MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var.

Dimension: px
Commencer à balayer dès la page:

Download "MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln."

Transcription

1 MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var.

2 Plan Introduction Généralités sur les systèmes de détection d intrusion (IDS) Classification des IDS Méthodes de détection approche comportementale approche par scénarios Quelques systèmes présents sur le marché

3 Modèle général d IDS Source Données Brutes Capteur Sonde Analyseur Evénements Manager Alertes Modèle général de systême de détection d intrusions

4 Introduction Système de détection d intrusion : processus de découverte et d analyse de comportement hostile dirigé vers le système d information informations collectées par des sondes traitement des informations comparaison avec des données de référence qui correspondent à des opérations interdites ou autorisées si anomalie : déclenchement d une alarme et eventuellement activation d une réponse active

5 Modèle de fonctionnement des IDS réponse de l administrateur Données de référence (signatures, profils) Données de configuration (comment répondre à une attaque) système surveillé Administration du système de sécurité Traitement Collecte d information d audit Stockage des donnés d audit (détection) Alarmes Données en cours de traitement réponse active à l intrusion

6 Notions de base faux-positif : détection en absence d attaque alarme générée par un IDS pour un évènement légal faux-négatif : abscence de détection en présence d attaque non génération d alarme par un IDS pour un évènement illégal log : ligne d un fichier d un logiciel qui enregistre les données transitant sur un système pour le surveiller ou faire des statistiques fichier log : contient les évènements s étant produits sur un système

7 Classification des IDS IDS systéme (HIDS) analyse du fonctionnement ou de l état du système IDS réseaux (NIDS) analyse du trafic réseau IDS hybrides constitués d IDS et de NIDS

8 Modèle Common Intrusion Detection Framework (CIDF) IDS contre-mesure D-box Moteur d analyse A-box Stockage C-box Générateur d évènements E-box Source (Rseaux, log,...) acquisition

9 Les composants d un IDS les sondes la console de gestion le concentrateur d évènements la console d alerte

10 Classification des IDS (L. Mé) OS source de données applications réseau autres IDS méthode de détection approche comportementale Système de détection d intrusion approche par scénarios architecture (collecte et analyse) centralisée distribuée granularité de l analyse par lot continue comportement après détection informatif défensif contre-attaquant

11 Méthodes de détection Modèles comportementaux (J. P. Anderson 1980) (anomaly detection) Détection d anomalies constatées sur le Système d Information phase d apprentissage du comportement normal du système puis détection toute déviation par rapport au comportement normal phase d apprentissage : etablir des profils correspondant aux comportements normaux par respect de la politique de sécurité par fonctionnement naturel des applications par habitude des utilisateurs

12 IDS probabiliste profil : définition du fonctionnement d une application construction du profil : à partir des évènements observés établissement de règles apprentissage des probabilités liées à chaque séquence dévènements suite d évènements E 1, E i probabilité de E i+1 si E i+1 n est pas prévu par le profil ou si E i+1 apparaît trop souvent par rapport à la probabilité du profil ou si E i+1 n est pas l évènement attendu par le profil alors une alarme est levée

13 IDS probabiliste Avantages construction du profil simple et dynamique réduction de faux positifs Inconvénients risque de déformation progressive du profil par des attaques répétées mise en place d un mécanisme d observation du profil

14 IDS statistique (D. E. Denning 1987) construction du profil : à partir des variables aléatoires echantillonnées à intervalles réguliers. attribution de valeurs statistiques aux différentes variables utilisées : taux d occupation mémoire l utilisation des processeurs la durée et l heure des connexions, utilisation d un modèle statistique : pour construire la distribution de chaque variable pour mesurer le taux de déviation entre comportement courant et passé

15 IDS statistique Avantages permet de détecter des attaques inconnues habitudes des utilisateurs apprises automatiquement Inconvénients difficulté de construire un modèle universel complexité en termes de maintenance

16 IDS à réseaux de neurones (H. Debar, M. Becker, D. Siboni 1992) surveillance directe du comportement des utilisateurs Chaque utilisateur peut être identifié par son comportement ses habitudes de travail ses activités ses outils de travail, profil : série de paramètres concernant l utilisateur construction du profil : réseau de neurones qui reconnaît une suite d opérations effectuées par l utilisateur but : prédire l action suivante de l utilisateur, en cas d échec une alerte est levée

17 IDS à réseaux de neurones paramètre important : nombre d opérations sur lequel se base la prédiction entrée sortie fonctions de combinaison fonctions d activation Réseau de neurones

18 adaptés pour la détection : chevaux de Troie détournement d identité contournement d identification fiabilité mise en oeuvre IDS à réseaux de neurones Avantages Inconvénients construction du réseau paramétrage du réseau complexité pbs spécifiques liés aux réseaux de neurones

19 Autres approches Immunologie analogie avec le système immunitaire biologique basé sur le principe de reconnaissance de cellules étrangères comparaison du comportement observé et du comportement de référence Graphes modèle à base de graphes Système Expert + Data mining

20 Discussion sur les modèles comportementaux Avantages capacités de détecter de nouvelles attaques besoin de peu de maintenance Inconvénients risque d attaque lors de la construction des profils pas adapté au changement d entité modelisée évolution des profils au cours du temps peut être vu comme une faille

