MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var.

Dimension: px
Commencer à balayer dès la page:

Download "MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln."

Transcription

1 MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var.

2 Plan Introduction Généralités sur les systèmes de détection d intrusion (IDS) Classification des IDS Méthodes de détection approche comportementale approche par scénarios Quelques systèmes présents sur le marché

3 Modèle général d IDS Source Données Brutes Capteur Sonde Analyseur Evénements Manager Alertes Modèle général de systême de détection d intrusions

4 Introduction Système de détection d intrusion : processus de découverte et d analyse de comportement hostile dirigé vers le système d information informations collectées par des sondes traitement des informations comparaison avec des données de référence qui correspondent à des opérations interdites ou autorisées si anomalie : déclenchement d une alarme et eventuellement activation d une réponse active

5 Modèle de fonctionnement des IDS réponse de l administrateur Données de référence (signatures, profils) Données de configuration (comment répondre à une attaque) système surveillé Administration du système de sécurité Traitement Collecte d information d audit Stockage des donnés d audit (détection) Alarmes Données en cours de traitement réponse active à l intrusion

6 Notions de base faux-positif : détection en absence d attaque alarme générée par un IDS pour un évènement légal faux-négatif : abscence de détection en présence d attaque non génération d alarme par un IDS pour un évènement illégal log : ligne d un fichier d un logiciel qui enregistre les données transitant sur un système pour le surveiller ou faire des statistiques fichier log : contient les évènements s étant produits sur un système

7 Classification des IDS IDS systéme (HIDS) analyse du fonctionnement ou de l état du système IDS réseaux (NIDS) analyse du trafic réseau IDS hybrides constitués d IDS et de NIDS

8 Modèle Common Intrusion Detection Framework (CIDF) IDS contre-mesure D-box Moteur d analyse A-box Stockage C-box Générateur d évènements E-box Source (Rseaux, log,...) acquisition

9 Les composants d un IDS les sondes la console de gestion le concentrateur d évènements la console d alerte

10 Classification des IDS (L. Mé) OS source de données applications réseau autres IDS méthode de détection approche comportementale Système de détection d intrusion approche par scénarios architecture (collecte et analyse) centralisée distribuée granularité de l analyse par lot continue comportement après détection informatif défensif contre-attaquant

11 Méthodes de détection Modèles comportementaux (J. P. Anderson 1980) (anomaly detection) Détection d anomalies constatées sur le Système d Information phase d apprentissage du comportement normal du système puis détection toute déviation par rapport au comportement normal phase d apprentissage : etablir des profils correspondant aux comportements normaux par respect de la politique de sécurité par fonctionnement naturel des applications par habitude des utilisateurs

12 IDS probabiliste profil : définition du fonctionnement d une application construction du profil : à partir des évènements observés établissement de règles apprentissage des probabilités liées à chaque séquence dévènements suite d évènements E 1, E i probabilité de E i+1 si E i+1 n est pas prévu par le profil ou si E i+1 apparaît trop souvent par rapport à la probabilité du profil ou si E i+1 n est pas l évènement attendu par le profil alors une alarme est levée

13 IDS probabiliste Avantages construction du profil simple et dynamique réduction de faux positifs Inconvénients risque de déformation progressive du profil par des attaques répétées mise en place d un mécanisme d observation du profil

14 IDS statistique (D. E. Denning 1987) construction du profil : à partir des variables aléatoires echantillonnées à intervalles réguliers. attribution de valeurs statistiques aux différentes variables utilisées : taux d occupation mémoire l utilisation des processeurs la durée et l heure des connexions, utilisation d un modèle statistique : pour construire la distribution de chaque variable pour mesurer le taux de déviation entre comportement courant et passé

15 IDS statistique Avantages permet de détecter des attaques inconnues habitudes des utilisateurs apprises automatiquement Inconvénients difficulté de construire un modèle universel complexité en termes de maintenance

16 IDS à réseaux de neurones (H. Debar, M. Becker, D. Siboni 1992) surveillance directe du comportement des utilisateurs Chaque utilisateur peut être identifié par son comportement ses habitudes de travail ses activités ses outils de travail, profil : série de paramètres concernant l utilisateur construction du profil : réseau de neurones qui reconnaît une suite d opérations effectuées par l utilisateur but : prédire l action suivante de l utilisateur, en cas d échec une alerte est levée

17 IDS à réseaux de neurones paramètre important : nombre d opérations sur lequel se base la prédiction entrée sortie fonctions de combinaison fonctions d activation Réseau de neurones

18 adaptés pour la détection : chevaux de Troie détournement d identité contournement d identification fiabilité mise en oeuvre IDS à réseaux de neurones Avantages Inconvénients construction du réseau paramétrage du réseau complexité pbs spécifiques liés aux réseaux de neurones

19 Autres approches Immunologie analogie avec le système immunitaire biologique basé sur le principe de reconnaissance de cellules étrangères comparaison du comportement observé et du comportement de référence Graphes modèle à base de graphes Système Expert + Data mining

20 Discussion sur les modèles comportementaux Avantages capacités de détecter de nouvelles attaques besoin de peu de maintenance Inconvénients risque d attaque lors de la construction des profils pas adapté au changement d entité modelisée évolution des profils au cours du temps peut être vu comme une faille

