Plus courts chemins, programmation dynamique
|
|
|
- Yvonne Villeneuve
- il y a 10 ans
- Total affichages :
Transcription
1 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
2 2 Graphes orientés avec longueur Soit un graphe orienté G = (X, A, or, ext, l) X = {x 1, x 2,..., x n } Ensemble de sommets A Ensemble d arcs or : A X, ext : A X origine et extrémité de chaque arc l : A Z longueur des arcs 1. Une marche est une suite d arcs a 1, a 2,..., a p telle que pour tout 1 i < p: or(a i+1 ) = ext(a i ) 2. Un chemin est une marche a 1, a 2,..., a p telle que pour tout i j on ait: or(a i ) or(a j ) 3. Un circuit est un chemin tel que or(a 1 ) = ext(a p )
3 3 Plus courts chemins à partir d un sommet On se donne un graphe orienté G aux arcs valués par l(x, y) et un sommet x 0, trouver pour chaque sommet x : 1. La longueur du plus court chemin de x 0 à x 2. La suite des arcs constituant ce plus court chemin Structures de données : d[x] la longueur du plus court chemin de x 0 à x (avec mise à jour) pere[x] sommet qui précède x sur le plus court chemin de x 0 à x
4
5
6 6 Relaxation de l arc x, y Relaxation Si d[y] > d[x] + l(x, y) Alors d[y] = d[x] + l(x, y) pere[y] = x
7 7 Algorithme de Dijkstra Les distances sont supposées positives Un ensemble F initialisé à X les valeurs de d[x] sont initialisées à sauf : d[x0] = 0. Tant que F non vide : Soit y l élément de F ayant un d[y] minimal Pour tout arc a d origine y Faire Relaxation(a) Supprimer y de F.
8 8 Algorithme de Dijkstra: preuve de correction d[x] δ(x 0, x) lorsqu un sommet x quitte F on ne peut pas trouver un chemin plus court entre x 0 et x par la suite Si le chemin le plus court entre x 0 et x passe par y, alors il est composé d un chemin le plus court entre x 0 et y et d un plus court y et x. point fixe
9 9 Implantation 1. Gérer F comme une file? 2. Trouver le plus petit d[x] 3. Heaps, Fibonacci Heaps 4. Retrouver le chemin le plus court
10 10 Algorithme de Dijkstra dans le cas d arcs de longueurs négatives La version précédente ne donne pas le bon résultat On propose la modification suivante: Tant que F non vide : Soit y l élément de F ayant un d[y] minimal Pour tout arc a d origine y Faire Relaxation(a) Si relaxation modifie la valeur de ext(a) alors ajouter ext(a) à F. Supprimer y de F
11 11 Analyse de cette modification Donne le bon résultat s il n y a pas de circuit de longueur négative Mais un exemple montre que la complexité peut être exponentielle Exemple de Johnson Un graphe D n ayant n sommets x 1, x 2,..., x n et des arcs entre tous les sommets (dans les deux sens) Les longueurs des arcs (x i, x j ) pour i < j est 2 n
12 12 Exemple de Johnson (suite) Les longueurs des arcs (x i, x j ) pour i > j sont toutes négatives et sont données par les relations suivantes l(x 2, x 1 ) = 2, i > 2, l(x i+1, x 1 ) = l(x i, x 1 ) 2 i 2 1 i 2, 1 < j < i, l(x i, x j ) = l(x i, x j 1 ) + 1
13 13 Exemple n = 5 l(x 5, x 1 ) = l(x 4, x 1 ) 5 = l(x 3, x 1 ) 3 5 = l(x 2, x 1 ) 2 8 = 12 On obtient facilement la matrice des longueurs : x 1 x 2 x 3 x 4 x 5 x x x x x
14 14 F = {x 1, x 2, x 3, x 4, x 5 } 0 F = {x 1, x 2, x 3, x 4 } F = {x 2, x 3, x 4 } F = {x 1, x 3, x 4 } F = {x 3, x 4 } F = {x 1, x 2, x 4 } F = {x 2, x 4 } F = {x 4 } F = {x 1, x 2, x 3 } F = {x 1 }
15 15 Analyse de l exécution Il n y a pas de circuit de longueur négative x 1 sort une fois sur deux x 2 une fois sur quatre Au total 2 n 1 étapes de calcul
16 16 Les distances peuvent être négatives Algorithme de Ford Pour i= 1 à n-1 faire Pour tout arc a du graphe Faire Relaxation(a) Remarque Pour vérifier qu il n y a pas de circuit négatif on refait un tour de relaxation: si une nouvelle valeur est modifiée c est qu il existe un circuit négatif
17 17 Plus courts chemins entre tous les couples de sommets On calcule les δ k (x, y) par l algorithme suivant : Pour tous les couples x, y on pose : δ 0 (x, y) = l(a) s il existe un arc a entre x et y et sinon. Pour k = 1, 2, 3,..., n faire Pour tout couple x, y Pour tout sommet z successeur de x δ k+1 (x, y) = min(δ k (x, y), δ 0 (x, z) + δ k (z, y))