21 IDS par scénarios (S. E. Smaha 1988) ou à bibliothèques de signatures (misuse detection ou knowledge based detection) modélisation des comportements interdits signature de l attaque : spécifications propres de l attaque cas HIDS : analyse des actions d un utilisateur cas NIDS : vérification du flux d informations sur le réseau L IDS émet l hypothèse d un scénario d attaque s il sagit d un scénario connu dans la bibliothèque de signatures alors une alarme esr déclenchée

22 IDS à recherche de motifs recherche d une séquence d informations particulières dans un évènement d audit problème classique de reconnaissance de langage méthodes : Petri, machine de Turing, automates à états, réseaux de Langages de description des signatures d attaques : grande expressivité facilité d implantation STATL : description de plusieurs attaques en termes d états et de transitions ADeLe : donnée description unique et de haut niveau d une attaque

23 IDS à recherche de motifs Avantages efficace : algorithmes de Pattern matching fiable : déterministe et exacte Inconvénients mise en place des motifs : exigences contradictoires précis : eviter trop de faux-positifs générique : eviter trop de faux-négatifs

24 IDS à détection par inférences basé sur le principe d inférence de Bayes attaques connues : hypothèses pouvant expliquer les faits observés P (A S) = P (A) P (S A) c A : attaque, P (A) : probabilité de l occurence de A S : symptômes apparaissant sous forme dévènements dans l audit P (S A) :probabilité que A fasse apparaître S méthode calcul de la probabilité de chaque scénario d attaque sachant les symptômes P (A S) si probabilité élevée alors une alerte levée

25 IDS à détection par inférences Avantages minimisation du risque de non détection d une attaque seules les attaques inconnues ne sont pas détectées Inconvénients construction de la base d attaques : important travail d expert exhaustivité des symptômes définis pertinence des hypothèses formulées réalismes des probabilités associées aux hypothèses

26 IDS par model checking signature : formule de la logique temporelle du premier ordre (logique modale) F : il existe un état ultérieur où F est vrai séquence dévènements : sémantique de Kripke chercher si une signature satisfait un évènement : la formule de la logique temporelle admet un modèle implantation dans ORCHIDS (J. Goubault-Larrecq)

27 Discussion sur les modèles par scénarios Avantages fiabilité pour les attaques connues Inconvénients maintenance active, mise à jour régulière langage de description d attaque (pas d unanimité)

28 Quelques systèmes présents sur le marché snort Benids ttoomey/benids Hank Prelude Firestorm Bro

29 Liens utiles puis cliquer sur detection intrusions : présente les attaques les plus fréquentes dans le monde bibliographie Stephen Northcutt, Judy Novak, Donald Mc Lachlan : Détection des intrusions réseaux. CampusPress Thierry Evangelista : Les IDS - Les systèmes de détection des intrusions informatiques. Dunod / 01 Informatique Jack Koziol : Référence Snort 2. Campuspress Stephen Northcutt, Judy Novak : Network Intrusion Detection: An Analyst s Handbook (3nd Edition). New Riders. 2002

AUFFRAY Guillaume PALIX Nicolas SERRE Samuel. Intégrité des serveurs

AUFFRAY Guillaume PALIX Nicolas SERRE Samuel. Intégrité des serveurs AUFFRAY Guillaume PALIX Nicolas SERRE Samuel Intégrité des serveurs Plan de la présentation Intégrité physique Construction de la salle Intégrité des sauvegardes Protection des PC portables Protection

Plus en détail

Cours 5 : Détection d intrusions

Cours 5 : Détection d intrusions Cours 5 : Détection d intrusions ESIL Université de la méditerranée Odile.Papini@esil.univ-mrs.fr http://odile.papini.perso.esil.univmed.fr/sources/ssi.html Plan du cours 5 1 Introduction 2 3 4 4 5 6 Introduction

Plus en détail

MÉTHODES ET OUTILS DE LA DÉTECTION D INTRUSIONS

MÉTHODES ET OUTILS DE LA DÉTECTION D INTRUSIONS MÉTHODES ET OUTILS DE LA DÉTECTION D INTRUSIONS http://www.supelec-rennes.fr/rennes/si/equipe/lme/ Supélec BP28 35511 Cesson-Sévigné Cedex tél.: 02.99.84.45.00 Prévention et correction des problèmedesécurité

Plus en détail

Protection contre les menaces Détection

Protection contre les menaces Détection Protection contre les menaces Détection Jean-Marc Robert Génie logiciel et des TI Plan de la présentation Introduction Détection Systèmes de détection d intrusion Anti-virus Conclusions Jean-Marc Robert,

Plus en détail

IDS snort. Rémi JACHNIEWICZ et Romain GEGOUT 6 décembre 2008

IDS snort. Rémi JACHNIEWICZ et Romain GEGOUT 6 décembre 2008 IDS snort Rémi JACHNIEWICZ et Romain GEGOUT 6 décembre 2008 1 Table des matières 1 Les différents IDS 3 1.1 Les NIDS (Network IDS ou IDS Réseau)..................... 3 1.2 Les HIDS (Host IDS ou IDS Machine)......................

