INTRODUCTION AU DATA MINING

Dimension: px
Commencer à balayer dès la page:

Download "INTRODUCTION AU DATA MINING"

Transcription

1 INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre en application les principes du data mining avec le logiciel Clementine de SPSS. Un mode d emploi succinct de Clementine est proposé à la fin de ce document. Préparation des données Jeu de données : 01 Cours : Exemple 3.2 et suivants 1) Afficher le tableau des données 1) Afficher l audit de données. Quelles conclusions pouvez-vous en tirer? Expliquer la signification de chaque donnée. 2) À partir des histogrammes de l audit de données, mettez à jour les problèmes et corrigez les (données aberrantes, type non reconnu (cas du poids). Jeu de données : 02 Cours : Exemple 2.1 et suivants 1) Afficher le tableau des données 2) Afficher l audit de données. Quelles conclusions pouvez-vous en tirer? Expliquer la signification de chaque donnée. 3) À partir des histogrammes de l audit de données, mettez à jour les problèmes et corrigez les (données aberrantes, type non reconnu (cas du poids). On s intéressera particulièrement à : Région US et Code département (afficher les proportions de l un dans l autre). Numéro de téléphone : trop de valeur => clé primaire possible => à extraire des modèles. On affiche les proportions pour vérifier. 4) Afficher les statistiques et les corrélations pour les variables numériques : quelles corrélations apparaissent? EPF-2006-Data mining-tp et Projet : utilisation de Clementine-p. 1

2 5) Afficher le nuage des points pour les corrélations que vous avez trouvées. 6) Analyser les corrélations entre données non numériques : afficher les proportions de churn dans l international avec un graphique (proportion) et en chiffres (matrice). De même avec les proportions de churn dans la messagerie. Afficher les proportions de churn dans le nombre d appels au service client (histogramme). 7) Faire l équivalent d un «group by» internationale et churn (agréger). De même avec mail et churn ; et enfin international, mail et churn. 8) Afficher la répartition du churn dans la consommation. 9) Créer un attribut calculé qui soit la somme de toutes les consommations et afficher le churn dans la consommation totale. 10) Superposer le churn dans un nuage de points correspondant à consommation jour et appels service client. 11) Du nuage de points précédent, extraire une zone de données intéressante et réafficher le nuage de points pour cette zone. 12) Calculer la répartition de la consommation jour par rapport aux appels au service client (matrice + discrétiser). 13) Faite un nuage de points en trois dimensions avec le chiffre d affaire total, le nombre de messages et le nombre d appels au service client. 14) Refaite l exercice précédent pour un nombre de messages > 0 15) Faire un «résumé» consommation totale, appel au service client, dans les deux sens, sans et avec superposition du churn. Qu en déduisez-vous. Jeu de données : Emp et Dept 1) Afficher le tableau des données pour Emp et Dept 2) Dans la table des employés, l attribut NumDept donne le numéro du département dans la table des départements. Faite la jointure SQL entre les deux tables (fusionner, clé pour fusion : NumDept, jointure interne). On en profitera pour filtrer les champs 4 et 5 de Dept qui ne servent à rien. Jeu de données : 03 Cours : Exemple 4.1 et suivants (inférences statistiques et composantes principales) 16) Afficher le tableau des données 17) Afficher l audit de données. Quelles conclusions pouvez-vous en tirer? Expliquer la signification de chaque donnée. 18) Dans toute la suite de l exercice, on ne travaillera que sur les données avec Sucre >=0 et Ka >=0 19) Afficher les statistiques et les corrélations numériques : quelles conclusions peut-on tirer? 20) Proposer une équation de régression linéaire permettant de calculer l apport nutritionnel en fonction du maximum d autres paramètres significatifs. Modélisation EPF-2006-Data mining-tp et Projet : utilisation de Clementine-p. 2