18 18 Preuve de valdité Il suffit de vérifier que δ k (x, y) est la longueur du plus court chemin composé de k arcs au plus entre x et y Par récurrence sur k Recherche du chemin Maintenir un tableau suivant[x][y] qui contient le sommet qui suit x dans le chemin qui mène de x à y
19 19 Algorithme de Roy-Warshall ( en n 3 ) Pour k de 1 à n faire Pour i de 1 à n faire Pour j de 1 à n faire Si delta[i][j] > delta[i][k] + delta[k][j] Alors delta[i][j] = delta[i][k] + delta[k][j]
20 20 Un exemple d illustration
21 21 Semi-anneau Un ensemble muni de deux lois notées, : La loi est associative, commutative Elle possède un élémént neutre 0 La loi est associative La loi est distributive par rapport à 0 est un zéro pour
22 22 Exemples de semi-anneaux 1. Un anneau, par exemple Z 2. Les entiers naturels N avec + et 3. Le semi-anneau de Boole à deux éléments 0, 1 avec (1 + 1 = 1) 4. Les opérations min + sur N 5. Les opérations max sur l intervalle réel [0, 1] 6. Union et concaténation pour les ensembles de mots
23 23 Graphes à arcs valués sur un semi-anneau Le semi anneau a pour lois, : Sommets X, Arcs A, Valuation λ Valuation d un chemin f = a 1, a 2,..., a k = λ(f) = λ(a 1 ) λ(a 2 )... λ(a k ) Valuation d un ensemble Γ = {f, g,... u, v} de chemins λ(f) = λ(f) λ(g)... λ(u) λ(v)
24 24 Algorithme sur un semi anneau quelconque On calcule les λ k (x, y) par l algorithme suivant : Pour tous les couples x, y λ 0 (x, y) = λ(a) s il existe un arc a entre x et y et ε sinon. Pour k = 1, 2, 3,..., n faire Pour tous les x, y faire λ k+1 (x, y) = λ k (x, y) λ k (x, z) λ k (z, y)
25 25 Applications Min et + : Les plus courts chemins Max et : La fiabilité maximale dans un réseau Semi-anneau de Boole: Existence de chemins Union, concaténation: Forme rationnelle d un langage reconnu par un automate
26 26 Principe de la programmation dynamique 1. La solution d un problème P k contient les solutions de problèmes ayant des tailles plus petites 2. La construction de la solution pour P k s effectue à l aide d un faible nombre d informations sur P j, j < k
27 27 Exemple 1: faire un produit de matrices de tailles différentes On se donne n matrices M 1, M 2,..., M n chaque M i a m i lignes et m i+1 colonnes, les entrées sont des nombres (réels ou entiers). On cherche la matrice produit: M 1 M 2... M n Il faut trouver l ordre des produits à effectuer de façon à minimiser le nombre total d opérations. Remarque: Le calcul de M i 1 M i demande O(m i 1 m i m i+1 ) opérations.
28 28 Exemple Trois matrices M 1, M 2, M 3 de tailles respectives , et Le calcul de M 1 M 2 demande multiplications de nombres le produit ensuite par M 3 fait faire de plus soit un total de Le calcul de M 2 M 3 demande multiplications de nombres, la détermination ensuite de M 1 M 2 M 3 utilise multiplications soit un total de Conclusion Il vaut mieux faire ((M 1 M 2 )M 3 ) que calculer (M 1 (M 2 M 3 ))
29 29 Cas général On note c i,j le nombre minimum de multiplications pour calculer M i M i+1... M j On a alors c i,i = 0, c i 1,i = m i 1 m i m i+1 On découpe M i M i+1... M j en M i... M k et M k+1... M j en choisissant le meilleur k: c i,j = min [c i,k + c k+1,j + m i m k+1 m j+1 ] k=i,j 1 On doit déterminer M 1,n
30 30 Un exemple: i m i c i,j
31 31 Un exemple: i m i c i,j
32 32 Calcul de c 1,3 : i m i c 1,3 = min [c 1,1 + c 2,3 + m 1 m 2 m 4, c 1,2 + c 3,3 + m 1 m 3 m 4 ] = min [ , ] = min [7 875, ]
33 33 Un exemple: i m i c i,j
34 34 Un exemple: i m i c i,j
35 35 Un exemple: i m i c i,j
36 36 Un exemple: i m i c i,j
37 37 Retrouver les étapes du calcul un tableau pour les valeurs des k intermédiaires K i,j Pour calculer M i... M j on pose k = K i,j donné par le tableau puis on calcule M i... M k et M k+1... M j et on les multiplie entre elles.