Plus en détail

Travaux soutenus par l ANR. Jean-François CAPURON (DGA) Bruno LEGEARD (Smartesting)

Travaux soutenus par l ANR. Jean-François CAPURON (DGA) Bruno LEGEARD (Smartesting) Travaux soutenus par l ANR Jean-François CAPURON (DGA) Bruno LEGEARD (Smartesting) 03 Avril 2012 1. Test de sécurité et génération de tests à partir de modèle 2. Le projet SecurTest à DGA Maîtrise de l

Plus en détail

Formation A2IMP. Acquisition d information sur les autres équipements du réseau. Frédéric Bongat IPSL Formation A2IMP 1

Formation A2IMP. Acquisition d information sur les autres équipements du réseau. Frédéric Bongat IPSL Formation A2IMP 1 Formation A2IMP Acquisition d information sur les autres Frédéric Bongat IPSL Formation A2IMP 1 Idée : corréler des informations via d autres Informations de base Connaître l horodatage (date, heure) des

Plus en détail

Détection d Intrusions par Diversification de COTS et Diagnostic d Anomalies

Détection d Intrusions par Diversification de COTS et Diagnostic d Anomalies Détection d Intrusions par Diversification de COTS et Diagnostic d Anomalies Frédéric Majorczyk Ayda Saidane Éric Totel Ludovic Mé prénom.nom@supelec.fr Supélec, Rennes, France DADDi 18/11/2005 Frédéric

Plus en détail

Atelier Sécurité / OSSIR

Atelier Sécurité / OSSIR Atelier Sécurité / OSSIR Présentation Produits eeye SecureIIS Retina elorrain@eeye.com & broussel@eeye.com Sommaire Page 2 Qui sommes nous? SecureIIS Protection Web Retina Scanner de Sécurité Questions

Plus en détail

IPS : Corrélation de vulnérabilités et Prévention des menaces

IPS : Corrélation de vulnérabilités et Prévention des menaces IPS : Corrélation de vulnérabilités et Prévention des menaces SIM+IPS opensource David Bizeul & Alexis Caurette C O N N E C T I N G B U S I N E S S & T E C H N O L O G Y Définitions SIM : Security Information

Plus en détail

Détection d intrusions comportementale par diversification de COTS : application au cas des serveurs web

Détection d intrusions comportementale par diversification de COTS : application au cas des serveurs web Détection d intrusions comportementale par diversification de COTS : application au cas des serveurs web Frédéric Majorczyk To cite this version: Frédéric Majorczyk. Détection d intrusions comportementale

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

DATASET / NETREPORT, propose une offre complète de solutions dans les domaines suivants:

DATASET / NETREPORT, propose une offre complète de solutions dans les domaines suivants: Présentation Société DATASET / NETREPORT, propose une offre complète de solutions dans les domaines suivants: Outils d aide à la décision Gamme DATASET Solutions de gestion temps réel du système d information

Plus en détail

Le contournement de produits de sécurité

Le contournement de produits de sécurité Le contournement de produits de sécurité Jean-Baptiste Bédrune Sogeti / ESEC jean-baptiste.bedrune(at)sogeti.com Yoann Guillot Sogeti / ESEC yoann.guillot(at)sogeti.com Roadmap J.B. Bédrune & Y. Guillot

Plus en détail

SECURIDAY 2013 Cyber War

SECURIDAY 2013 Cyber War Club de la Sécurité Informatique à l INSAT Dans le cadre de la 3ème édition de la journée nationale de la sécurité informatique SECURIDAY 2013 Cyber War SECURINETS Présente Formateurs: 1. Trabelsi NAJET

Plus en détail

Les IDS et IPS Open Source. Alexandre MARTIN Jonathan BRIFFAUT

Les IDS et IPS Open Source. Alexandre MARTIN Jonathan BRIFFAUT Les IDS et IPS Open Source Alexandre MARTIN Jonathan BRIFFAUT Plan Présentation Générale des IDS Les différents type d IDS Les méthodes de détection Présentation Générale des IPS Ou placer un IDS / IPS?

Plus en détail

Une Architecture de Bureaux Graphiques Distants Sécurisée et Distribuée

Une Architecture de Bureaux Graphiques Distants Sécurisée et Distribuée Une Architecture de Bureaux Graphiques Distants Sécurisée et Distribuée J. Rouzaud-Cornabas Laboratoire d Informatique Fondamentale d Orléans Université d Orléans Batiment IIIA, Rue Léonard de Vinci 45067

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

Analyse de protocoles binaires avec les N-Grams

Analyse de protocoles binaires avec les N-Grams Analyse de protocoles binaires avec les N-Grams N-Gram against the Machine : On the Feasibility of the N-Gram network Analysis for Binary Protocols Thomas LETAN 26 novembre 2012 Objectifs des auteurs :

Plus en détail

Jonathan-Christofer Demay

Jonathan-Christofer Demay N o d ordre : 4268 ANNÉE 2011 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l Université Européenne de Bretagne pour le grade de DOCTEUR DE L UNIVERSITÉ DE RENNES 1 Mention : INFORMATIQUE École doctorale

Plus en détail

MÉTHODES ET OUTILS DE LA DÉTECTION D INTRUSIONS

MÉTHODES ET OUTILS DE LA DÉTECTION D INTRUSIONS MÉTHODES ET OUTILS DE LA DÉTECTION D INTRUSIONS http://www.supelec-rennes.fr/rennes/si/equipe/lme/ Supélec BP28 35511 Cesson-Sévigné Cedex tél.: 02.99.84.45.00 Prévention et correction des problèmes de

Plus en détail

Table des matières. Chapitre 1. Introduction... 13 1.1. Objectif... 13 1.2. Rappel... 15 1.3. Synthèse... 16 1.4. Bibliographie...

Table des matières. Chapitre 1. Introduction... 13 1.1. Objectif... 13 1.2. Rappel... 15 1.3. Synthèse... 16 1.4. Bibliographie... Table des matières Chapitre 1. Introduction... 13 1.1. Objectif... 13 1.2. Rappel... 15 1.3. Synthèse... 16 1.4. Bibliographie... 17 Chapitre 2. Du système au logiciel... 19 2.1. Introduction... 19 2.2.