3 Pour les jeux de données 01, 02 et 03 Suite de la préparation des données : 1) Faire une analyse en composantes principales (pas de variable cible => typer : in ; ACP facteur, à partir du nœud typer). Lister les données particulières d après cette analyse. Essayer de déterminer les caractéristiques de ces données. 2) Faire une classification par la méthode des K Moyennes (pas de variable cible => typer in). Analyser les classes obtenues. Pour cela on peut lire le détail des résultats. 3) À partir du résultat de la classification K Moyennes (un champ supplémentaire : champs «classe»), faite les analyses qui vous semblent pertinentes. 4) Produire des règles d association (n variables cibles : typer : direction inout ; type ensemble ; GRI). Il faut discrétiser certaines données. Analyser et commenter les résultats. 5) Produire des arbres décision : choisir une variable cible et les variables en entrée pour la décision. Il faut discrétiser certaines données. 6) Quelles conclusions générales pouvez-vous tirer? PROJET DE DATA MINING On va travailler sur le fichier population.txt Faire une analyse de data mining Préparation des données Application des différents modèles de données. RENDU Un CD contenant : Les flux Clémentine Un rapport (document word) contenant pour chaque analyse : Le dictionnaire des données Des résultats graphiques et des commentaires appropriés. Les conclusions pour chaque analyse UTILISATION DE CLEMENTINE - SPSS Clementine est un logiciel de data mining. Comme tous les logiciels de data mining, il comporte deux parties : Une partie d analyse et de manipulation des données «classique» Une partie de modélisation propre au data mining EPF-2006-Data mining-tp et Projet : utilisation de Clementine-p. 3

4 La partie d analyse et de manipulation des données reprend les notions de base de l algèbre relationnelle (SQL). La partie de modélisation propre au data mining utilise les algorithmes spécifiques du data mining. Didacticiel Dans le logiciel : Aide / Didacticiel Vocabulaire de base : flux et processus Flux : traitement complet de données produisant un résultat exploitable. Processus : étape d un traitement complet, qui lui est appelé «flux». Dans Clémentine, le processus est une icône ou un nœud qu on peut relier à d autres processus pour former des flux. Les nœuds sont regroupés en bas, dans la zone d outils de données et de modélisation : sources, opérations sur ligne, opérations sur champs, graphisme, modélisation, sortie. Présentation des outils de Clémentine Dans la «palette de nœuds», zone horizontale en bas de la fenêtre de Clémentine, le logiciel propose toutes les opérations possibles regroupées logiquement : Sources Opérations sur les lignes Opérations sur les champs Graphiques Modélisation Sortie Dans ces opérations, on va retrouver la logique de l algèbre relationnelle : Select : choix des attributs, attributs calculés, élimination des doublons, fonctions de groupe From : choix des tables, produit cartésien, jointure Where : choix des lignes Order by : tris Group by : regroupements On a aussi la possibilité de faire des opérations ensemblistes : Union, Minus, Intersection EPF-2006-Data mining-tp et Projet : utilisation de Clementine-p. 4

5 Sources Les outils SGBD, Délimité, Fixe, SPSS, SAS permettent de choisir un fichier de données sur lequel se feront les opérations de data mining. Le fichier de données ne sera pas modifié par les opérations du data mining. Pour travailler à partir d un fichier excel enregistré en format texte, on utilise l outil «Délimité». Opérations sur les lignes 8 opérations proposées par Clémentine : Sélectionner, Echantillonner, Equilibrer, Agréger, Trier, Fusionner, Ajouter, Distinguer Les opérations correspondant à l algèbre relationnelle (SQL) : Clémentine SQL Exemple Sélectionner Where Agréger Group by Trier Order by Distinguer Distinct Fusionner Jointure Emp-Dept Ajouter Union 3333-Churn-2.20 Opérations spécifiques au data mining Opération Échantillonner Équilibrer Explications Permet de produire un échantillon à partir d un ensemble de départ Permet de modifier la répartition des valeurs d une variable. Opérations sur les champs (sur les colonnes) 10 opérations proposées par Clémentine : Typer, Filtrer, Calculer, Remplacer, Recoder, Discrétiser, Partitionner, Binariser, Historiser, Retrier Les opérations correspondant à l algèbre relationnelle (SQL) : Clémentine SQL Exemple Re-trier Select Permet de définir l ordre d affichage des EPF-2006-Data mining-tp et Projet : utilisation de Clementine-p. 5

