, Luxembourg cristelle.roux@gfi.be 1. Introduction Au début d une analyse stratégique, la première question posée est très souvent la

Plus en détail

Cookies de session ils vous permettent de sauvegarder vos préférences d utilisation et optimiser l expérience de navigation de l Utilisateur ;

Cookies de session ils vous permettent de sauvegarder vos préférences d utilisation et optimiser l expérience de navigation de l Utilisateur ; Ce site utilise des Cookies, émis également par des tiers, pour des raisons de fonctionnalité, pratiques et statistiques indiquées dans notre politique en matière de Cookies. Politique en matière de Cookies

Plus en détail