Plus en détail

Analyse de données électroniques et intelligence d affaires

Analyse de données électroniques et intelligence d affaires Analyse de données électroniques et intelligence d affaires Valoriser les données internes et externes 3 avril 2014 Ordre du jour UNE INTRODUCTION À L ANALYSE DE DONNÉES Analyse de données et l intelligence

Plus en détail

UNIVERSITE DE LORRAINE CALCIUM

UNIVERSITE DE LORRAINE CALCIUM UNIVERSITE DE LORRAINE CALCIUM Outil pour la gestion des dossiers médicaux des étudiants dans les services universitaires de médecine préventive Table des matières CALCIUM... 0 I. L INFORMATION GÉRÉE PAR

Plus en détail

Auditer une infrastructure Microsoft

Auditer une infrastructure Microsoft Auditer une infrastructure Microsoft I. INTRODUCTION :... 3 A. OU TROUVER CE DOCUMENT :... 3 B. OBJECTIFS DU DOCUMENT :... 3 II. AUDIT DE L INFRASTRUCTURE INFORMATIQUE :... 4 A. AUDIT DU RESEAU:... 4 B.

Plus en détail

Orange Business Services. Direction de la sécurité. De l utilisation de la supervision de sécurité en Cyber-Defense? JSSI 2011 Stéphane Sciacco

Orange Business Services. Direction de la sécurité. De l utilisation de la supervision de sécurité en Cyber-Defense? JSSI 2011 Stéphane Sciacco De l utilisation de la supervision de sécurité en Cyber-Defense? Orange Business Services Direction de la sécurité JSSI 2011 Stéphane Sciacco 1 Groupe France Télécom Sommaire Introduction Organisation

Plus en détail

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23 Table des Figures 7 Introduction Générale 9 1. Outils et plate-formes de construction d application 9 2. Intégration de paradigmes de conception dans le cycle de vie 10 2.1. Equilibrage de charge et équilibrage

Plus en détail

Détection de nouvelles attaques. Yacine Bouzida, Frédéric Cuppens, Sylvain Gombault

Détection de nouvelles attaques. Yacine Bouzida, Frédéric Cuppens, Sylvain Gombault Détection de nouvelles attaques Yacine Bouzida, Frédéric Cuppens, Sylvain Gombault Contexte Problèmes Réseau : principal vecteur des attaques Nouvelles formes d attaque (+ 1000 /an) Variante d une attaque

Plus en détail

P r é s e n t a t i o n

P r é s e n t a t i o n P r é s e n t a t i o n Design raffiné sécurité Internet réinventé Chaque jour, les logiciels malveillants comprennent mieux vos méthodes de travail. En va-t-il de même pour votre système de sécurité?

Plus en détail

«Audio et vidéo surveillance intelligente»

«Audio et vidéo surveillance intelligente» «Audio et vidéo surveillance intelligente» Jérôme Besnard Miriad Charles Lehalle - Miriad Sébastien Ambellouis INRETS Le plan La problématique La plateforme expérimentale mise en place Un exemple de détecteur

Plus en détail

INDUSTRIALISATION ET RATIONALISATION

INDUSTRIALISATION ET RATIONALISATION INDUSTRIALISATION ET RATIONALISATION A. LA PROBLEMATIQUE La mission de toute production informatique est de délivrer le service attendu par les utilisateurs. Ce service se compose de résultats de traitements

Plus en détail

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE Paul Pașcu, Assist Prof, PhD, Ștefan cel Mare University of Suceava Abstract: This article aims to present a number

Plus en détail

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2011 Supplément théorique Inférence dans les réseaux bayésiens Rappel théorique Les processus aléatoires La plupart des processus

Plus en détail

ModSecurity. Cible de sécurité CSPN Version 0.96

ModSecurity. Cible de sécurité CSPN Version 0.96 Cible de sécurité CSPN Version 0.96 TABLE DES MATIERES 1 IDENTIFICATION... 3 1.1 IDENTIFICATION DE LA CIBLE DE SECURITE... 3 1.2 IDENTIFICATION DU PRODUIT... 3 2 ARGUMENTAIRE (DESCRIPTION) DU PRODUIT...

Plus en détail

La sécurité informatique dans la petite entreprise Etat de l'art et Bonnes Pratiques (2ième édition)

La sécurité informatique dans la petite entreprise Etat de l'art et Bonnes Pratiques (2ième édition) Généralités sur la sécurité informatique 1. Introduction 13 2. Les domaines et normes associés 16 2.1 Les bonnes pratiques ITIL V3 16 2.1.1 Stratégie des services - Service Strategy 17 2.1.2 Conception

Plus en détail

Projet : Rédaction du plan de test

Projet : Rédaction du plan de test Projet : Rédaction du plan de test Dans le cadre de votre projet, veuillez présenter pour le vendredi 9 janvier votre plan de test. Ce document retracera l ensemble des actions réalisées ou à réaliser

Plus en détail

Offre de formation de troisième cycle (LMD)

Offre de formation de troisième cycle (LMD) Offre de formation de troisième cycle (LMD) (Arrêté n 250 du 28 juillet 2009, fixant l organisation de la formation de troisième en vue de l obtention du diplôme de doctorat) Etablissement Faculté / Institut

Plus en détail

Notions de sécurités en informatique

Notions de sécurités en informatique Notions de sécurités en informatique Bonjour à tous, voici un article, vous proposant les bases de la sécurité informatique. La sécurité informatique : Vaste sujet, car en matière de sécurité informatique

Plus en détail

Utilisation de cartes de Kohonen pour détecter des intrusions dans un système informatique :

Utilisation de cartes de Kohonen pour détecter des intrusions dans un système informatique : Utilisation de cartes de Kohonen pour détecter des intrusions dans un système informatique : une pré-étude Ludovic Mé, Véronique Alanou et Jörg Abraham Supélec - Avenue de la Boulaie - 55 Cesson Sévigné

Plus en détail

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique.