21 IDS par scénarios (S. E. Smaha 1988) ou à bibliothèques de signatures (misuse detection ou knowledge based detection) modélisation des comportements interdits signature de l attaque : spécifications propres de l attaque cas HIDS : analyse des actions d un utilisateur cas NIDS : vérification du flux d informations sur le réseau L IDS émet l hypothèse d un scénario d attaque s il sagit d un scénario connu dans la bibliothèque de signatures alors une alarme esr déclenchée

22 IDS à recherche de motifs recherche d une séquence d informations particulières dans un évènement d audit problème classique de reconnaissance de langage méthodes : Petri, machine de Turing, automates à états, réseaux de Langages de description des signatures d attaques : grande expressivité facilité d implantation STATL : description de plusieurs attaques en termes d états et de transitions ADeLe : donnée description unique et de haut niveau d une attaque

23 IDS à recherche de motifs Avantages efficace : algorithmes de Pattern matching fiable : déterministe et exacte Inconvénients mise en place des motifs : exigences contradictoires précis : eviter trop de faux-positifs générique : eviter trop de faux-négatifs

24 IDS à détection par inférences basé sur le principe d inférence de Bayes attaques connues : hypothèses pouvant expliquer les faits observés P (A S) = P (A) P (S A) c A : attaque, P (A) : probabilité de l occurence de A S : symptômes apparaissant sous forme dévènements dans l audit P (S A) :probabilité que A fasse apparaître S méthode calcul de la probabilité de chaque scénario d attaque sachant les symptômes P (A S) si probabilité élevée alors une alerte levée

25 IDS à détection par inférences Avantages minimisation du risque de non détection d une attaque seules les attaques inconnues ne sont pas détectées Inconvénients construction de la base d attaques : important travail d expert exhaustivité des symptômes définis pertinence des hypothèses formulées réalismes des probabilités associées aux hypothèses

26 IDS par model checking signature : formule de la logique temporelle du premier ordre (logique modale) F : il existe un état ultérieur où F est vrai séquence dévènements : sémantique de Kripke chercher si une signature satisfait un évènement : la formule de la logique temporelle admet un modèle implantation dans ORCHIDS (J. Goubault-Larrecq)

27 Discussion sur les modèles par scénarios Avantages fiabilité pour les attaques connues Inconvénients maintenance active, mise à jour régulière langage de description d attaque (pas d unanimité)

28 Quelques systèmes présents sur le marché snort Benids ttoomey/benids Hank Prelude Firestorm Bro

29 Liens utiles puis cliquer sur detection intrusions : présente les attaques les plus fréquentes dans le monde bibliographie Stephen Northcutt, Judy Novak, Donald Mc Lachlan : Détection des intrusions réseaux. CampusPress Thierry Evangelista : Les IDS - Les systèmes de détection des intrusions informatiques. Dunod / 01 Informatique Jack Koziol : Référence Snort 2. Campuspress Stephen Northcutt, Judy Novak : Network Intrusion Detection: An Analyst s Handbook (3nd Edition). New Riders. 2002

AUFFRAY Guillaume PALIX Nicolas SERRE Samuel. Intégrité des serveurs

AUFFRAY Guillaume PALIX Nicolas SERRE Samuel. Intégrité des serveurs AUFFRAY Guillaume PALIX Nicolas SERRE Samuel Intégrité des serveurs Plan de la présentation Intégrité physique Construction de la salle Intégrité des sauvegardes Protection des PC portables Protection

Plus en détail

Les IDS et IPS Open Source. Alexandre MARTIN Jonathan BRIFFAUT

Les IDS et IPS Open Source. Alexandre MARTIN Jonathan BRIFFAUT Les IDS et IPS Open Source Alexandre MARTIN Jonathan BRIFFAUT Plan Présentation Générale des IDS Les différents type d IDS Les méthodes de détection Présentation Générale des IPS Ou placer un IDS / IPS?

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Sensibilisation à la sécurité informatique

Sensibilisation à la sécurité informatique Sensibilisation à la sécurité informatique Michel Salomon IUT de Belfort-Montbéliard Département d informatique Michel Salomon Sécurité 1 / 25 Sensibilisation à la sécurité informatique Généralités et

Plus en détail

Détection d'intrusions et analyse forensique

Détection d'intrusions et analyse forensique Détection d'intrusions et analyse forensique Yann Berthier & Jean-Baptiste Marchand Hervé Schauer Consultants Agenda Agenda Préambule IDS / IPS : principes - limites Au delà des IDS Conclusion Démonstrations

Plus en détail

Les systèmes de détection d intrusion réseau

Les systèmes de détection d intrusion réseau Claude Duvallet Université du Havre UFR Sciences et Techniques Courriel : Claude.Duvallet@gmail.com Claude Duvallet 1/42 Plan de la présentation 1 Introduction et contexte 2 3 4 Claude Duvallet 2/42 Introduction

Plus en détail

Orange Business Services. Direction de la sécurité. De l utilisation de la supervision de sécurité en Cyber-Defense? JSSI 2011 Stéphane Sciacco