6 colonnes Filtrer Select Permet de choisir les colonnes et de les renommer Calculer Select Permet de générer de nouveaux champs et des champs calculer Opérations spécifiques au data mining Opération Typer Remplacer / Recoder Discrétiser Partitionner Binariser Historiser Explications Permet de modifier le type des champs Permet de modifier les valeurs des variables d un champ selon certains critères Graphiques 7 opérations proposées par Clémentine : Nuage, Proportion, Histogramme, Résumé, Courbe, Relation, Evaluation Clémentine Nuage Proportion Histogramme Résumé Courbe Relation Evaluation 2 ou 3 variables, plus une superposition 1 var. non numérique + superposition 1 var. numérique + superposition Histogramme à deux variables Modélisation 5 opérations proposées par Clémentine en version d évaluation : Arbre de décision, K moyennes, Règles d association, Composantes principales, Régression Clémentine EPF-2006-Data mining-tp et Projet : utilisation de Clementine-p. 6

7 Arbre C & RT K-means GRI (règles d asso) ACP / Facteur Régression Sorties 14 opérations proposées par Clémentine qu on peut regrouper en 4 genres : 4 outils d observation des données : Table Matrice Audit données Statistiques Qualité Analyse la qualité initiale des données 2 outils de rapport : Analyse Rapport Crée un rapport comparant l exactitude des modèles prédictifs 1 outil de calcul statistique : V. Globales 6 outils d exportation des données : Excel Fichier plat SGBD Export SPSS Export SAS Commande SPSS EPF-2006-Data mining-tp et Projet : utilisation de Clementine-p. 7

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Le langage SQL Rappels

Le langage SQL Rappels Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,

Plus en détail

Langage SQL : créer et interroger une base

Langage SQL : créer et interroger une base Langage SQL : créer et interroger une base Dans ce chapitre, nous revenons sur les principales requêtes de création de table et d accès aux données. Nous verrons aussi quelques fonctions d agrégation (MAX,

Plus en détail

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

1 Introduction et installation

1 Introduction et installation TP d introduction aux bases de données 1 TP d introduction aux bases de données Le but de ce TP est d apprendre à manipuler des bases de données. Dans le cadre du programme d informatique pour tous, on

Plus en détail

Les bases de données

Les bases de données Les bases de données Introduction aux fonctions de tableur et logiciels ou langages spécialisés (MS-Access, Base, SQL ) Yves Roggeman Boulevard du Triomphe CP 212 B-1050 Bruxelles (Belgium) Idée intuitive

Plus en détail

1 Modélisation d être mauvais payeur

1 Modélisation d être mauvais payeur 1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage

Plus en détail

SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)...

SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)... SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)... 3 Introduction... 3 Échelle Interactive... 4 Navigation

Plus en détail

TP Bases de données réparties

TP Bases de données réparties page 1 TP Bases de données réparties requêtes réparties Version corrigée Auteur : Hubert Naacke, révision 5 mars 2003 Mots-clés: bases de données réparties, fragmentation, schéma de placement, lien, jointure

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

La place de SAS dans l'informatique décisionnelle

La place de SAS dans l'informatique décisionnelle La place de SAS dans l'informatique décisionnelle Olivier Decourt ABS Technologies - Educasoft Formations La place de SAS dans l'informatique décisionnelle! L'historique de SAS! La mécanique! La carrosserie

Plus en détail

Localisation des fonctions

Localisation des fonctions MODALISA 7 Localisation des fonctions Vous trouverez dans ce document la position des principales fonctions ventilées selon l organisation de Modalisa en onglets. Sommaire A. Fonctions communes à tous

Plus en détail

TD n 10 : Ma première Base de Données

TD n 10 : Ma première Base de Données TD n 10 : Ma première Base de Données 4 heures Rédigé par Pascal Delahaye 11 mars 2015 Le but de ce TD est de découvrirles principales fonctions d OpenOffice Base, le systèmede gestion de bases de données

Plus en détail

ANNEXE 8 : Le Mailing

ANNEXE 8 : Le Mailing 430/523 Lancer un mailing Présentation de l écran du mailing Aller dans Communication puis sélectionner «Mailing» Cet écran apparaît 431/523 Définition des zones Choix du type de Mailing 1 Mailing Courrier

Plus en détail

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star... 1 Manipulation de données avec SAS Enterprise Guide et modélisation

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

Le Langage SQL version Oracle

Le Langage SQL version Oracle Université de Manouba École Supérieure d Économie Numérique Département des Technologies des Systèmes d Information Le Langage SQL version Oracle Document version 1.1 Mohamed Anis BACH TOBJI anis.bach@isg.rnu.tn

