Introduction à l approche bootstrap

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à l approche bootstrap"

Transcription

1 Introduction à l approche bootstrap Irène Buvat U494 INSERM 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1

2 Plan du cours Qu est-ce que le bootstrap? Bootstrap pour l estimation d erreurs standard Bootstrap de données structurées Bootstrap pour l estimation de biais Bootstrap et jackknife Bootstrap pour la construction d intervalles de confiance Bootstrap et tests d hypothèses Bilan Référence Introduction à l approche bootstrap - Irène Buvat - 21/9/00-2

3 Qu est-ce que le bootstrap? Technique permettant d effectuer de l inférence statistique Technique récente (1979) car reposant sur l usage de calculateurs puissants Technique reposant sur la simulation de données à partir d un nombre limité d observations Technique destinée à faciliter l inférence dans les situations complexes où les méthodes analytiques ne suffisent pas to pull oneself up by one s bootstrap = se tirer d un mauvais pas Introduction à l approche bootstrap - Irène Buvat - 21/9/00-3

4 Problématique : exemple d inférence statistique La différence entre deux valeurs moyenne est-elle statistiquement significative? durée de survie groupe 1 (placébo) n 1 = 9 mesures 52, 10, 40, 104, 50, 27, 146, 31, 46 moyenne m 1 = 5622 erreur standard se 1 = var 1 /n 1 = 1414 groupe 2 (traitement) n 2 = 7 mesures 94, 38, 23, 197, 99, 16, 141 moyenne m 2 = 8686 erreur standard se 2 = var 2 /n 2 = 2524 différence des moyennes = 3063 erreur standard associée à la différence se = se se 2 2 = = 2893 m 1 - m 2 se = 105 non significatif pas besoin de bootstrap! Introduction à l approche bootstrap - Irène Buvat - 21/9/00-4

5 Problématique : intérêt du bootstrap La différence entre deux valeurs médianes est-elle statistiquement significative? groupe 1 (placébo) n 1 = 9 mesures durée de survie groupe 2 (traitement) n 2 = 7 mesures 52, 10, 40, 104, 50, 27, 146, 31, 46 médiane m 1 = 46 erreur standard? 94, 38, 23, 197, 99, 16, 141 moyenne m 2 = 94 erreur standard? différence des moyennes = 48 erreur standard associée à la différence? différence significative? pas de formule analytique simple pour estimer la fiabilité des grandeurs autres que les valeurs moyennes  intérêt du bootstrap Introduction à l approche bootstrap - Irène Buvat - 21/9/00-5

6 Bootstrap pour l estimation d une erreur standard 1 échantillon observé x = (x 1, x 2,, x N ) et 1 statistique d intérêt s(x) : moyenne, médiane, B échantillons bootstrap x *1 = (x 1*, x 2*,, x N * ) calcul de la statistique d intérêt réplications bootstrap de s s(x *1 ) x *b = (x 1*, x 2*,, x N* ) s(x *b ) x *B = (x 1*, x 2*,, x N* ) s(x *B ) Â estimée bootstrap de l erreur standard = écart-type des réplications bootstrap S [s(x *b )- s * ] 2 b B-1 avec s * = S s(x *b )/B b Introduction à l approche bootstrap - Irène Buvat - 21/9/00-6

7 Calcul d un échantillon bootstrap 1 échantillon observé de N valeurs x = (50, 53, 58, 80, 75, 69, 77, 44, 63, 73) 1 échantillon bootstrap : 1 tirage aléatoire de N valeurs parmi l échantillon original, avec remise x *1 = (69, 53, 80, 69, 73, 53, 44, 58, 75, 53) 1 échantillon bootstrap :  autant de valeurs que dans l échantillon original  valeurs issues de l échantillon original, mais avec des fréquences potentiellement différentes Introduction à l approche bootstrap - Irène Buvat - 21/9/00-7

8 Exemple : erreur standard de la moyenne durée de survie groupe 1 (placebo) n 1 = 9 mesures x = (52, 10, 40, 104, 50, 27, 146, 31, 46) statistique d intérêt : moyenne m 1 = 5622 B échantillons bootstrap x *1 =(50, 10, 40, 50, 46, 10,146, 40, 50) calcul de la moyenne réplications bootstrap de la moyenne 4911 x *b =(10, 52, 104, 40, 104, 46, 50, 146, 27) 6433 x *B =(146, 31, 31, 10, 27, 40, 104, 46, 50) 5389 Â estimée bootstrap de l erreur standard = écart-type des réplications bootstrap de la moyenne S [m 1 (x *b )- m 1* ] 2 SE (m 1 ) = b = 1332 B-1 avec m 1 * = S m 1 (x *b )/B b = 5573 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-8