Orange Business Services. Direction de la sécurité. De l utilisation de la supervision de sécurité en Cyber-Defense? JSSI 2011 Stéphane Sciacco De l utilisation de la supervision de sécurité en Cyber-Defense? Orange Business Services Direction de la sécurité JSSI 2011 Stéphane Sciacco 1 Groupe France Télécom Sommaire Introduction Organisation

Plus en détail

Utilisation de cartes de Kohonen pour détecter des intrusions dans un système informatique :

Utilisation de cartes de Kohonen pour détecter des intrusions dans un système informatique : Utilisation de cartes de Kohonen pour détecter des intrusions dans un système informatique : une pré-étude Ludovic Mé, Véronique Alanou et Jörg Abraham Supélec - Avenue de la Boulaie - 55 Cesson Sévigné

Plus en détail

SECURIDAY 2013 Cyber War

SECURIDAY 2013 Cyber War Club de la Sécurité Informatique à l INSAT Dans le cadre de la 3ème édition de la journée nationale de la sécurité informatique SECURIDAY 2013 Cyber War SECURINETS Présente Formateurs: 1. Trabelsi NAJET

Plus en détail

I.D.S. Systèmes de détection d intrusion - Link Analysis. par: FOUQUIN MATHIEU. responsable: AKLI ADJAOUTE DEVÈZE BENJAMIN.

I.D.S. Systèmes de détection d intrusion - Link Analysis. par: FOUQUIN MATHIEU. responsable: AKLI ADJAOUTE DEVÈZE BENJAMIN. EPITA SCIA PROMO 2005 14-16 rue Voltaire 94270 Kremlin-Bicêtre I.D.S. Systèmes de détection d intrusion - Link Analysis Juillet 2004 par: DEVÈZE BENJAMIN FOUQUIN MATHIEU responsable: AKLI ADJAOUTE TABLE

Plus en détail

Notions de sécurités en informatique

Notions de sécurités en informatique Notions de sécurités en informatique Bonjour à tous, voici un article, vous proposant les bases de la sécurité informatique. La sécurité informatique : Vaste sujet, car en matière de sécurité informatique

Plus en détail

Recherche et détection des patterns d attaques dans les

Recherche et détection des patterns d attaques dans les Recherche et détection des patterns d attaques dans les réseaux IP à hauts débits Abdelhalim Zaidi To cite this version: Abdelhalim Zaidi. Recherche et détection des patterns d attaques dans les réseaux

Plus en détail

Firewall IDS Architecture. Assurer le contrôle des connexions au. nicolas.hernandez@univ-nantes.fr Sécurité 1

Firewall IDS Architecture. Assurer le contrôle des connexions au. nicolas.hernandez@univ-nantes.fr Sécurité 1 Sécurité Firewall IDS Architecture sécurisée d un réseau Assurer le contrôle des connexions au réseau nicolas.hernandez@univ-nantes.fr Sécurité 1 Sommaire général Mise en oeuvre d une politique de sécurité

Plus en détail

Modélisation de détection d intrusion par des jeux probabilistes

Modélisation de détection d intrusion par des jeux probabilistes Modélisation de détection d intrusion par des jeux probabilistes Mémoire de maîtrise Présenté par Madjid Ouharoun sous la direction de Prof. Kamel Adi et Prof. Andrzej Pelc Département d informatique et

Plus en détail

Formation A2IMP. Acquisition d information sur les autres équipements du réseau. Frédéric Bongat IPSL Formation A2IMP 1

Formation A2IMP. Acquisition d information sur les autres équipements du réseau. Frédéric Bongat IPSL Formation A2IMP 1 Formation A2IMP Acquisition d information sur les autres Frédéric Bongat IPSL Formation A2IMP 1 Idée : corréler des informations via d autres Informations de base Connaître l horodatage (date, heure) des

Plus en détail

MODÉLISATION ET CLASSIFICATION AUTOMATIQUE DES INFORMATIONS DE SÉCURITÉ. le grade de docteur

MODÉLISATION ET CLASSIFICATION AUTOMATIQUE DES INFORMATIONS DE SÉCURITÉ. le grade de docteur Numéro d ordre 2009-ISAL-XXXX Année 2009 Thèse MODÉLISATION ET CLASSIFICATION AUTOMATIQUE DES INFORMATIONS DE SÉCURITÉ présentée devant L Institut National des Sciences Appliquées de Lyon pour obtenir

Plus en détail

Visualisation appliquée à la détection d intrusions

Visualisation appliquée à la détection d intrusions Visualisation appliquée à la détection d intrusions Pierre Chifflier Sébastien Tricaud INL 101/103 Bvd MacDonald 75019 Paris, France Paris, OSSIR 2008 Sommaire 1 Introduction aux IDS Petit tour de la détection

Plus en détail

Le contournement de produits de sécurité

Le contournement de produits de sécurité Le contournement de produits de sécurité Jean-Baptiste Bédrune Sogeti / ESEC jean-baptiste.bedrune(at)sogeti.com Yoann Guillot Sogeti / ESEC yoann.guillot(at)sogeti.com Roadmap J.B. Bédrune & Y. Guillot

Plus en détail

Analyse de protocoles binaires avec les N-Grams

Analyse de protocoles binaires avec les N-Grams Analyse de protocoles binaires avec les N-Grams N-Gram against the Machine : On the Feasibility of the N-Gram network Analysis for Binary Protocols Thomas LETAN 26 novembre 2012 Objectifs des auteurs :