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique. I INTRODUCTION Les pages de phishing sont l un des problèmes majeurs de sécurité sur internet. La majorité des attaques utilisent des méthodes sophistiquées comme les fausses pages pour tromper les utilisateurs

Plus en détail

* Un flux TCP/UDP est une communication (plusieurs sessions TCP ou UDP) entre deux machines IP pendant un intervalle de

* Un flux TCP/UDP est une communication (plusieurs sessions TCP ou UDP) entre deux machines IP pendant un intervalle de Plateforme de Surveillance réseau et sécurité Solution SecurActive NSS SecurActive NSS est une plateforme de surveillance réseau et sécurité basée sur un moteur d analyse innovant. SecurActive NSS capture

Plus en détail

Sécurité informatique

Sécurité informatique Sécurité informatique Université Kasdi Merbah Ouargla Master RCS Octobre 2014 Département Informatique 1 Master RCS 1 Sécurité informatique Organisation du cours Ce cours a pour but de présenter les fondements

Plus en détail

Symantec Protection Suite Small Business Edition Une solution simple, efficace et compétitive pour les petites entreprises

Symantec Protection Suite Small Business Edition Une solution simple, efficace et compétitive pour les petites entreprises Une solution simple, efficace et compétitive pour les petites entreprises Présentation Symantec Protection Suite Small Business Edition est une solution de sécurité et de sauvegarde simple et compétitive.hautement

Plus en détail

Système de contrôle du trafic d une ligne de métro Dossier de tests

Système de contrôle du trafic d une ligne de métro Dossier de tests Système de contrôle du trafic d une ligne de métro Dossier de tests Tests NI557/STL/M2/INFO/UPMC Action Date Auteur Statut Création 05/03/2012 P.Manoury En cours 1 Description et exigences fonctionnelles

Plus en détail

I.D.S. Systèmes de détection d intrusion - Link Analysis. par: FOUQUIN MATHIEU. responsable: AKLI ADJAOUTE DEVÈZE BENJAMIN.

I.D.S. Systèmes de détection d intrusion - Link Analysis. par: FOUQUIN MATHIEU. responsable: AKLI ADJAOUTE DEVÈZE BENJAMIN. EPITA SCIA PROMO 2005 14-16 rue Voltaire 94270 Kremlin-Bicêtre I.D.S. Systèmes de détection d intrusion - Link Analysis Juillet 2004 par: DEVÈZE BENJAMIN FOUQUIN MATHIEU responsable: AKLI ADJAOUTE TABLE

Plus en détail

Gestion de logs 29% CLUSIF / CLUSIR RhA / Club SSI. Bernard Foray/ DSSI/ Groupe Casino bforay@groupe-casino.fr

Gestion de logs 29% CLUSIF / CLUSIR RhA / Club SSI. Bernard Foray/ DSSI/ Groupe Casino bforay@groupe-casino.fr Tableaux de bord SSI & Gestion de logs 29% Bernard Foray/ DSSI/ Groupe Casino bforay@groupe-casino.fr Conférence du 23/03/2011 Tableau de bord sécurité & Gestion de logs Page 0 PROBLÉMATIQUE / OBJECTIFS

Plus en détail

Un modèle sémantique spatiotemporel pour capturer la dynamique des environnements

Un modèle sémantique spatiotemporel pour capturer la dynamique des environnements Un modèle sémantique spatiotemporel pour capturer la dynamique des environnements Benjamin Harbelot, Helbert Arenas, Christophe Cruz Laboratoire LE2I UMR CNRS 6306 Université de Bourgogne 1 PLAN DE LA

Plus en détail

Analyse des logs d un Firewall

Analyse des logs d un Firewall Analyse des logs d un Firewall - Génération d un compte rendu sous forme HTML Responsable du projet : Monsieur Philippe Dumont Existant Logiciels Très nombreux parsers de logs Points faibles Complexité

Plus en détail

Détection des deux roues motorisés par télémétrie laser à balayage

Détection des deux roues motorisés par télémétrie laser à balayage MEsure du TRAfic des deux-roues MOTOrisés pour la sécurité et l évaluation des risques Détection des deux roues motorisés par télémétrie laser à balayage Séminaire de mi parcours 11 mai 2012 CETE Normandie

Plus en détail

Test d un système de détection d intrusions réseaux (NIDS)

Test d un système de détection d intrusions réseaux (NIDS) Test d un système de détection d intrusions réseaux (NIDS) La solution NETRANGER CISCO SECURE IDS Par l Université de Tours Thierry Henocque Patrice Garnier Environnement du Produit 2 éléments Le produit

Plus en détail

Les systèmes de détection d intrusion réseau

Les systèmes de détection d intrusion réseau Claude Duvallet Université du Havre UFR Sciences et Techniques Courriel : Claude.Duvallet@gmail.com Claude Duvallet 1/42 Plan de la présentation 1 Introduction et contexte 2 3 4 Claude Duvallet 2/42 Introduction