9 Exemples d estimation d erreurs standard groupe 1 (placébo) n 1 = 9 mesures durée de survie groupe 2 (traitement) n 2 = 7 mesures 52, 10, 40, 104, 50, 27, 146, 31, 46 moyenne m 1 = 5622 médiane m 1 = 46 94, 38, 23, 197, 99, 16, 141 moyenne m 2 = 8686 médiane m 2 = 94 erreur standard sur m 1 :  classique : se 1 = 1414  bootstrap : se 1 * = 1332 erreur standard sur m 1 :  classique :?  bootstrap : se 1 * = 1154 erreur standard sur m 1 :  classique : se 2 = 2524  bootstrap : se 2 * = 2381 erreur standard sur m 2 :  classique :?  bootstrap : se 2 * = 3635 erreur standard sur n importe quelle statistique  classique :?  bootstrap : TOUJOURS UNE SOLUTION au prix d un peu de calcul Introduction à l approche bootstrap - Irène Buvat - 21/9/00-9

10 Erreur standard d un coefficient de corrélation (1) performances à des tests de contrôle de connaissance test national précédent la scolarisation r=0776 fiabilité de cette valeur? Â bootstrap note moyenne dans l année qui suit Introduction à l approche bootstrap - Irène Buvat - 21/9/00-10

11 Erreur standard d un coefficient de corrélation (2) échantillon observé x=( ) statistique d intérêt : corrélation r=0776 B échantillons bootstrap x * =( ) x =( ) *b x =( ) *B calcul de la corrélation r réplications bootstrap de la corrélation r S [r(x *b )- r * ] 2 SE (r) = b = 0775 B-1 avec r * = S r(x *b )/B b = 0134 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-11

12 Erreurs standard en ACP (1) élève notes par matière math phys litt angl mus i x i1 x i2 x ij x i5 N Matrice 5x5 de covariance empirique G : G jk = 1 N S i [x ij - moy i (x ij )] [x ik - moy i (x ik )] j,k=15 Calcul des valeurs propres et vecteurs propres de G : l 1, l 2, l 3, l 4, l 5 et v 1, v 2, v 3, v 4, v 5 fiabilité du pourcentage d inertie l 1 / S k l k? fiabilité des v k? Â bootstrap Introduction à l approche bootstrap - Irène Buvat - 21/9/00-12

13 Erreurs standard en ACP (2) B échantillons bootstrap échantillon observé X = élève notes par matière math phys litt angl mus i x i1 x i2 x ij x i5 N statistiques d intérêt : %age d inertie PI = l 1 /S k l k vecteurs propres v k X *1 = X *B = élève notes par matière math phys litt angl mus i x i1 x i2 x ij x i5 N élève notes par matière math phys litt angl mus i x i1 x i2 x ij x i5 calcul de G *b, valeurs propres et vecteurs propres de G réplications bootstrap l 1 *1 /S k l k *1 v 1 *1,v 2 *1,v 3 *1,v 4 *1,v 5 *1 l 1 *B /S k l k *B v 1 *B,v 2 *B,v 3 *B,v 4 *B,v 5 *B N SE (PI) = S [PI(X *b )- PI * ] 2 b B-1 avec PI * = S PI(x *b )/B b SE (v k ) = S [v k (X *b )- v k * ] 2 b B-1 avec v * k =S v k (X *b )/B b Introduction à l approche bootstrap - Irène Buvat - 21/9/00-13

14 Erreur standard dans l ajustement de courbes (1) Diminution du taux de cholestérol (y) en fonction du pourcentage de la dose prescrite effectivement absorbée (x) x i (%) y i Modèle y i = b 0 + b 1 x i + b 2 x 2 i Ajustement des moindres carrés  ( b 0, b 1, b 2 ) Diminution prédite par le modèle ^ ^ ^ ^ ^ ^ ^ y i = b 0 + b 1 x i + b 2 x i 2 fiabilité des valeurs prédites, ie, erreur standard autour d une valeur prédite pour le modèle considéré? eg, erreur standard autour de y 60%?  bootstrap Introduction à l approche bootstrap - Irène Buvat - 21/9/00-14