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Une Architecture de Bureaux Graphiques Distants Sécurisée et Distribuée

Une Architecture de Bureaux Graphiques Distants Sécurisée et Distribuée Une Architecture de Bureaux Graphiques Distants Sécurisée et Distribuée J. Rouzaud-Cornabas Laboratoire d Informatique Fondamentale d Orléans Université d Orléans Batiment IIIA, Rue Léonard de Vinci 45067

Plus en détail

Rapport de certification

Rapport de certification Rapport de certification Évaluation EAL 2 + du produit Data Loss Prevention Version 11.1.1 Préparé par : Le Centre de la sécurité des télécommunications Canada à titre d organisme de certification dans

Plus en détail

Système de contrôle du trafic d une ligne de métro Dossier de tests

Système de contrôle du trafic d une ligne de métro Dossier de tests Système de contrôle du trafic d une ligne de métro Dossier de tests Tests NI557/STL/M2/INFO/UPMC Action Date Auteur Statut Création 05/03/2012 P.Manoury En cours 1 Description et exigences fonctionnelles

Plus en détail

Rapport de certification

Rapport de certification Rapport de certification Évaluation EAL 2 + du système d exploitation Data Domain version 5.2.1.0 Préparé par : Le Centre de la sécurité des télécommunications Canada à titre d organisme de certification

Plus en détail

DESCRIPTIF DES PROJETS 3EME ANNEE QUI SERONT PRESENTES LORS DE LA JOURNEE DE PROJET DE FIN D ETUDE LE 26/01/2012

DESCRIPTIF DES PROJETS 3EME ANNEE QUI SERONT PRESENTES LORS DE LA JOURNEE DE PROJET DE FIN D ETUDE LE 26/01/2012 DA Télémédecine et SI de Santé DESCRIPTIF DES PROJETS 3EME ANNEE QUI SERONT PRESENTES LORS DE LA JOURNEE DE PROJET DE FIN D ETUDE LE 26/01/2012 PROJET N 1 : IMPLEMENTATION D'UNE INTERFACE SWEETHOME DEDIEE

Plus en détail

Pages. SOMMAIRE INTRODUCTION GENERALE..02 I. CONTEXTE ET MOTIVATION. 1. Contexte. 2. Motivation

Pages. SOMMAIRE INTRODUCTION GENERALE..02 I. CONTEXTE ET MOTIVATION. 1. Contexte. 2. Motivation Pages. SOMMAIRE 01 INTRODUCTION GENERALE..02 I. CONTEXTE ET MOTIVATION 0 1. Contexte. 0 2. Motivation.0 II. DEFINITIONS..04 III. OBJECTIFS DES SYSTEMES DE DETECTION D'INTRUSIONS.06 IV. LES TYPES DE SYSTEMES

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

DATASET / NETREPORT, propose une offre complète de solutions dans les domaines suivants:

DATASET / NETREPORT, propose une offre complète de solutions dans les domaines suivants: Présentation Société DATASET / NETREPORT, propose une offre complète de solutions dans les domaines suivants: Outils d aide à la décision Gamme DATASET Solutions de gestion temps réel du système d information

Plus en détail

Langage déclaratif pour la détection d intrusions

Langage déclaratif pour la détection d intrusions Langage déclaratif pour la détection d intrusions Mémoire Papa Maleye Niang Maîtrise en informatique avec mémoire Maître ès sciences (M.Sc.) Québec, Canada Papa Maleye Niang, 2014 Résumé Ce mémoire présente

Plus en détail

RSA ADAPTIVE AUTHENTICATION

RSA ADAPTIVE AUTHENTICATION RSA ADAPTIVE AUTHENTICATION Plate-forme complète d authentification et de détection des fraudes D UN COUP D ŒIL Mesure du risque associé aux activités de connexion et de postconnexion via l évaluation

Plus en détail

Structure interne d un IDS

Structure interne d un IDS Structure interne d un IDS vcars 2003 Laurent Oudot oudot@rstack.org http://www.rstack.org/oudot vcars 2003-21 mai, Autrans - Oudot Laurent : "Structure interne d'un IDS" Page 1 Bibliographie Intrusion

Plus en détail

Catalogue Audit «Test Intrusion»

Catalogue Audit «Test Intrusion» Catalogue Audit «Test Intrusion» Ne plus imaginer son niveau de sécurité : Le mesurer! À CHACUN SON APPROCHE! 1. par un «Scénario» L objectif est de réaliser un scénario d attaque concret de son Système

Plus en détail

Nouveaux outils de consolidation de la défense périmétrique

Nouveaux outils de consolidation de la défense périmétrique HERVÉ SCHAUER CONSULTANTS Cabinet de Consultants en Sécurité Informatique depuis 1989 Spécialisé sur Unix, Windows, TCP/IP et Internet Prévention d'intrusion Nouveaux outils de consolidation de la défense

Plus en détail

Indicateur et tableau de bord

Indicateur et tableau de bord Agenda Indicateur et tableau de bord «La sécurité n est pas une destination mais un voyage» 1. Jean-François DECHANT & Philippe CONCHONNET jfdechant@exaprobe.com & pconchonnet@exaprobe.com +33 (0) 4 72