Plus en détail

Modélisation et simulation du canal de communication d un botnet pour l évaluation des NIDS

Modélisation et simulation du canal de communication d un botnet pour l évaluation des NIDS Modélisation et simulation du canal de communication d un botnet pour l évaluation des NIDS Georges Bossert 1 2, Guillaume Hiet 2, Thibaut Henin 1 1 AMOSSYS SAS - Rennes, France 2 Equipe SSIR (EA 4039),

Plus en détail

Znets 2 : La maîtrise du trafic réseau de l entreprise

Znets 2 : La maîtrise du trafic réseau de l entreprise Znets 2 : La maîtrise du trafic réseau de l entreprise Thierry Descombes Laboratoire de Physique Subatomique et de Cosmologie 53 Avenue des Martyrs 38000 Grenoble Résumé Connaitre, comprendre et savoir

Plus en détail

Analyse qualitative et quantitative des Systèmes Automatisés de Production

Analyse qualitative et quantitative des Systèmes Automatisés de Production Analyse qualitative et quantitative des Systèmes Automatisés de Production Jean-Luc Cojan Laboratoire LISyC Université de Bretagne Occidentale Encadrants : M. Philippe Le Parc M. Loïc Plassart M. Franck

Plus en détail

Evaluation de performance en Sûreté de Fonctionnement

Evaluation de performance en Sûreté de Fonctionnement Groupe SdF Midi-Pyrénées Toulouse 5 juin 2015 Evaluation de performance en Sûreté de Fonctionnement - Andre.cabarbaye Plan Introduction Types de performances Finalité des analyses Attentes du donneur d

Plus en détail

SecurActive NSS-500. Plateforme de Surveillance réseau et sécurité

SecurActive NSS-500. Plateforme de Surveillance réseau et sécurité Plateforme de Surveillance réseau et sécurité Solution SecurActive NSS SecurActive NSS est une plateforme de surveillance réseau et sécurité basée sur un moteur d analyse innovant. SecurActive NSS capture

Plus en détail

Administration et sécurité des réseaux M&K ELHDHILI

Administration et sécurité des réseaux M&K ELHDHILI Administration et sécurité des réseaux 1 Plan du cours Chapitre 1: Introduction à l administration des réseaux Domaines d activités Organisation logique (criètères, types de décisions ) Architectures et

Plus en détail

Sensibilisation à la sécurité informatique

Sensibilisation à la sécurité informatique Sensibilisation à la sécurité informatique Michel Salomon IUT de Belfort-Montbéliard Département d informatique Michel Salomon Sécurité 1 / 25 Sensibilisation à la sécurité informatique Généralités et

Plus en détail

INTRODUCTION À LA DÉTECTION D INTRUSION

INTRODUCTION À LA DÉTECTION D INTRUSION INTRODUCTION À LA DÉTECTION D INTRUSION Ikyushii 29 octobre 2015 Table des matières 1 Introduction 5 2 «Dura lex, sed lex» 7 3 Les IDS à la rescousse 9 3.1 Les signatures ou le délit de sale gueule.......................

Plus en détail

Fabien BONNEFOI. Vérification Formelle des Spécifications de Systèmes Complexes Application aux Systèmes de Transport Intelligents 1/31

Fabien BONNEFOI. Vérification Formelle des Spécifications de Systèmes Complexes Application aux Systèmes de Transport Intelligents 1/31 Fabien BONNEFOI Vérification Formelle des Spécifications de Systèmes Complexes Application aux Systèmes de Transport Intelligents Soutenance de Thèse sous la direction de M. Fabrice KORDON Jury Mme. Béatrice

Plus en détail

MEMOIRE DE PROJET DE FIN D ETUDES POUR L OBTENTION DU DIPLOME DE LA MAITRISE

MEMOIRE DE PROJET DE FIN D ETUDES POUR L OBTENTION DU DIPLOME DE LA MAITRISE Ministère de l Enseignement Supérieur Université du 7 Novembre à Carthage MEMOIRE DE PROJET DE FIN D ETUDES POUR L OBTENTION DU DIPLOME DE LA MAITRISE Filière : Informatique Appliquée Titre Organisme :

Plus en détail

Diagnostic et décision

Diagnostic et décision Diagnostic et décision Bibliographie J. N. Chatain, DIagnostic par Système Expert, Traité des Nouvelles Technologies, série Diagnostic et Maintenance, édition Hermes 1993. B. Dubuisson, Diagnostic, intelligence

Plus en détail

Ce que dit la norme 2009

Ce que dit la norme 2009 Mettre en œuvre un système d archivage électronique : les apports de la norme révisée Ce que dit la norme 2009 Formation APROGED 2009 1 Domaine d application de la norme Politique et pratiques d archivage

Plus en détail

Introduction aux Bases de Données Relationnelles. Introduction aux Bases de Données Relationnelles Introduction- 1. Qu est-ce qu une base de données?

Introduction aux Bases de Données Relationnelles. Introduction aux Bases de Données Relationnelles Introduction- 1. Qu est-ce qu une base de données? Qu est-ce qu une base de données? Utilisez-vous des bases de données? Introduction aux Bases de Données Relationnelles explicitement? implicitement? Qui n utilise jamais de base de données? Département

Plus en détail

Modélisation de détection d intrusion par des jeux probabilistes

Modélisation de détection d intrusion par des jeux probabilistes Modélisation de détection d intrusion par des jeux probabilistes Mémoire de maîtrise Présenté par Madjid Ouharoun sous la direction de Prof. Kamel Adi et Prof. Andrzej Pelc Département d informatique et

Plus en détail

Partie I Organisations, management et systèmes d information... 1

Partie I Organisations, management et systèmes d information... 1 Liste des cas d entreprise............................................................ Liste des figures..................................................................... Liste des tableaux...................................................................