15 Erreur standard dans l ajustement de courbes (2) 1ère approche échantillon observé x i (%) y i statistiques d intérêt : valeurs prédites ^y i B échantillons bootstrap x * y * x *b y *b x *B y *B réplications calcul de ( b 0,b 1,b 2 ) bootstrap de ^ ^ ^ ^ y i y *1 i y *b i y i *B SE (y ^ i ) = S [y i *b - y i* ] 2 b B-1 avec y * i = S y *b i /B b Introduction à l approche bootstrap - Irène Buvat - 21/9/00-15

16 Erreur standard dans l ajustement de courbes (3) 2ème approche échantillon observé x i (%) y i ajustement du modèle : y i = b 0 +b 1 x i +b 2 x i 2 statistiques d intérêt : valeurs prédites ^y i ^ ^ ^ b 0, b 1, b 2 1 échantillon de résidus : ^e i = y i -b ^ 0 +b ^ 1 x i +b ^ 2 x 2 i ^e i = B échantillons bootstrap de résidus e i * e i *b e i *B modèle : y *b i =b ^ 0 +b ^ 1 x i +b ^ 2 x i2 +e *b i y i *1 y i *b y i *B B réplications bootstrap de y i erreur standard de y^ i ^ Introduction à l approche bootstrap - Irène Buvat - 21/9/00-16

17 Ajustement de courbes : résumé 2 possibilités : Bootstrap des paires (x i, y i )  pas de modèle nécessaire  suppose que les paires sont des réalisations aléatoires de la population Bootstrap des résidus  sensible au modèle Si modèle incertain, adopter plutôt le bootstrap des paires Introduction à l approche bootstrap - Irène Buvat - 21/9/00-17

18 Nombre B de réplications bootstrap nécessaire REGLES EMPIRIQUES Même un petit nombre de réplications fournit déjà des informations très utiles B=50 est souvent suffisant pour une estimation fiable de l erreur standard Il est rare que plus de 200 réplications soient nécessaires pour estimer les erreurs standard Exemples : erreur standard de la moyenne m 2 SE(m 2 ) B erreur standard du coefficient de corrélation r SE(r) B Introduction à l approche bootstrap - Irène Buvat - 21/9/00-18

19 Type de données : structurées vs non structurées Données non structurées  les valeurs de l échantillon observé sont indépendantes  une modification de l ordre des valeurs ne modifie pas l échantillon  exemples : durée de survie des animaux notes des étudiants aux tests notes des étudiants dans les différentes disciplines Données structurées  les valeurs de l échantillon observé ne sont pas indépendantes  l ordre des valeurs dans l échantillon est important  exemples : série temporelle ou chronologique spectre en énergie image ATTENTION Dans le cas de données structurées, la procédure de calcul d échantillons bootstrap ne doit pas détruire la structure! Introduction à l approche bootstrap - Irène Buvat - 21/9/00-19

20 Bootstrap d une série temporelle : problème Evolution de la concentration d une hormone au cours du temps t c t c t t Modèle centrage des mesures : y t = c t - moy(c t ) modèle AR1 : y t = b y t-1 + e t Ajustement des moindres carrés  b^ ^ Fiabilité de b?  bootstrap Introduction à l approche bootstrap - Irène Buvat - 21/9/00-20

21 Bootstrap d une série temporelle : 1 ère approche échantillon observé t c t ajustement du modèle : y t = c t - moy(c t ) y t = b y t-1 + e t statistiques d intérêt : paramètre du modèle b^ b^ 1 échantillon de résidus : ^e t = y t - b ^ y t-1 e t ^ résidus non structurés B échantillons bootstrap de résidus e t * modèle : y *b 2 =b ^ y 1 +e *b 2 y *b t =b ^ y *b t-1 +e *b t y t *1 ajustement du modèle ^ b *1 e t *b e t *B y t *b y t *B ^ b *b ^ b *B B réplications bootstrap de b^ erreur standard de b^ Introduction à l approche bootstrap - Irène Buvat - 21/9/00-21

22 Bootstrap d une série temporelle : 2 ème approche échantillon observé t c t décomposition en blocs indépendants statistiques d intérêt : paramètre du modèle b^ B échantillons bootstrap des blocs t c t * t c t *b t c t *B ajustement du modèle : y t = c t - moy(c t ) y t = b y t-1 + e t b *1 ^ ^ b *b ^ b *B B réplications bootstrap de b^ erreur standard de b^ Introduction à l approche bootstrap - Irène Buvat - 21/9/00-22