Plus en détail

Retour d expérience sur Prelude

Retour d expérience sur Prelude Retour d expérience sur Prelude OSSIR Paris / Mathieu Mauger Consultant Sécurité (Mathieu.Mauger@intrinsec.com) Guillaume Lopes Consultant Sécurité (Guillaume.Lopes@Intrinsec.com) @Intrinsec_Secu 1 Plan

Plus en détail

Systèmes de détection d'intrusion

Systèmes de détection d'intrusion INSA de Toulouse 5ème année Réseaux et Télécommunications 2011 2012 Systèmes de détection d'intrusion Rodolphe Ortalo Informations document Titre : Créé le : 2004 05 10 22:34, Rodolphe Ortalo Modifié le

Plus en détail

Génie logiciel. Concepts fondamentaux. Bruno MERMET, Université du Havre 1

Génie logiciel. Concepts fondamentaux. Bruno MERMET, Université du Havre 1 Génie logiciel Concepts fondamentaux Bruno MERMET, Université du Havre 1 Nécessité du Génie Logiciel Bruno MERMET, Université du Havre 2 Développement d un logiciel Caractéristiques souhaitées : Adéquation

Plus en détail

Détection des intrusions : vers moins d empirisme

Détection des intrusions : vers moins d empirisme Détection des intrusions : vers moins d empirisme Ludovic Mé ludovic.me@supelec.fr http://www.rennes.supelec.fr/ren/perso/lme/ Novembre 2009 logo Ludovic Mé - ludovic.me@supelec.fr D.I. : vers moins d

Plus en détail

IPS : Corrélation de vulnérabilités et Prévention des menaces

IPS : Corrélation de vulnérabilités et Prévention des menaces IPS : Corrélation de vulnérabilités et Prévention des menaces SIM+IPS opensource David Bizeul & Alexis Caurette C O N N E C T I N G B U S I N E S S & T E C H N O L O G Y Définitions SIM : Security Information

Plus en détail

la solution vidéo numérique qui offre une surveillance simple et puissante t: +44 (0)1202 723535 e: sales@tdsi.co.uk w: www.tdsi.co.

la solution vidéo numérique qui offre une surveillance simple et puissante t: +44 (0)1202 723535 e: sales@tdsi.co.uk w: www.tdsi.co. la solution vidéo numérique qui offre une surveillance simple et puissante t: +44 (0)1202 723535 e: sales@tdsi.co.uk w: www.tdsi.co.uk Sommaire 3 Qu est-ce que VUgarde? 4 Modules du système 5 Capacités

Plus en détail

La sécurité informatique dans la petite entreprise Etat de l'art et Bonnes Pratiques (2ième édition)

La sécurité informatique dans la petite entreprise Etat de l'art et Bonnes Pratiques (2ième édition) Généralités sur la sécurité informatique 1. Introduction 13 2. Les domaines et normes associés 16 2.1 Les bonnes pratiques ITIL V3 16 2.1.1 Stratégie des services - Service Strategy 17 2.1.2 Conception

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

ModSecurity. Cible de sécurité CSPN Version 0.96

ModSecurity. Cible de sécurité CSPN Version 0.96 Cible de sécurité CSPN Version 0.96 TABLE DES MATIERES 1 IDENTIFICATION... 3 1.1 IDENTIFICATION DE LA CIBLE DE SECURITE... 3 1.2 IDENTIFICATION DU PRODUIT... 3 2 ARGUMENTAIRE (DESCRIPTION) DU PRODUIT...

Plus en détail

ÉTAT DES LIEUX DE LA GESTION DE LA SÉCURITÉ ET DU BIG DATA

ÉTAT DES LIEUX DE LA GESTION DE LA SÉCURITÉ ET DU BIG DATA ÉTAT DES LIEUX DE LA GESTION DE LA SÉCURITÉ ET DU BIG DATA Plan d évolution du Big Data en matière d analyse prédictive de la sécurité AVANTAGES CLÉS Ce livre blanc aborde les points suivants : La complexité

Plus en détail

MailCube MC 2. 2,5 jours / homme / an. 33 milliards de kwh. 17 millions de. 3,1 millions de. nouvelle génération. Le spam en quelques chiffres :

MailCube MC 2. 2,5 jours / homme / an. 33 milliards de kwh. 17 millions de. 3,1 millions de. nouvelle génération. Le spam en quelques chiffres : Le spam en quelques chiffres : Pour faire face à cet afflux de courriers électroniques non désirés Vade Retro Technology lance une nouvelle génération de sa solution appliance MailCube. Le nouveau boîtier

Plus en détail

Laboratoire de Haute Sécurité. Télescope réseau et sécurité des réseaux

Laboratoire de Haute Sécurité. Télescope réseau et sécurité des réseaux Laboratoire de Haute Sécurité Télescope réseau et sécurité des réseaux Frédéric Beck (SED) & Olivier Festor (Madynes) CLUSIR Est - 15 Décembre 2011 Inria : Institut de recherche en sciences du numérique