Plus en détail

I N F R A S T R U C T U R E T I S É C U R I S É E P O U R L E C O M M E R C E É L E C T R O N I Q U E

I N F R A S T R U C T U R E T I S É C U R I S É E P O U R L E C O M M E R C E É L E C T R O N I Q U E Résumé Le présent rapport de recherche décrit les composantes d une infrastructure TI sécurisée pour le commerce électronique. L objectif est de fournir une description exhaustive des enjeux liés à la

Plus en détail

COMMENT PRÉPARER UN ENSEIGNEMENT PAR APP

COMMENT PRÉPARER UN ENSEIGNEMENT PAR APP 1 sur 5 16/03/2007 15:03 COMMENT PRÉPARER UN ENSEIGNEMENT PAR APP (PCEM2 - DCEM1) L élaboration de cas d APP est un processus multisequentiel exécutable par étapes : I- constitution d un groupe de travail

Plus en détail

Recherche et détection des patterns d attaques dans les

Recherche et détection des patterns d attaques dans les Recherche et détection des patterns d attaques dans les réseaux IP à hauts débits Abdelhalim Zaidi To cite this version: Abdelhalim Zaidi. Recherche et détection des patterns d attaques dans les réseaux

Plus en détail

Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA

Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA Master Exploration Informatique des données Data Mining & Business Intelligence Groupe 5 Piotr BENSALEM Ahmed BENSI Evelyne CHARIFOU Priscillia CASSANDRA Enseignant Françoise FOGELMAN Nicolas DULIAN SOMMAIRE

Plus en détail

Introduction - 1. Structure en mémoire centrale (MC) Fichiers Bases de données

Introduction - 1. Structure en mémoire centrale (MC) Fichiers Bases de données Structure en mémoire centrale (MC) Fichiers Bases de données 2 Principes Stockage des données dans la mémoire volatile d un ordinateur Problèmes Stockage temporaire «Petits» volumes de données Langages

Plus en détail

Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino

Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino avec MailFlow Analyzer TM un produit de l Infrastructure Management Suite TM Copyright COOPERTEAM SOFTWARE 2013 La gestion de

Plus en détail

Domaine de Formation : Sciences et Technologies Mention : Informatique Spécialité : Informatique de Gestion

Domaine de Formation : Sciences et Technologies Mention : Informatique Spécialité : Informatique de Gestion LICENCE FONDAMENTALE INFORMATIQUE DE GESTION Domaine de Formation : Sciences et Technologies Mention : Informatique Spécialité : Informatique de Gestion I. Présentation de la licence Le but de la Licence

Plus en détail

Ecole Nationale des Sciences de l Informatique Université de la Manouba Janvier 2012 Programmes d enseignement

Ecole Nationale des Sciences de l Informatique Université de la Manouba Janvier 2012 Programmes d enseignement Ecole Nationale des Sciences de l Informatique Université de la Manouba Janvier 2012 Programmes d enseignement II1 - Premier semestre de la première année (S1) Module Crédits Nombre d heures Cours intégrés

Plus en détail

Table des matières. Partie I Organisations, management et systèmes d information... 1

Table des matières. Partie I Organisations, management et systèmes d information... 1 Liste des cas d entreprise...................................................... Liste des figures.................................................................. Liste des tableaux...............................................................

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

escan Entreprise Edititon Specialist Computer Distribution

escan Entreprise Edititon Specialist Computer Distribution escan Entreprise Edititon Specialist Computer Distribution escan Entreprise Edition escan entreprise Edition est une solution antivirale complète pour les entreprises de toutes tailles. Elle fournit une

Plus en détail

Guillaume Garbey (Consultant sécurité) Contributeurs: Gilles Morieux, Ismaël Cisse, Victor Joatton

Guillaume Garbey (Consultant sécurité) Contributeurs: Gilles Morieux, Ismaël Cisse, Victor Joatton Guillaume Garbey (Consultant sécurité) Contributeurs: Gilles Morieux, Ismaël Cisse, Victor Joatton Lyon, le 25 février 2009 Introduction à la gestion des identités et des accès Enjeux et objectifs Les

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Détection d'intrusions et analyse forensique

Détection d'intrusions et analyse forensique Détection d'intrusions et analyse forensique Yann Berthier & Jean-Baptiste Marchand Hervé Schauer Consultants Agenda Agenda Préambule IDS / IPS : principes - limites Au delà des IDS Conclusion Démonstrations

Plus en détail

Textes de référence : articles 313-53-2 à 313-62, 314-3-2 du règlement général de l AMF

Textes de référence : articles 313-53-2 à 313-62, 314-3-2 du règlement général de l AMF Instruction AMF n 2012-01 Organisation de l activité de gestion d OPCVM ou d OPCI et du service d investissement de gestion de portefeuille pour le compte de tiers en matière de gestion des risques Textes

Plus en détail

ProCurve Manager Plus 2.2

ProCurve Manager Plus 2.2 ProCurve Manager Plus 2.2 ProCurve Manager Plus 2.2 est une plate-forme de gestion de réseau avancée basée sur Windows qui fournit à l administrateur des écrans simples à utiliser et détaillés pour configurer,