23 Bootstrap d une série temporelle : résumé 2 possibilités : Modèle et bootstrap des résidus  modèle tel que les résidus soient non structurés  bootstrap des résidus  reconstitution de données structurées bootstrap à partir du modèle et des réplications bootstrap des résidus  estimation de la statistique d intérêt sur chaque série temporelle bootstrap reconstituée Bootstrap par blocs  décomposition de la série en blocs indépendants  reconstitution de séries bootstrap en joignant les blocs tirés aléatoirement avec remise  estimation de la statistique d intérêt sur chaque série temporelle bootstrap reconstituée  moins dépendant d un modèle, mais problème du choix de la longueur des blocs Introduction à l approche bootstrap - Irène Buvat - 21/9/00-23

24 Bootstrap pour l estimation du biais : 1 ère approche biais = valeur estimée - valeur vraie 1 échantillon observé x = (x 1, x 2,, x N ) et 1 statistique d intérêt s(x) : moyenne, médiane, B échantillons bootstrap x *1 = (x 1*, x 2*,, x N * ) calcul de la statistique d intérêt réplications bootstrap de s s(x *1 ) x *b = (x 1*, x 2*,, x N* ) s(x *b ) x *B = (x 1*, x 2*,, x N* ) s(x *B ) Â estimée bootstrap du biais biais = s * - s(x) avec s * = S s(x *b ) /B b Introduction à l approche bootstrap - Irène Buvat - 21/9/00-24

25 Vecteur de rééchantillonnage 1 échantillon observé x = (x 1, x 2,, x N ) 1 échantillon 1 échantillon bootstrap bootstrap x *b 1 vecteur de rééchantillonnage P *b x *b = (x 1*, x 2*,, x N * ) P *b j = #(x * j = x j )/N j=1,,n = nb d occurrences de x j dans l échantillon bootstrap Exemple : x = (x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8 ) x *1 = (x 3, x 2, x 7, x 7, x 4, x 3, x 3, x 7 ) P *1 = (0, 1/7, 3/7, 1/7, 0, 0, 3/7, 0) 1 réplication bootstrap de la statistique s(x *b ) 1 fonction S(P *b ) du vecteur de rééchantillonnage P *b Exemple : s(x *b ) = moyenne de l échantillon = S x *b j /N S(P *b ) = S x j P j *b j j Introduction à l approche bootstrap - Irène Buvat - 21/9/00-25

26 Bootstrap pour l estimation du biais : 2 ème approche 1 échantillon observé x = (x 1, x 2,, x N ) B échantillons bootstrap et 1 statistique d intérêt s(x) : moyenne, médiane, x *1 = (x 1*, x 2*,, x N * ) calcul du vecteur de rééchantillonnage et calcul de la statistique d intérêt P *1, s(x *1 ) x *b = (x 1*, x 2*,, x N* ) P *b, s(x *b ) x *B = (x 1*, x 2*,, x N* ) P *B, s(x *B )  moyenne du vecteur d échantillonnage P * = S P *b /B b  moyenne des réalisations bootstrap de la statistique s * = S s(x *b ) /B b  estimée bootstrap du biais biais = s * - S(P * ) Introduction à l approche bootstrap - Irène Buvat - 21/9/00-26

27 Bootstrap pour l estimation du biais : exemple échantillon observé x = (26, 27, 29, 36, 35, 33, 35, 24, 31, 34, 42, 28, 35, 35, 27) statistique d intérêt : moyenne m = 3180 valeur vraie = 30 biais estimé B ère approche 2 ème approche -04  convergence des deux approches  convergence beaucoup plus rapide de la 2 ème approche  à la convergence, possible écart par rapport à la valeur vraie, inhérent à l estimation à partir d un échantillon fini Introduction à l approche bootstrap - Irène Buvat - 21/9/00-27

28 Correction du biais par l approche bootstrap biais = valeur estimée - valeur vraie s corr = s(x) - biais estimé = 2s(x) - s * (1 ère approche) = s(x) - s * + S(P * ) (2 ère approche) ATTENTION  l estimation corrigée du biais n est pas s *  la correction de biais peut être dangereuse en pratique car s corr peut avoir une grande erreur standard RECOMMANDATIONS  si biais faible par rapport à l erreur standard, mieux vaut utiliser s(x) plutôt que s corr  si biais grand par rapport à l erreur standard, s(x) n est probablement pas une bonne approximation de la statistique d intérêt pour la population Introduction à l approche bootstrap - Irène Buvat - 21/9/00-28