38 38 Sac à dos Des objets 1, 2,..., n de poids w 1, w 2,..., w n Chacun rapporte un bénéfice b 1, b 2,..., b n Trouver le bénéfice maximum réalisable sachant que la charge maximale est P 0
39 39 Sac à dos: idée pour P 0 entier pas trop grand On note B(k, p) le bénéfice maximal reálisable avec des objets 1, 2,..., k et le poids maximal p On a pour k = 1: B(1, p) = { 0 si p < w1 b 1 si p w 1 Pour k > 1 B(k, p) = { B(k 1, p) si p < wk max(b(k 1, p), B(k 1, p w k ) + b k ) si p w k
40 40 Exemple pour le sac à dos Objets Poids Bénéfices Poids total P 0 = 12
41 41 Sac à dos: Objets Poids Bénéfices B(k, p) k =
42 42 Sac à dos: Objets Poids Bénéfices B(k, p) k = k =
43 43 Sac à dos: Objets Poids Bénéfices B(k, p) k = k = k =
44 44 Sac à dos: B(k, p) k = k = k = k = k = k = k = k =
45 45 Alignements de séquences Pour deux mots sur l alphabet {A, C, G, T } on cherche un alignement qui optimise une fonction qui mesure la similarité Exemple: GATGCAT et AT CGAT G A T - G C A T - A T C G - A T
46 46 Algorithme de calcul du meilleur alignement p(a, b) est d autant plus grand que les lettres sont similaires. b a, p(a, a) > 0 > p(a, b) p(a, b) = p(b, a) q < 0 exprime la similarité d une lettre avec l espacement: p(a, e) = p(e, a) = q ms i,j = max ms i 1,j 1 + p(u i, v j ) ms i 1,j + q ms i,j 1 + q
47 47 Principe d un algorithme en espace linéaire Le calcul des meilleurs scores peut se faire sur une seule ligne Le problème est de retrouver l alignement une fois que l on a le score On procède par divide and conquer Pour aligner u et v on prend i comme la moitié de la longueur de u On calcule le score a j du meilleur alignement de u 1 u 2... u i 1 avec chaque facteur gauche v 1 v 2... v j de v On calcule le score b k du meilleur alignement de u i+1 u i+2... u n avec chaque facteur droit v k v k+1... v n de v On cherche le a j 1 + b j+1 + p(u i, v j ) le meilleur
48 48 Calcul de la complexité de l algorithme en espace linéaire On montre que le nombre de comparaison C(m, n) 2mn Vrai pour m = 1 C(m, n) mn 2 + mn 2 + C(m/2, j) + C(m/2, n j) C(m, n) mn 2 + mn 2 + mj + m(n j) 2mn
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Algorithmique et Programmation
École Supérieure d Ingénieurs de Poitiers Gea Algorithmique et Programmation Laurent Signac ii Algorithmique et programmation Gea Table des matières Avant Propos v Structures de données Notion de pointeur..............................................
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008
Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1
CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
Initiation à LabView : Les exemples d applications :
Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Premiers exercices d Algèbre. Anne-Marie Simon
Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Eléments de Théorie des Graphes et Programmation Linéaire
INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions
Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Axiomatique de N, construction de Z
Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................
Une forme générale de la conjecture abc
Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Intégration de la dimension sémantique dans les réseaux sociaux
Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI [email protected] 1 Contexte : Recommandation dans les réseaux sociaux
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
ELEC2753 Electrotechnique examen du 11/06/2012
ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Model checking temporisé
Model checking temporisé Béatrice Bérard LAMSADE Université Paris-Dauphine & CNRS [email protected] ETR 07, 5 septembre 2007 1/44 Nécessité de vérifier des systèmes... 2/44 Nécessité de vérifier
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
Cours d initiation à la programmation en C++ Johann Cuenin
Cours d initiation à la programmation en C++ Johann Cuenin 11 octobre 2014 2 Table des matières 1 Introduction 5 2 Bases de la programmation en C++ 7 3 Les types composés 9 3.1 Les tableaux.............................
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Quelques Algorithmes simples
Quelques Algorithmes simples Irène Guessarian [email protected] 10 janvier 2012 Je remercie Patrick Cegielski de son aide efficace pour la programmation Java ; la section sur le codage de Huffman a été
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
DOSSIER TECHNIQUE R-GO SPA. Production et assemblage 100 % Française. 3 Rue Pierre Mendès France 61200 ARGENTAN
DOSSIER TECHNIQUE R-GO SPA R-GO SPA Production et assemblage 100 % Française 1 Implantation technique Il faut retenir que la partie technique a un encombrement total de 250 cm par 90 cm au minimum, et
LES TYPES DE DONNÉES DU LANGAGE PASCAL
LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