Plus en détail

Spécifications des exigences d'un logiciel (Adapté de la norme IEEE 830-1993)

Spécifications des exigences d'un logiciel (Adapté de la norme IEEE 830-1993) Spécifications des exigences d'un logiciel (Adapté de la norme IEEE 830-1993) Ce document suggère un ensemble d éléments à préciser pour les exigences d'un système logiciel. Il débute par une Page de titre,

Plus en détail

Outils logiciels SPC - une façon simple d optimiser les performances et la protection

Outils logiciels SPC - une façon simple d optimiser les performances et la protection Outils logiciels SPC - une façon simple d optimiser les performances et la protection SPC - Étendre l art moderne de la détection d intrusion www.spc-intruder-detection.com Answers for infrastructure.

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

eframe pour optimiser les reportings métiers et réglementaires

eframe pour optimiser les reportings métiers et réglementaires eframe pour optimiser les reportings métiers et réglementaires TIME WINDOW DRIVEN REPORTING POUR DES ANALYSES ET DES RAPPORTS COMPLETS ET EXACTS, À TEMPS TOUT LE TEMPS www.secondfloor.com eframe pour optimiser

Plus en détail

Visual TOM 5.0 Fonctionnalités

Visual TOM 5.0 Fonctionnalités The job scheduling Company Visual TOM 5.0 Fonctionnalités 0 Interfaces existantes Xvision Mode multi-fenêtre Vision spécifique par écran Vision technique / hiérarchique Difficulté à faire évoluer 1 Interfaces

Plus en détail

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES 1 Base de données COURS 01 INTRODUCTION AUX BASES DE DONNÉES Objectifs du cours 2 Introduction aux bases de données relationnelles (BDR). Trois volets seront couverts : la modélisation; le langage d exploitation;

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

MAIRIE DE LA WANTZENAU MARCHE DE FOURNITURES PROCEDURE ADAPTEE CAHIER DES CHARGES

MAIRIE DE LA WANTZENAU MARCHE DE FOURNITURES PROCEDURE ADAPTEE CAHIER DES CHARGES MAIRIE DE LA WANTZENAU MARCHE DE FOURNITURES PROCEDURE ADAPTEE CAHIER DES CHARGES LOT 2 Fourniture et installation d un système de GED pour la Mairie de La Wantzenau. Fiche technique Cahier des Charges

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

ANALYSE SPÉCIFIQUE LES CASINOS

ANALYSE SPÉCIFIQUE LES CASINOS ANALYSE SPÉCIFIQUE LES CASINOS Casinos Sécurité ANALYSE POUR LE SECTEUR DE CASINOS Sécurité-Marketing Marketing Contrôle avancé de surveillance vidéo pour les bâtiments nécessitant un contrôle de sécurité

Plus en détail

Thèse CIFRE. Mécanismes de monitoring sémantique dédiés à la sécurité des infrastructures cloud IaaS

Thèse CIFRE. Mécanismes de monitoring sémantique dédiés à la sécurité des infrastructures cloud IaaS Thèse CIFRE Mécanismes de monitoring sémantique dédiés à la sécurité des infrastructures cloud IaaS Yacine HEBBAL Sylvie LANIEPCE Jean-Marc MENAUD Début de thèse : octobre 2014 (1 ière année) SEC2 : 30

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Menaces informatiques et Pratiques de sécurité en France Édition 2014. Paris, 25 juin 2014

Menaces informatiques et Pratiques de sécurité en France Édition 2014. Paris, 25 juin 2014 Menaces informatiques et Pratiques de sécurité en France Édition 2014 Paris, Enquête 2014 Les Hôpitaux publics de + de 200 lits Mme Hélène COURTECUISSE Astrid LANG Fondatrice Responsable Sécurité SI Patient

Plus en détail

Textes de référence : articles 313-53-2 à 313-60, articles 318-38 à 318-43 et 314-3-2 du règlement général de l AMF

Textes de référence : articles 313-53-2 à 313-60, articles 318-38 à 318-43 et 314-3-2 du règlement général de l AMF Instruction AMF n 2012-01 Organisation de l activité de gestion de placements collectifs et du service d investissement de gestion de portefeuille pour le compte de tiers en matière de gestion des Textes

Plus en détail

Service d Audit des logiciels Qualité et Conformité Cobol/Cics/IMS

Service d Audit des logiciels Qualité et Conformité Cobol/Cics/IMS GT-8 Service d Audit des logiciels Qualité et Conformité Cobol/Cics/IMS IMS-DC DC/SQL/ /SQL/IMS (disponible aussi pour Java/J2EE) IMS-DLI 03/12/2007 1 Prestation de service : Audit Qualimétrique I. Description

Plus en détail

overmind La solution précède le problème 2008 Overmind - All rights reserved

overmind La solution précède le problème 2008 Overmind - All rights reserved La solution précède le problème Société Overmind vous propose des solutions d optimisation, d anticipation, de pilotage global capables de prendre en compte l interdépendance des variables en terme de

Plus en détail

Visualisation appliquée à la détection d intrusions

Visualisation appliquée à la détection d intrusions Visualisation appliquée à la détection d intrusions Pierre Chifflier Sébastien Tricaud INL 101/103 Bvd MacDonald 75019 Paris, France Paris, OSSIR 2008 Sommaire 1 Introduction aux IDS Petit tour de la détection

Plus en détail