29 Bootstrap ou Jackknife? Introduction à l approche bootstrap - Irène Buvat - 21/9/00-29

30 Définition d un échantillon jackknife 1 échantillon observé de N valeurs x = (x 1, x 2, x 3, x i x N ) x = (50, 53, 58, 80, 75, 69, 77, 44, 63, 73) échantillon jackknife x i : échantillon original sans l observation i x i = (x 1, x 2, x 3, x i-1, x i+1, x N ) x 3 = (50, 53, 80, 75, 69, 77, 44, 63, 73) à partir d un échantillon observé contenant N valeurs  N échantillons jackknife seulement Introduction à l approche bootstrap - Irène Buvat - 21/9/00-30

31 Estimation jackknife de l erreur standard et du biais Statistique d intérêt s Estimation jackknife de l erreur standard de s SE jackknife (s) = N-1S [ s(x i ) - s ] 2 N i à comparer à : avec s = S s(x i )/N i SE bootstrap (s) = S [s(x *b )- s * ] 2 b B-1 Â facteur d inflation (N-1)/N requis car les échantillons jackknife sont moins dissemblables de l échantillon initial que les échantillons bootstrap Estimation jackknife du biais biais jackknife (s) = (N-1) [s - s(x) ] Introduction à l approche bootstrap - Irène Buvat - 21/9/00-31

32 Jackknife versus bootstrap Travaux jackknife préalables aux travaux bootstrap Jackknife = approximation du bootstrap - statistique linéaire s(x) = constante + S fonction(x i )  pas de perte d information par l approche i jackknife - statistique non linéaire s(x)  perte d informations par l approche jackknife  jackknife = approximation linéaire du bootstrap Jackknife = moins efficace que le bootstrap en général  écart entre estimées bootstrap et jackknife fonction de l écart de la statistique d intérêt à la linéarité Echec du jackknife si la statistique d intérêt n est pas une fonction différentiable de x (par exemple, médiane) RECOMMANDATION :  préférer l approche bootstrap! Introduction à l approche bootstrap - Irène Buvat - 21/9/00-32

33 Bootstrap et estimation d intervalles de confiance Prob ( s Œ [s 1 ; s 2 ] ) = 1-2a Plusieurs approches possibles : - construction de tables bootstrap  non recommandée pour les problèmes non paramétriques - utilisation des percentiles bootstrap  juste au premier ordre : prob(s<s 1 ) = a+c 1 / N et prob(s>s 2 ) = a c 2 / N - méthode BC a : Bias-Corrected and accelerated  juste au second ordre : prob(s<s 1 ) = a+c 1 / N et prob(s>s 2 ) = a c 2 / N  plus qu un avantage théorique  méthode recommandée Introduction à l approche bootstrap - Irène Buvat - 21/9/00-33

34 Méthode des percentiles bootstrap 1 échantillon observé x = (x 1, x 2,, x N ) B échantillons bootstrap x *1 = (x 1*, x 2*,, x N * ) et 1 statistique d intérêt s(x) : moyenne, médiane, calcul de la statistique d intérêt B réplications bootstrap de s s(x *1 ) x *b = (x 1*, x 2*,, x N* ) s(x *b ) x *B = (x 1*, x 2*,, x N* ) s(x *B ) Classement des B valeurs de s(x *b ) par ordre croissant Intervalle de confiance [s 1 ; s 2 ] couvrant 1-2a, ie, Prob(sŒ[s 1 ;s 2 ])=1-2a intervalle contenant 100* (1-2a)% des valeurs avec : s 1 = 100a ième percentile des s(x *b ) calculés, ie, Ba ième valeur de la liste classée par ordre croissant s 2 = 100(1-a) ième percentile des s(x *b ) calculés, ie, B(1-a) ième valeur de la liste classée par ordre croissant Exemple : B = 2000 et a = 5% s 1 = 100 ème valeur de la liste classée s 2 = 1900 ème valeur de la liste classée Introduction à l approche bootstrap - Irène Buvat - 21/9/00-34