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Langage SQL (1) 4 septembre 2007. IUT Orléans. Introduction Le langage SQL : données Le langage SQL : requêtes

Langage SQL (1) 4 septembre 2007. IUT Orléans. Introduction Le langage SQL : données Le langage SQL : requêtes Langage SQL (1) Sébastien Limet Denys Duchier IUT Orléans 4 septembre 2007 Notions de base qu est-ce qu une base de données? SGBD différents type de bases de données quelques systèmes existants Définition

Plus en détail

Traitement des données avec Microsoft EXCEL 2010

Traitement des données avec Microsoft EXCEL 2010 Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation

Plus en détail

Business Intelligence

Business Intelligence avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................

Plus en détail

EXCEL PERFECTIONNEMENT SERVICE INFORMATIQUE. Version 1.0 30/11/05

EXCEL PERFECTIONNEMENT SERVICE INFORMATIQUE. Version 1.0 30/11/05 EXCEL PERFECTIONNEMENT Version 1.0 30/11/05 SERVICE INFORMATIQUE TABLE DES MATIERES 1RAPPELS...3 1.1RACCOURCIS CLAVIER & SOURIS... 3 1.2NAVIGUER DANS UNE FEUILLE ET UN CLASSEUR... 3 1.3PERSONNALISER LA

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voies : Mathématiques, physique et sciences de l'ingénieur (MPSI) Physique, chimie et sciences de l ingénieur (PCSI) Physique,

Plus en détail

Complet Intuitif Efficace. Références

Complet Intuitif Efficace. Références Logiciel de référence en Analyse de Données, Data Mining et Text Mining pour transformer vos données en connaissance Complet Intuitif Efficace Dans un environnement convivial et intuitif, disposez de toute

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

SQL Serveur 2012+ Programme de formation. France Belgique Suisse - Canada. Formez vos salariés pour optimiser la productivité de votre entreprise

SQL Serveur 2012+ Programme de formation. France Belgique Suisse - Canada. Formez vos salariés pour optimiser la productivité de votre entreprise SQL Serveur 2012+ Programme de formation France Belgique Suisse - Canada Microsoft Partner Formez vos salariés pour optimiser la productivité de votre entreprise Dernière mise à jour le : Avril 2014 Des

Plus en détail

Bases de données cours 4 Construction de requêtes en SQL. Catalin Dima

Bases de données cours 4 Construction de requêtes en SQL. Catalin Dima Bases de données cours 4 Construction de requêtes en SQL Catalin Dima Requêtes SQL et langage naturel Énoncés en langage naturel. Traduction en SQL? Correspondance entre syntagmes/phrases et opérations

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Formations 2015 Bureautique

Formations 2015 Bureautique Formations 2015 Bureautique Excel PowerPoint Utiliser Excel au quotidien 1 jour lundi 30/03/2015 Créer des graphiques 0.5 jour mercredi 08/04/2015 (après midi) Faire des calculs 1 jour lundi 04/05/2015

Plus en détail

Évaluation et optimisation de requêtes

Évaluation et optimisation de requêtes Évaluation et optimisation de requêtes Serge Abiteboul à partir de tranparents de Philippe Rigaux, Dauphine INRIA Saclay April 3, 2008 Serge (INRIA Saclay) Évaluation et optimisation de requêtes April

Plus en détail

Didacticiel Études de cas. Description succincte de Pentaho Data Integration Community Edition (Kettle).

Didacticiel Études de cas. Description succincte de Pentaho Data Integration Community Edition (Kettle). 1 Objectif Description succincte de Pentaho Data Integration Community Edition (Kettle). L informatique décisionnelle («Business Intelligence BI» en anglais, ça fait tout de suite plus glamour) fait référence

Plus en détail

Bases de données élémentaires Maude Manouvrier

Bases de données élémentaires Maude Manouvrier Licence MI2E- 1ère année Outils en Informatique Bases de données élémentaires Maude Manouvrier Définitions générales et positionnement du cours dans la formation Vocabulaire relatif aux bases de données

Plus en détail

FORMATION EXCEL 2007

FORMATION EXCEL 2007 FORMATION EXCEL 2007 Livret 1 Débuter avec EXCEL 2007 Niveau 1 THIERRY TILLIER Retrouvez tous nos cours bureautiques sur http://www.e-presse.ca/ au Canada Ce support de cours est réservé à un usage personnel.