Plus en détail

Bibliographie. Gestion des risques

Bibliographie. Gestion des risques Sécurité des réseaux informatiques Bernard Cousin Université de Rennes 1 Sécurité des réseaux informatiques 1 Introduction Risques Attaques, services et mécanismes Les attaques Services de sécurité Mécanismes

Plus en détail

DÉTECTION D ANOMALIES COMPORTEMENTALES APPLIQUÉE À LA VISION GLOBALE. le grade de docteur

DÉTECTION D ANOMALIES COMPORTEMENTALES APPLIQUÉE À LA VISION GLOBALE. le grade de docteur Numéro d ordre 2008-ISAL-XXX Année 2008 Thèse DÉTECTION D ANOMALIES COMPORTEMENTALES APPLIQUÉE À LA VISION GLOBALE présentée devant L Institut National des Sciences Appliquées de Lyon pour obtenir le grade

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Principe et règles d audit

Principe et règles d audit CHAPITRE 2 Principe et règles d audit 2.1. Principe d audit Le principe et les règles d audit suivent logiquement l exposé précédent. D abord, comme dans toute branche de l activité d une entreprise, l

Plus en détail

Stockeurs numériques Dynrec

Stockeurs numériques Dynrec Stockeurs numériques Base PC Analogiques et Hybrides (Ip) Vos images sont précieuses -pcbased-2007/2 Une gamme complète, avec deux lignes de stockeurs Avance et, répondant à tous les besoins de la vidéo-surveillance

Plus en détail

RAPPORT DE TER sur PRELUDE-IDS

RAPPORT DE TER sur PRELUDE-IDS 1 RAPPORT DE TER sur PRELUDE-IDS Clément LORVAO, Dado KONATE, Guillaume LEHMANN (lehmann@free.fr) 9 avril 2004 2 Page de note 3 Table des matières 1 Note de mise à jour 6 2 Introduction 7 3 Quelques notions

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

Rapport de certification

Rapport de certification Rapport de certification NetApp Data ONTAP v8.1.1 7-Mode Préparé par : le Centre de la sécurité des télécommunications Canada à titre d organisme de certification dans le cadre du Schéma canadien d évaluation

Plus en détail

Network Instruments Solutions d Analyse Réseau

Network Instruments Solutions d Analyse Réseau Network Instruments Solutions d Analyse Réseau ELEXO 20 Rue de Billancourt 92100 Boulogne-Billancourt Téléphone : 33 (0) 1 41 22 10 00 Télécopie : 33 (0) 1 41 22 10 01 Courriel : info@elexo.fr TVA : FR00722063534

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Test d un système de détection d intrusions réseaux (NIDS)

Test d un système de détection d intrusions réseaux (NIDS) Test d un système de détection d intrusions réseaux (NIDS) La solution NETRANGER CISCO SECURE IDS Par l Université de Tours Thierry Henocque Patrice Garnier Environnement du Produit 2 éléments Le produit

Plus en détail

Rapport de certification

Rapport de certification Rapport de certification Évaluation EAL 2+ du produit McAfee Enterprise Mobility Management 9.7 Préparé par : Centre de la sécurité des télécommunications Canada Organisme de certification Schéma canadien

Plus en détail

Atelier Sécurité / OSSIR

Atelier Sécurité / OSSIR Atelier Sécurité / OSSIR Présentation Produits eeye SecureIIS Retina elorrain@eeye.com & broussel@eeye.com Sommaire Page 2 Qui sommes nous? SecureIIS Protection Web Retina Scanner de Sécurité Questions

Plus en détail

Rapport de certification

Rapport de certification Rapport de certification Évaluation EAL 2+ du produit Symantec Endpoint Protection Version 12.1.2 Préparé par : Centre de la sécurité des télécommunications Canada Organisme de certification Schéma canadien

Plus en détail

overmind La solution précède le problème 2008 Overmind - All rights reserved

overmind La solution précède le problème 2008 Overmind - All rights reserved La solution précède le problème Société Overmind vous propose des solutions d optimisation, d anticipation, de pilotage global capables de prendre en compte l interdépendance des variables en terme de

Plus en détail

Projet Supervision et sécurité

Projet Supervision et sécurité Projet Supervision et sécurité Page 1 sur 18 Sommaire Rappel de la demande... Étude de l existant... Architecture réseau... Choix du logiciel de supervision... Qu est ce que la supervision?... Le marché

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Master Informatique Aix-Marseille Université

Master Informatique Aix-Marseille Université Aix-Marseille Université http://masterinfo.univ-mrs.fr/ Département Informatique et Interactions UFR Sciences Laboratoire d Informatique Fondamentale Laboratoire des Sciences de l Information et des Systèmes

Plus en détail

Topologies et Outils d Alertesd

Topologies et Outils d Alertesd Topologies et Outils d Alertesd IDS / IDP DEFINITIONS IDS : SDI / Système de détection d intrusion IDP : SPI / Système de protection d intrusion IDS / IDP Statfull matriciels ACTIVITE IDP : Coupe circuit

Plus en détail

Semarchy Convergence for MDM La Plate-Forme MDM Évolutionnaire

Semarchy Convergence for MDM La Plate-Forme MDM Évolutionnaire FICHE PRODUIT Semarchy Convergence for MDM La Plate-Forme MDM Évolutionnaire BENEFICES POUR LES DSI Réussir les projets de gouvernance dans les délais et les budgets Démarrer de manière tactique tout en