35 Méthode BC a Bornes s 1 et s 2 également exprimées à partir des percentiles de la distribution bootstrap Bornes s 1 et s 2 différentes de celles de la méthode des percentiles : s 1 = 100a ième 1 percentile des s(x *b ) calculés, ie, Ba ième 1 valeur de la liste classée par ordre croissant s 2 = 100a ième 2 percentile des s(x *b ) calculés, ie, Ba ième 2 valeur de la liste classée par ordre croissant avec : z a 1 = F (z z (a) ) 1 - a (z 0 + z (a) ) z a 2 = F (z z (1-a) ) 1 - a (z 0 + z (1-a) ) où : F est la fonction de distribution cumulée de la loi normale centrée réduite, eg, F(1645) =095 z (a) est le 100 a ième percentile de la loi normale centrée réduite, eg, z (095) =1645 z 0 = F -1 [ (nb de valeurs s(x *b ) < s(x))/b] F -1 est l inverse de la fonction de distribution cumulée de la loi normale centrée réduite, eg, F -1 (095) =1645 a 0 = Prob ( s Œ [s 1 ; s 2 ] ) = 1-2a S [s - s(x i )] 3 i 6 {S [s - s(x i )] 2 } 3/2 i Introduction à l approche bootstrap - Irène Buvat - 21/9/00-35

36 Nombre d échantillons bootstrap nécessaires ATTENTION Â plus de 1000 échantillons bootstrap sont nécessaires pour une estimation robuste des intervalles de confiance Introduction à l approche bootstrap - Irène Buvat - 21/9/00-36

37 Bootstrap et tests d hypothèse Les 2 échantillons observés émanent t-il de la même distribution de probabilité? Les moyennes des deux populations sousjacentes à deux échantillons observés sont-elles identiques? La moyenne des observations est-elle significativement différente d une valeur théorique? Â l approche bootstrap peut répondre! Introduction à l approche bootstrap - Irène Buvat - 21/9/00-37

38 Notion de niveau de signification atteint (ASL) Niveau de signification atteint = Achieved Significance Level ASL Probabilité d observer une valeur de test au moins aussi grande que la valeur observée quand l hypothèse H0 est vraie ASL = Prob H0 (t* t obs ) Plus ASL est faible, plus il y a d évidence pour rejeter H0 Si ASL < a, rejeter H0 La valeur t obs est fixe et correspond à la valeur de test calculée à partir de ou des échantillons effectivement observés La valeur t* correspond à la valeur de test sous l hypothèse H0, estimé par le bootstrap Introduction à l approche bootstrap - Irène Buvat - 21/9/00-38

39 Tests d hypothèse : principe général Nécessité de définir 2 quantités :  une statistique de test t  la distribution des données F 0 sous l hypothèse H0 Générer B échantillons bootstrap de t(x * ) à partir de la distribution F 0 Calculer le niveau de signification atteint par ASL = (nb de valeurs t(x *b ) t obs )/B Si ASL < a, rejeter H0 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-39

40 Tests d hypothèse : exemple 1 2 échantillons observés y = (y 1, y 2,, y N ), moy(y) = S i y i /N z = (z 1, z 2,, z M ), moy(z) = S i z i /M Les 2 échantillons y et z observés émanent t-il de la même distribution de probabilité F 0? H0 : y et z sont des échantillons issus d une même population de distribution F 0 Former x = (y, z) Tirer B échantillons bootstrap de taille N+M à partir de x Pour chaque échantillon, les N premières observations sont notées y *b et les M suivantes z *b Pour chaque échantillon bootstrap, calculer : t(x *b ) = moy(y *b ) - moy(z *b ) avec moy(y *b ) = S i y i *b /N et moy(z *b ) = S i z i *b /M Calculer le niveau de signification atteint par ASL = (nb de valeurs t(x *b ) t obs )/B où t obs = moy(y) - moy(z ) Si ASL < a, rejeter H0 Rq : une autre statistique de test peut être utilisée à la place de t(x *b ) = moy(y *b )-moy (z *b ), par exemple une statistique de Student Introduction à l approche bootstrap - Irène Buvat - 21/9/00-40