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

SPHINX Logiciel de dépouillement d enquêtes

SPHINX Logiciel de dépouillement d enquêtes SPHINX Logiciel de dépouillement d enquêtes sphinx50frversion4.doc 1 Les trois stades du SPHINX sont ceux que comporte habituellement toute enquête d opinion: Elaboration du questionnaire (fiche outil

Plus en détail

Objectifs du TP : Initiation à Access

Objectifs du TP : Initiation à Access Objectifs du TP : Initiation à Access I. Introduction Microsoft Access fait partie de l ensemble Microsoft Office. C est un SGBDR (système de gestion de bases de données relationnelles) présentant une

Plus en détail

GUIDE Excel (version débutante) Version 2013

GUIDE Excel (version débutante) Version 2013 Table des matières GUIDE Excel (version débutante) Version 2013 1. Créer un nouveau document Excel... 3 2. Modifier un document Excel... 3 3. La fenêtre Excel... 4 4. Les rubans... 4 5. Saisir du texte

Plus en détail

Bases de données avancées Introduction

Bases de données avancées Introduction Bases de données avancées Introduction Dan VODISLAV Université de Cergy-Pontoise Master Informatique M1 Cours BDA Plan Objectifs et contenu du cours Rappels BD relationnelles Bibliographie Cours BDA (UCP/M1)

Plus en détail

CESI Bases de données

CESI Bases de données CESI Bases de données Introduction septembre 2006 Bertrand LIAUDET EPF - BASE DE DONNÉES - septembre 2005 - page 1 PRÉSENTATION GÉNÉRALE 1. Objectifs généraux L objectif de ce document est de faire comprendre

Plus en détail

Satisfaction des stagiaires de BRUXELLES FORMATION Résultats 2013

Satisfaction des stagiaires de BRUXELLES FORMATION Résultats 2013 Satisfaction des stagiaires de BRUXELLES FORMATION Résultats 2013 Cahier méthodologique, tableau récapitulatif 2009-2013 et Matrices importance/performance Mars 2014 Service Études et Statistiques Table

Plus en détail

SUGARCRM MODULE RAPPORTS

SUGARCRM MODULE RAPPORTS SUGARCRM MODULE RAPPORTS Référence document : SYNOLIA_Support_SugarCRM_Module_Rapports_v1.0.docx Version document : 1.0 Date version : 2 octobre 2012 Etat du document : En cours de rédaction Emetteur/Rédacteur

Plus en détail

Note de cours. Introduction à Excel 2007

Note de cours. Introduction à Excel 2007 Note de cours Introduction à Excel 2007 par Armande Pinette Cégep du Vieux Montréal Excel 2007 Page: 2 de 47 Table des matières Comment aller chercher un document sur CVMVirtuel?... 8 Souris... 8 Clavier

Plus en détail

TP base de données SQLite. 1 Différents choix possibles et choix de SQLite : 2 Définir une base de donnée avec SQLite Manager

TP base de données SQLite. 1 Différents choix possibles et choix de SQLite : 2 Définir une base de donnée avec SQLite Manager TP base de données SQLite 1 Différents choix possibles et choix de SQLite : La plupart des logiciels de gestion de base de données fonctionnent à l aide d un serveur. Ils demandent donc une installation

Plus en détail

Introduction à Business Objects. J. Akoka I. Wattiau

Introduction à Business Objects. J. Akoka I. Wattiau Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

BIRT (Business Intelligence and Reporting Tools)

BIRT (Business Intelligence and Reporting Tools) BIRT (Business Intelligence and Reporting Tools) Introduction Cette publication a pour objectif de présenter l outil de reporting BIRT, dans le cadre de l unité de valeur «Data Warehouse et Outils Décisionnels»

Plus en détail

Utiliser Access ou Excel pour gérer vos données

Utiliser Access ou Excel pour gérer vos données Page 1 of 5 Microsoft Office Access Utiliser Access ou Excel pour gérer vos données S'applique à : Microsoft Office Access 2007 Masquer tout Les programmes de feuilles de calcul automatisées, tels que

Plus en détail

FORMATION ACCESS 2007

FORMATION ACCESS 2007 FORMATION ACCESS 2007 Livret 1 Généralité sur les bases de données Niveau 1 Thierry TILLIER Retrouvez tous nos cours bureautiques sur http://www.e-presse.ca/ au Canada Sommaire Chapitre 1 INTRODUCTION...