Plus en détail

La sécurité intelligente intégrée pour protéger vos données critiques

La sécurité intelligente intégrée pour protéger vos données critiques IBM Software Livre blanc sur le leadership éclairé Avril 2013 La sécurité intelligente intégrée pour protéger vos données critiques Exploitez des informations décisionnelles afin de réduire les risques

Plus en détail

Page 1 sur 7. CiscoWorks Security Information Management Solution 3.1, une nouvelle étape dans la protection de l'infrastructure d'entreprise

Page 1 sur 7. CiscoWorks Security Information Management Solution 3.1, une nouvelle étape dans la protection de l'infrastructure d'entreprise Fiche Technique CiscoWorks Security Information Management Solution 3.1, une nouvelle étape dans la protection de l'infrastructure d'entreprise L'un des principaux challenges de la sécurité d'entreprise

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Travaux soutenus par l ANR. Jean-François CAPURON (DGA) Bruno LEGEARD (Smartesting)

Travaux soutenus par l ANR. Jean-François CAPURON (DGA) Bruno LEGEARD (Smartesting) Travaux soutenus par l ANR Jean-François CAPURON (DGA) Bruno LEGEARD (Smartesting) 03 Avril 2012 1. Test de sécurité et génération de tests à partir de modèle 2. Le projet SecurTest à DGA Maîtrise de l

Plus en détail

Model checking temporisé

Model checking temporisé Model checking temporisé Béatrice Bérard LAMSADE Université Paris-Dauphine & CNRS berard@lamsade.dauphine.fr ETR 07, 5 septembre 2007 1/44 Nécessité de vérifier des systèmes... 2/44 Nécessité de vérifier

Plus en détail

République Algérienne Démocratique et Populaire Université Abou Bakr Belkaid Tlemcen Faculté des Sciences Département d Informatique

République Algérienne Démocratique et Populaire Université Abou Bakr Belkaid Tlemcen Faculté des Sciences Département d Informatique République Algérienne Démocratique et Populaire Université Abou Bakr Belkaid Tlemcen Faculté des Sciences Département d Informatique Mémoire de fin d études pour l obtention du diplôme de Master en Informatique

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/ Ingénierie de Systèmes Intelligents Application : Web Intelligent Maria Malek EISTI Ingénierie de Systèmes Intelligents p. 2/ Objectif Traitement Intelligent des

Plus en détail

CHAPITRE 3 : INTERVENTIONS SUR INCIDENTS

CHAPITRE 3 : INTERVENTIONS SUR INCIDENTS CHAPITRE 3 : INTERVENTIONS SUR INCIDENTS CINQ RECOMMANDATIONS ESSENTIELLES 1 CINQ RECOMMANDATIONS ESSENTIELLES CINQ RECOMMANDATIONS ESSENTIELLES BASÉES SUR UNE ANALYSE DES INCIDENTS OBSERVÉS En 2014, le

Plus en détail

cedric.foll@(education.gouv.fr laposte.net) Ministère de l'éducation nationale Atelier sécurité Rabat RALL 2007

cedric.foll@(education.gouv.fr laposte.net) Ministère de l'éducation nationale Atelier sécurité Rabat RALL 2007 F i r e w a l l s e t a u t r e s é l é m e n t s d ' a r c h i t e c t u r e d e s é c u r i t é cedric.foll@(education.gouv.fr laposte.net) Ministère de l'éducation nationale Atelier sécurité Rabat RALL

Plus en détail

Sécurisation en réseau

Sécurisation en réseau Déni de services Sécurisation en réseau Utilisant des bugs exemple Ping of death (Cf. RFC IP) l exploitation des protocoles TCP SYN flooding Envoi seulement le début du 3-way handshake Saturation de la

Plus en détail

Logiciels de détection d intrusions

Logiciels de détection d intrusions Logiciels de détection d intrusions Thierry Simoni, Thierry.Simoni@univ-lyon1.fr une étude menée en collaboration avec Jean Christophe Basaille, Jean louis Moisy, Jean-Paul le Guigner, Franck Ollive. Résumé

Plus en détail

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique.

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique. I INTRODUCTION Les pages de phishing sont l un des problèmes majeurs de sécurité sur internet. La majorité des attaques utilisent des méthodes sophistiquées comme les fausses pages pour tromper les utilisateurs

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Introduction à l Analyse des Réseaux Sociaux

Introduction à l Analyse des Réseaux Sociaux Introduction à l Analyse des Réseaux Sociaux Erick Stattner Laboratoire LAMIA Université des Antilles et de la Guyane, France erick.stattner@univ-ag.fr Guadeloupe, Novembre 2012 Erick Stattner Introduction

Plus en détail

HIMS Host Intrusion Monitoring System

HIMS Host Intrusion Monitoring System HIMS Host Intrusion Monitoring System Nicolas Greneche MAPMO Projet SDS Mathrice Rouen 2008 Sommaire 1 Introduction 2 Osiris 3 Samhain Architecture Installation Politiques de protection Déploiement 2 /

Plus en détail

Prestations de conseil en SRM (Storage Ressource Management)

Prestations de conseil en SRM (Storage Ressource Management) Prestations de conseil en SRM (Storage Ressource Management) Sommaire 1 BUTS DE LA PRESTATION 2 PRESENTATION DE LA PRESTATION 3 3 3 ETAPE 1 : ELEMENTS TECHNIQUES SUR LESQUELS S APPUIE LA PRESTATION DE

Plus en détail

CEG4566/CSI4541 Conception de systèmes temps réel

CEG4566/CSI4541 Conception de systèmes temps réel CEG4566/CSI4541 Conception de systèmes temps réel Chapitre 6 Vivacité, sécurité (Safety), fiabilité et tolérance aux fautes dans les systèmes en temps réel 6.1 Introduction générale aux notions de sécurité

Plus en détail

Architecture expérimentale pour la détection d intrusions dans un système informatique

Architecture expérimentale pour la détection d intrusions dans un système informatique Architecture expérimentale pour la détection d intrusions dans un système informatique Philippe Biondi philippe.biondi@webmotion.com Avril-Septembre 2001 Résumé La détection d intrusions consiste à découvrir

Plus en détail

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE SûretéGlobale.Org La Guitonnière 49770 La Meignanne Téléphone : +33 241 777 886 Télécopie : +33 241 200 987 Portable : +33 6 83 01 01 80 Adresse de messagerie : c.courtois@sureteglobale.org APPORT DES

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

Intégration de la cybersécurité aux systèmes de conduite industriels. Méthodes et pratiques

Intégration de la cybersécurité aux systèmes de conduite industriels. Méthodes et pratiques Intégration de la cybersécurité aux systèmes de conduite industriels Méthodes et pratiques Les Infrastructures critiques utilisant des Systèmes de Contrôle Industriels Industrie nucléaire Industrie pétrolière,

Plus en détail

Les pare-feux : concepts

Les pare-feux : concepts Les pare-feux : concepts Premier Maître Jean Baptiste FAVRE DCSIM / SDE / SIC / Audit SSI jean-baptiste.favre@marine.defense.gouv.fr CFI Juin 2005: Firewall (2) 15 mai 2005 Diapositive N 1 /19 C'est quoi

Plus en détail

Architectures logicielles pour les systèmes embarqués temps réel

Architectures logicielles pour les systèmes embarqués temps réel ETR 07 4 septembre 2007 Architectures logicielles pour les systèmes embarqués temps réel Jean-Philippe Babau, Julien DeAntoni jean-philippe.babau@insa-lyon.fr 1/31 Plan Architectures logicielles pour les

Plus en détail

Rapport de certification

Rapport de certification Rapport de certification Évaluation EAL 2 + du produit EMC RecoverPoint version 3.4 Préparé par : Le Centre de la sécurité des télécommunications Canada à titre d organisme de certification dans le cadre

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Faits techniques et retour d'expérience d'une cellule d'expertise dans la lutte contre le code malveillant. EdelWeb / Groupe ON-X

Faits techniques et retour d'expérience d'une cellule d'expertise dans la lutte contre le code malveillant. EdelWeb / Groupe ON-X 1 OSSIR 2007/11/12 Faits techniques et retour d'expérience d'une cellule d'expertise Jérémy Lebourdais Mickaël Dewaele jeremy.lebourdais (à) edelweb.fr mickael.dewaele (à) edelweb.fr EdelWeb / Groupe ON-X

Plus en détail

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!

Plus en détail

Plan de secours. Marie-pascale Delamare d'après "Plan de continuité d'activité publié par le CLUSIF" LE PLAN DE CONTINUITÉ DE SERVICE (PCS)

Plan de secours. Marie-pascale Delamare d'après Plan de continuité d'activité publié par le CLUSIF LE PLAN DE CONTINUITÉ DE SERVICE (PCS) Plan de secours Un plan de continuité de service (PCS) contient à la fois un plan de secours informatique (PSI) et un plan de reprise d'activité (PRA). Avant de commencer une étude de Plan de Secours Informatique,

Plus en détail

La Latecion protection anti-intrusion Web Web Le concept «Zero effort Security» La protection des applications Extranet

La Latecion protection anti-intrusion Web Web Le concept «Zero effort Security» La protection des applications Extranet REALSENTRY TM Gestion, Performance et Sécurité des infrastructures Web La Latecion protection anti-intrusion Web Web Le concept «Zero effort Security» La protection des applications Extranet L authentification

Plus en détail

Architecture Logicielle

Architecture Logicielle Architecture Logicielle Chapitre 3: UML pour la description et la documentation d une architecture logicielle Année universitaire 2013/2014 Semestre 1 Rappel L architecture d un programme ou d un système

Plus en détail

THEGREENBOW FIREWALL DISTRIBUE TGB::BOB! Pro. Spécifications techniques

THEGREENBOW FIREWALL DISTRIBUE TGB::BOB! Pro. Spécifications techniques THEGREENBOW FIREWALL DISTRIBUE TGB::! Pro Spécifications techniques SISTECH SA THEGREENBOW 28 rue de Caumartin 75009 Paris Tel.: 01.43.12.39.37 Fax.:01.43.12.55.44 E-mail: info@thegreenbow.fr Web: www.thegreenbow.fr

Plus en détail