41 Tests d hypothèse : exemple 2 2 échantillons observés y = (y 1, y 2,, y N ), moy(y) = S i y i /N z = (z 1, z 2,, z M ), moy(z) = S i z i /M Les 2 échantillons y et z observés émanent t-il de populations présentant la même moyenne? H0 : moy(y) = moy(z) Former x = (y, z) et calculer moy(x) = S i y i /N Calculer y i = y i - moy(y) + moy(x) et z i = z i - moy(z) + moy(x) Tirer B échantillons bootstrap y *b de taille N à partir de y, B échantillons bootstrap z *b de taille M à partir de z En déduire B vecteurs x *b = (y *b, z *b ) Pour chaque échantillon bootstrap, calculer : t(x *b ) = moy(y *b ) - moy(z *b ) s y 2*b /N + s z 2*b /M avec moy(y *b ) = S i y i *b /N et moy(z *b ) = S i z i *b /M s y 2*b = S i (y i *b -moy(y *b )) 2 /(N-1) s z 2*b = S i (z i *b -moy(z *b )) 2 /(M-1) Calculer le niveau de signification atteint par ASL = (nb de valeurs t(x *b ) t obs )/B moy(y) - moy(z ) où t obs = s y2 /N + s z2 /M Introduction à l approche bootstrap - Irène Buvat - 21/9/00-41

42 Tests d hypothèse : exemple 3 1 échantillon observé x = (x 1, x 2,, x N ), moy(x) = S i x i /N La moyenne de l échantillon observé vaut-elle m? H0 : moy(x) = m Tirer B échantillons bootstrap x *b de taille N à partir de x Pour chaque échantillon bootstrap, calculer : t(x *b ) = moy(x *b ) - moy(x) s 2*b /N avec moy(x *b ) = S i x i *b /N s 2*b = S i (x i *b -moy(x *b )) 2 /(N-1) Calculer le niveau de signification atteint par ASL = (nb de valeurs t(x *b ) t obs )/B où t obs = moy(x) - m s 2 /N Si ASL < a, rejeter H0 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-42

43 Bootstrap paramétrique 1 échantillon observé de N valeurs x = (50 ; 53 ; 58 ; 80 ; 75 ; 69 ; 77 ; 44 ; 63 ; 73) non paramétrique paramétrique estimation de la loi de la population 1 échantillon bootstrap : 1 tirage aléatoire de N valeurs parmi l échantillon original, avec remise 1 échantillon bootstrap : 1 tirage aléatoire de N valeurs à partir de la loi de la population Bootstrap non paramétrique  aucune hypothèse de loi de la population sousjacente nécessaire Bootstrap paramétrique  moins biaisé que les expressions analytiques  fournit des solutions aux problèmes pour lesquels il n existe pas de formule analytique Introduction à l approche bootstrap - Irène Buvat - 21/9/00-43

44 Bilan Bootstrap = méthode d inférence statistique adaptée au contexte non paramétrique 1 seul échantillon d observations nécessaire Permet d estimer la distribution sous-jacente à une population Permet d associer des erreurs standard à virtuellement n importe quelle statistique :  moyenne, médiane  coefficient de corrélation  paramètres issus d une modélisation des données  analyse multidimensionnelle (ACP) Permet d étudier le biais associé à une statistique calculée à partir d un seul échantillon Permet de calculer des intervalles de confiance et de réaliser des tests d hypothèse Estimateurs bootstrap = estimateurs non biaisés Introduction à l approche bootstrap - Irène Buvat - 21/9/00-44

45 Sujets plus avancés relatifs au bootstrap Estimation de la puissance d un test à partir du bootstrap Erreurs associées aux estimations bootstrap Prédiction d erreurs par l approche bootstrap Bootstrap et images : Â détermination des propriétés statistiques (eg, variance) d images issues de traitements Introduction à l approche bootstrap - Irène Buvat - 21/9/00-45

46 Référence recommandée An Introduction to the Bootstrap Monographs on Statistics and Applied Probability 57 Bradley Efron Robert J Tibshirani Chapman & Hall 1993 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-46

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Jackknife et bootstrap comparés

Jackknife et bootstrap comparés Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X n ) = c + n 1 n 1 α(x i) c constante, α fonction Exemples : X, 1 + n 1 Xi /n Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION

LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION Olivier Chaouy EDF R&D 1, avenue du Général de Gaulle - 92141 Clamart Cedex - France olivier.chaouy@edf.fr Résumé : Le

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Bootstrap et procédures de rééchantillonnage

Bootstrap et procédures de rééchantillonnage Bootstrap et procédures de rééchantillonnage Alain MORINEAU www.deenov.com L'analyse des données au XXI ème siècle Alain Morineau 1 Notions utiles (en bref) Population, échantillon, variabilité Estimation,