Plus en détail

CATALOGUE DES FORMATIONS 2014

CATALOGUE DES FORMATIONS 2014 CATALOGUE DES FORMATIONS 2014 5 Av Frédéric Mistral 34110 FRONTIGNAN 09 52 85 74 40 http://www.excelencours.fr ORGANISME DE FORMATION ENREGISTRE SOUS LE NUMERO : 91 34 06148 34 SIRET : 491-987-970 00023

Plus en détail

Bases de Données. Le cas des BD relationnelles ouverture sur les BD relationnelles spatiales Séance 2 : Mise en oeuvre

Bases de Données. Le cas des BD relationnelles ouverture sur les BD relationnelles spatiales Séance 2 : Mise en oeuvre Bases de Données Le cas des BD relationnelles ouverture sur les BD relationnelles spatiales Séance 2 : Mise en oeuvre Synthèse : conception de BD langage de modélisation famille de SGBD SGBD Analyse du

Plus en détail

Exemple accessible via une interface Web. Bases de données et systèmes de gestion de bases de données. Généralités. Définitions

Exemple accessible via une interface Web. Bases de données et systèmes de gestion de bases de données. Généralités. Définitions Exemple accessible via une interface Web Une base de données consultable en ligne : Bases de données et systèmes de gestion de bases de données The Trans-atlantic slave trade database: http://www.slavevoyages.org/tast/index.faces

Plus en détail

LIMESURVEY. LimeSurvey est une application permettant de créer des questionnaires d enquête en ligne et d en suivre le dépouillement.

LIMESURVEY. LimeSurvey est une application permettant de créer des questionnaires d enquête en ligne et d en suivre le dépouillement. LIMESURVEY LimeSurvey est une application permettant de créer des questionnaires d enquête en ligne et d en suivre le dépouillement. CERPEG janvier 2014 - Fabienne Mauri - Académie de Bordeaux page 1 SOMMAIRE

Plus en détail

Optimisation SQL. Quelques règles de bases

Optimisation SQL. Quelques règles de bases Optimisation SQL Quelques règles de bases Optimisation des ordres SQL Page 2 1. QUELQUES RÈGLES DE BASE POUR DES ORDRES SQL OPTIMISÉS...3 1.1 INTRODUCTION...3 1.2 L OPTIMISEUR ORACLE...3 1.3 OPTIMISEUR

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

Travailler avec les télécommunications

Travailler avec les télécommunications Travailler avec les télécommunications Minimiser l attrition dans le secteur des télécommunications Table des matières : 1 Analyse de l attrition à l aide du data mining 2 Analyse de l attrition de la

Plus en détail

1. LA GESTION DES BASES DE DONNEES RELATIONNELLES

1. LA GESTION DES BASES DE DONNEES RELATIONNELLES Dossier G11 - Interroger une base de données La base de données Facturation contient tout un ensemble d'informations concernant la facturation de la SAFPB (société anonyme de fabrication de produits de

Plus en détail

F0RMAT I0N BUREAUTIQUE

F0RMAT I0N BUREAUTIQUE F0RMAT I0N BUREAUTIQUE Initiation & Perfectionnement wwwmegarunfr - info@megarunfr INIT IAT I0N INF0RMAT IQUE Pré requis : Aucun Objectif : Découvrir l'outil informatique Durée : 4 jours Présentation de

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

SharePoint 2013 L'environnement de travail collaboratif

SharePoint 2013 L'environnement de travail collaboratif Généralités Présentation générale 11 Prérequis matériel, logiciel et système 11 L interface utilisateur avec ou sans Silverlight 11 Accéder à la page d accueil du site 12 Afficher/modifier ses paramètres

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Base de données relationnelle et requêtes SQL

Base de données relationnelle et requêtes SQL Base de données relationnelle et requêtes SQL 1e partie Anne-Marie Cubat Une question pour commencer : que voyez-vous? Cela reste flou Les plans de «Prison Break»? Non, cherchons ailleurs! Et de plus près,

Plus en détail

ECR_DESCRIPTION CHAR(80), ECR_MONTANT NUMBER(10,2) NOT NULL, ECR_SENS CHAR(1) NOT NULL) ;

ECR_DESCRIPTION CHAR(80), ECR_MONTANT NUMBER(10,2) NOT NULL, ECR_SENS CHAR(1) NOT NULL) ; RÈGLES A SUIVRE POUR OPTIMISER LES REQUÊTES SQL Le but de ce rapport est d énumérer quelques règles pratiques à appliquer dans l élaboration des requêtes. Il permettra de comprendre pourquoi certaines

Plus en détail

clef primaire ; clef étrangère ; projection ; restriction ; jointure ; SQL ; SELECT ; FROM ; WHERE

clef primaire ; clef étrangère ; projection ; restriction ; jointure ; SQL ; SELECT ; FROM ; WHERE Cas Neptune hôtel Base de données et langage SQL Propriété Intitulé long Formation concernée Matière Notions Transversalité Présentation Description Neptune Hôtel. L interrogation d une base de données

Plus en détail

Travaux pratiques avec RapidMiner

Travaux pratiques avec RapidMiner Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel

Plus en détail

Cours: Les Jointures 1

Cours: Les Jointures 1 Bases de Données Avancées Module A IUT Lumière, License CE-STAT 2006-2007 Pierre Parrend Cours: Les Jointures 1 Plan Table of Contents Principe...1 Example...1 Types de Jointures...2 Définitions et examples...2

Plus en détail

1 Modélisation d une base de données pour une société de bourse

1 Modélisation d une base de données pour une société de bourse IN306 : Corrigé SID Christophe Garion 18 octobre 2010 Ce document est un corrigé succinct de l examen du module IN306. 1 Modélisation d une base de données pour une société de bourse Une

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Initiation à la bureautique

Initiation à la bureautique Initiation à la bureautique i 1 17-18-19-20 mars 4 jours Ce stage doit permettre à des débutants de se familiariser avec l outil bureautique, d acquérir des connaissances de base autour de la micro-informatique.

Plus en détail

Utilisation de Solid Edge Embedded Client

Utilisation de Solid Edge Embedded Client Utilisation de Solid Edge Embedded Client Numéro de publication spse01424 103 Avertissement sur les droits de propriété et les droits réservés Ce logiciel et la documentation afférente sont la propriété

Plus en détail

Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza

Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Avant de commencer à travailler avec le produit, il est nécessaire de comprendre, à un haut niveau, les problèmes en réponse desquels l outil a été

Plus en détail

Suivi de la formation

Suivi de la formation Suivi de la formation Excel 2013 Nom : xxxxxxxx Prénom : xxxxxxxxx Suivi de la formation : Excel 2013 Contenu Niveau 1 : durée 4h15... 3 Etape 1. Découvrez Excel, complétez un tableau:... 3 Etape 2. Réalisez

Plus en détail

2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des

2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des 2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des marques déposées de Minitab, Inc. aux Etats-Unis et

Plus en détail

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE GUIDE COMPARATIF BUSINESS INTELLIGENCE www.viseo.com Table des matières Business Intelligence :... 2 Contexte et objectifs... 2 Une architecture spécifique... 2 Les outils de Business intelligence... 3

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

DATA MINING - Analyses de données symboliques sur les restaurants

DATA MINING - Analyses de données symboliques sur les restaurants Master 2 Professionnel - Informatique Décisionnelle DATA MINING - Analyses de données symboliques sur les restaurants Etudiants : Enseignant : Vincent RICHARD Edwin DIDAY Seghir SADAOUI SOMMAIRE I Introduction...

Plus en détail

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision Solutions Décisionnelles SPAD La maîtrise des données, l'art de la décision SPAD, la référence en Analyse de Données et Data Mining La solution logicielle SPAD permet de tirer le meilleur parti de tous

Plus en détail

Access et Org.Base : mêmes objectifs? Description du thème : Création de grilles d écran pour une école de conduite.

Access et Org.Base : mêmes objectifs? Description du thème : Création de grilles d écran pour une école de conduite. Access et Org.Base : mêmes objectifs? Description du thème : Création de grilles d écran pour une école de conduite. Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs, relations,

Plus en détail

Guide de l utilisateur de IBM SPSS Modeler 15

Guide de l utilisateur de IBM SPSS Modeler 15 Guide de l utilisateur de IBM SPSS Modeler 15 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 272. Cette version s

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Université de Picardie - Jules Verne UFR d'economie et de Gestion

Université de Picardie - Jules Verne UFR d'economie et de Gestion Université de Picardie - Jules Verne UFR d'economie et de Gestion 23/09/2014 Excel 2003 - Tableau Croisé Dynamique L information mise à disposition de l utilisateur est fréquemment une information de détail

Plus en détail

INSTITUT NATIONAL DES TELECOMMUNICATIONS CONTROLE DES CONNAISSANCES. 2. Les questions sont indépendantes les unes des autres.

INSTITUT NATIONAL DES TELECOMMUNICATIONS CONTROLE DES CONNAISSANCES. 2. Les questions sont indépendantes les unes des autres. INSTITUT NATIONAL DES TELECOMMUNICATIONS CONTROLE DES CONNAISSANCES Durée : 1h30 Date : 17/05/2006 Coordonnateurs : Amel Bouzeghoub et Bruno Defude Documents autorisés : ceux distribués en cours Avertissements

Plus en détail

Bases de données cours 1

Bases de données cours 1 Bases de données cours 1 Introduction Catalin Dima Objectifs du cours Modèle relationnel et logique des bases de données. Langage SQL. Conception de bases de données. SQL et PHP. Cours essentiel pour votre

Plus en détail

EXCEL et base de données

EXCEL et base de données EXCEL et base de données 1. Variables et données 2. Saisie de données: quelques règles 3. EXCEL et saisie des données 4. Exemple de tableau EXCEL 5. Éviter d éventuels problèmes 1 1.1 Variables et données

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Sommaire. BilanStat manuel de présentation et d utilisation Page 2

Sommaire. BilanStat manuel de présentation et d utilisation Page 2 BilanStat-Audit Sommaire Présentation... 3 Chapitre 0 : Gestion des bases de données... 5 Chapitre 0 : Gestion des missions... 12 Chapitre 1 : Eléments généraux... 17 Chapitre 2 : Capitaux propres... 28

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Le Sphinx Millenium Modes opératoires Préparer, administrer, Dépouiller les enquêtes

Le Sphinx Millenium Modes opératoires Préparer, administrer, Dépouiller les enquêtes Le Sphinx Millenium Modes opératoires Préparer, administrer, Dépouiller les enquêtes Le Sphinx Développement Parc Altaïs 74650 CHAVANOD Tél : 33 / 4.50.69.82.98. Fax : 33 / 4.50.69.82.78. Web : http://www.lesphinx-developpement.fr

Plus en détail

Business Intelligence simple et efficace avec Excel et PowerPivot

Business Intelligence simple et efficace avec Excel et PowerPivot Présentation de PowerPivot A. L analyse de données 7 1. Activité 7 2. Définitions 8 a. Mesures et dimensions 8 b. Traitement et analyse 8 c. Robustesse et confiance 9 B. Des solutions pour les gros volumes

Plus en détail

Logiciel Le Sphinx Plus 2 version 5. Le Sphinx Développement 74650 Chavanod

Logiciel Le Sphinx Plus 2 version 5. Le Sphinx Développement 74650 Chavanod Logiciel Le Sphinx Plus 2 version 5 Le Sphinx Développement 74650 Chavanod 2005-2006 Plan Présentation générale du logiciel Stade Élaboration du questionnaire Stade Collecte des réponses Stade Traitements

Plus en détail

Silfid : Agence de création de site internet, formations et Conseils Retour sommaire

Silfid : Agence de création de site internet, formations et Conseils Retour sommaire Sommaire ILFID vous accueille dans sa salle de formation équipée d ordinateurs en réseau et connectés internet, d'un vidéo- Sprojecteur et tableau blanc. Nos solutions sont éligibles aux critères de financement

Plus en détail

KIELA CONSULTING. Microsoft Office Open Office Windows - Internet. Formation sur mesure

KIELA CONSULTING. Microsoft Office Open Office Windows - Internet. Formation sur mesure KIELA CONSULTING Microsoft Office Open Office Windows - Internet Formation sur mesure Bureautique L outil informatique et la bureautique sont devenus quasiment incontournables quelque soit votre métier

Plus en détail