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

C. Huber Master 2. Exercices 1 6 2 7 3 11 4 11 5 14 6 14. DEUXIEME PARTIE : EXEMPLES PRATIQUES AVEC SPLUS et R

C. Huber Master 2. Exercices 1 6 2 7 3 11 4 11 5 14 6 14. DEUXIEME PARTIE : EXEMPLES PRATIQUES AVEC SPLUS et R C. Huber Master 2 Le Bootstrap I PREMIERE PARTIE : COURS I Le principe 1 1 Illustration 1 2 Elimination du biais 3 II Notations et Remarques 4 3 Notations 4 4 Remarques 5 III Simulations 6 IV Deux applications

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Jackknife, bootstrap et cross-validation

Jackknife, bootstrap et cross-validation But de l inférence statistique On a X = (X 1,..., X n) un échantillon i.i.d. de fonction de répartition F θ(f ) une quantité d intérêt, qui dépend de F T (X ) une statistique, estimateur de θ(f ), on voudrait

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

C3 : Manipulations statistiques

C3 : Manipulations statistiques C3 : Manipulations statistiques Dorat Rémi 1- Génération de valeurs aléatoires p 2 2- Statistiques descriptives p 3 3- Tests statistiques p 8 4- Régression linéaire p 8 Manipulations statistiques 1 1-

Plus en détail

La régression logistique

La régression logistique La régression logistique Présentation pour le cours SOL6210, Analyse quantitative avancée Claire Durand, 2015 1 Utilisation PQuand la variable dépendante est nominale ou ordinale < Deux types selon la

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Le site web «The Fast Food Explorer» (www.fatcalories.com) propose des données relatives à la composition des

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France 1 1 IRMA, Université de Strasbourg Strasbourg, France Master 2ème Année 12-10-2011 Ce chapitre s appuie essentiellement sur deux ouvrages : «Les sondages : Principes et méthodes» de Anne-Marie Dussaix

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

PROBABILITÉS STATISTIQUES

PROBABILITÉS STATISTIQUES PROBABILITÉS ET STATISTIQUES Probabilités et Statistiques PAES 0-03 L FOUCA Sommaire Chapitre Statistique descriptive 4 La statistique et les statistiques 4 Généralités sur les distributions statistiques

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail

Données qualitatives, modèles probit et logit

Données qualitatives, modèles probit et logit Données qualitatives, modèles probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours de Christophe Hurlin. On est confronté à des données qualitatives en micro-économie

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Jean Gaudart Laboratoire d Enseignement et de Recherche sur le Traitement de l Information Médicale jean.gaudart@univmed.fr

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE

Plus en détail

Statistique et Médias: la partie immergée de l iceberg. Philippe Tassi Journées ENS - ENSAI Rennes, 28 septembre 2007

Statistique et Médias: la partie immergée de l iceberg. Philippe Tassi Journées ENS - ENSAI Rennes, 28 septembre 2007 Statistique et Médias: la partie immergée de l iceberg Philippe Tassi Journées ENS - ENSAI Rennes, 28 septembre 2007 Les médias A priori, un objectif simple en terme de mesure : Compter et qualifier -

Plus en détail

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1 Modélisation stochastique des données à partir d essais sur matériaux Pr. Denys Breysse Université Bordeaux 1 Hasard cause fictive de ce qui arrive sans raison apparente ou explicable (Petit Robert). Ce

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Puissance d un test de détection de zones de changement abrupt dans le plan

Puissance d un test de détection de zones de changement abrupt dans le plan Puissance d un test de détection de zones de changement abrupt dans le plan Edith Gabriel & Denis Allard Institut National de la Recherche Agronomique, Unité de Biométrie Domaine saint Paul, site agroparc,

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique»

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» M1_presentation_generale_4juil05.doc 1/11 MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» La mention s articule autour de 6 spécialités : Recherche en éthique : Pr Christian HERVE (herve@necker.fr)

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Biostatistiques : Petits effectifs

Biostatistiques : Petits effectifs Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 patrick.devos@univ-lille2.fr Plan Données Générales : Définition des statistiques Principe de l

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Programme Pédagogique National du DUT «Statistique et traitement informatique des données»

Programme Pédagogique National du DUT «Statistique et traitement informatique des données» 46 Programme Pédagogique National du DUT «Statistique et traitement informatique des données» Présentation de la formation 2 SOMMAIRE 1 LA FORMATION : OBJECTIF, CONTENU ET CURSUS...4 1.1 Objectif et contenu

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB PAR : MAROOF ASIM DAN BENTOLILA WISSAM ESSID GROUPE 1 LM206 Lundi 10H45 INTRODUCTION : ( Ce rapport est un compte

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail