Validation probabiliste d un Système de Prévision d Ensemble

Dimension: px
Commencer à balayer dès la page:

Download "Validation probabiliste d un Système de Prévision d Ensemble"

Transcription

1 Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001)

2 Plan 1 Critères de validation probabiliste d un système de prévision d ensemble (EPS) 2 Mesures probabilistes 3 Comparaison objective de 2 EPS : méthodes bootstrap 4 Conclusions et perspectives

3 Principes probabilistes de validation d un EPS Oublier les concepts de validation déterministe 1 prévision = distribution de probabilités (PDF) vs. 1 vérification = 1 valeur numérique Validation des EPS par accumulation statistique. 2 critères : la fiabilité et la résolution. Xo

4 Critère d évaluation : Fiabilité Cohérence statistique entre les prévisions et les observations correspondantes. Xo f est la PDF prévue. f 1 et f 2 sont 2 distributions de x o quand f est prévue. L EPS est parfaitement fiable si et seulement si f = f. tout système peut être rendu fiable par une calibration statistique a posteriori. La fiabilité est un critère nécessaire mais non suffisant : cf. e.g. un système climatologique.

5 Critère d évaluation : Résolution Capacité de séparer les prévisions menant à des distributions d observations correspondantes (DOC) bien distinctes. système climatologique système déterministe Exemples DOC allant d une résolution minimale nulle pour le système climatologique à une résolution maximale pour le système déterministe. X 1 X 2 (la courbe rouge représente ici la distribution de toutes les observations : distribution climatologique)

6 Critères probabilististes : résumé La fiabilité et la résolution sont 2 propriétés qui déterminent la qualité et l utilité d un système de prévision probabiliste. Un EPS doit être capable de séparer a priori les prévisions en classes suffisamment variées afin que les observations correspondantes représentent des situations bien distinctes.

7 Continuous Ranked Probability Score (CRPS) Le CRPS mesure la qualité globale d un EPS : [ ] CRPS = E (F p (ξ) H(ξ x o )) 2 dξ Ω (1) F p est la distribution cumulative de probabilités (CDF) associée à l ensemble prévu et H est la distribution de Heaviside associée à la vérification. cas continu cas réel (discret) 1 verification CDF 1 verification CDF ε ε σ CRPS σ CRPS 0 mean ξ 0 mean ξ

8 Décomposition du CRPS Le CRPS se décompose en 2 composantes permettant de mesurer la fiabilité et la résolution. On utilise ici la décomposition proposée par H. Hersbach 1 : CRPS = Reli + CRPS pot (2) où Reli mesure la fiabilité et CRPS pot mesure la résolution. 1 Hersbach 2000 : Decomposition of the continuous ranked probability score for ensemble prediction systems, in Weather and Forecasting (15), pp

9 Composante fiabilité du CRPS : Reli A chaque réalisation du système, on définit des valeurs pour chaque intervalle [x i, x i+1 ] selon la position de la vérification et la taille de l intervalle. 1 verification CDF = Après accumulation sur l ensemble des réalisations du système, on peut définir la CDF observée correspondante et la comparer à la moyenne des CDF prévues. 1 predicted observed Reli 0 X1 X2... X(n 1) Xn 0

10 Composante résolution du CRPS : CRPS pot CRPS pot serait la valeur potentielle du CRPS si l EPS était fiable, i.e. Reli = 0. CRPS pot = uncertainty Resol 1 1 class of predicted CDF CRPS pot F(σ) σ Σ uncertainty F(Σ) 0 CDF over all observations Resol F(Σ σ) Plus σ << Σ, meilleure la résolution est.

11 Reduced Centered Random Variable (RCRV) La RCRV permet de détailler les caractéristiques de la fiabilité en terme de biais (b) et dispersion (d). A chaque réalisation, on considère la moyenne m et la dispersion σ de l ensemble, ainsi que l observation o et l erreur d observation σ o. La RCRV se définit alors : y = o m σ 2 + σ 2 o (3) On cherche ainsi à vérifier si l observation peut être considérée comme une réalisation indépendante de la loi de probabilité définie par l ensemble la moyenne de y (b) mesure le biais pondéré de l ensemble et la variance de y (d) mesure la dispersion comparée des ensembles et des observations.

12 Comment améliorer la fiabilité d un EPS? Pour un EPS fiable, on a : b = 0 et d = 1 On considère un EPS non fiable sous-dispersif et 2 corrections possibles : d Var ( ɛ σ ) > 1 verification ensemble mean members plus de dispersion verification ensemble mean members moins d erreur verification ensemble mean members ε ε σ ε σ σ

13 Méthode de comparaison Vérifications effectuées avec des observations de radio-sondages réparties sur tout le globe (Chantal Côté). Comparaison des performances de 2 EPS mesurée par les différences en terme de CRPS et RCRV. Limitation de la validation due à la taille de l échatillon sur lequel les statistiques sont calculées estimation d intervalle de confiance par des techniques de ré-échantillonnage bootstrap 2. 2 Efron and Tibshirani, 1993 : An introduction to the bootstrap

14 Technique bootstrap S : score CRPS ou RCRV X : échantillon de données X 1 = (x 5, x 3,..., x 9 ) : S(X 1 ) S(X ) : X = (x 1, x 2,..., x n ) X 2 = (x 4, x n,..., x n ) : S(X 2 ) X nb = (x 2, x 7,..., x 2 ) : S(X nb )

15 Intervalle de confiance : propriétés (1) Le ré-échantillonnage s effectue seulement parmi les jours de prévision et non aussi parmi les différentes stations d observations cela évite de donner trop de poids à des situations extrêmes journalières et d ainsi sous-évaluer la taille de l intervalle de confiance. CRPS CRPS(A) - CRPS(B) C.I. C.I. spatial correlation day. Température à 850 hpa pour la période du 12 septembre au 5 novembre 2005 EPS A = EPS opérationnel EPS B = EPS parallèle

16 Intervalle de confiance : propriétés (2) Risque de sous-évaluation de la taille des intervalles de confiance à cause de l auto-corrélation temporelle des erreurs de prévision, surtout à moyenne échéance autocorrelation ρ(t,t+1) ρ(t,t+2) ρ(t,t+3) ρ(t,t+4) ρ(t,t+5) CRPS CRPS(A) - CRPS(B) C.I. 1-day independent C.I. 2-days independent C.I. 3-days independent C.I. 4-days independent C.I. 5-days independent day day Les intervalles de confiance traduisent les incertitudes liées aux auto-corrélations des erreurs de prévision. Calcul des intervalles de confiance en ré-échantillonnant par séquences de 3 jours.

17 Comparaison : décomposition du CRPS Amélioration globale (CRPS) pour l EPS parallèle. Reli CRPS pot 0.1 Reli(A) - Reli(B) 0.1 CRPS pot (A) - CRPS pot (B) Reli 0.04 CRPS pot day day Amélioration significative de la fiabilité. Amélioration significative de la résolution jusqu au jour 6.

18 Comparaison : décomposition de la fiabilité Amélioration significative de la fiabilité pour l EPS parallèle. biais dispersion b(a) - b(b) d(A) - 1-d(B) bias day dispersion day Amélioration non significative du biais. Amélioration significative de la dispersion.

19 Comparaison : changement neutre Construction de 2 EPS thériquement équivalents : EPS A = EPS oper. jours pairs + EPS para. jours impairs EPS B = EPS oper. jours impairs + EPS para. jours pairs 0.08 CRPS(A') - CRPS(B') 0.06 CRPS Pas de différence significative day

20 Résumé Développement d outils de validation probabiliste objective pour la comparaison de la performance de 2 EPS : vérification contre observations. mesure globale CRPS avec décomposition fiabilité-résolution et caractérisation de la fiabilité par la RCRV. définition d intervalle de confiance par des techniques de ré-échantillonnage bootstrap. Amélioration significative avec l EPS parallèle, surtout en terme de fiabilité, qui est devenu l EPS opérationnel le 12 décembre 2005.

21 La suite... Transfert des outils de validation/comparaison probabiliste en mode opérationnel inclus dans une boite à outils de vérification plus générale (Barbara Casati). Développer les techniques de ré-échantillonnage pour d autres mesures probabilistes telles que le score de Brier. Prévision déterministe et prévision d ensemble : liens entre les incertitudes de prévision déterministe et la dispersion des ensembles? liens entre la discrimination (courbe ROC, valeur économique) et la fiabilité-résolution?

22 Merci Questions?

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION

LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION LOAD PROFILING : ESTIMATION D UNE COURBE DE CONSOMMATION ET PRECISION D ESTIMATION Olivier Chaouy EDF R&D 1, avenue du Général de Gaulle - 92141 Clamart Cedex - France olivier.chaouy@edf.fr Résumé : Le

Plus en détail

Impact de la configuration du traitement sur l estimation troposphérique par GNSS

Impact de la configuration du traitement sur l estimation troposphérique par GNSS Impact de la configuration du traitement sur l estimation troposphérique par GNSS Anne-Lise LAVAUX (L2G) Laurent MOREL (L2G) François FUND (CNES) Frédéric DURAND (L2G) Contexte Stratégie de traitement

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Compétitivité Climatique dans l'entreprise. Outils - Usages - Problématiques

Compétitivité Climatique dans l'entreprise. Outils - Usages - Problématiques "Atmosphère et prévisions météorologiques : nouveaux outils numériques, nouveaux usages" INRIA, 27 septembre 2012 Compétitivité Climatique dans l'entreprise Impacts météo et activités des entreprises Outils

Plus en détail

Real-time Monitoring and forecast of IntraSeasonal Variability over Africa (MISVA)

Real-time Monitoring and forecast of IntraSeasonal Variability over Africa (MISVA) Real-time Monitoring and forecast of IntraSeasonal Variability over Africa (MISVA) R. Roehrig 1,*, F. Couvreux 1, E. Poan 1, P. Peyrillé 1, J.-P. Lafore 1, O. Ndiaye 2, A. Diongue-Niang 2, F. Favot 1,

Plus en détail

Arbres de décisions et forêts aléatoires.

Arbres de décisions et forêts aléatoires. Arbres de décisions et forêts aléatoires. Pierre Gaillard 7 janvier 2014 1 Plan 1 Arbre de décision 2 Les méthodes d ensembles et les forêts aléatoires 2 Introduction 3 Introduction Jeu de données (ex

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Les régimes périodiques (Chap 2)

Les régimes périodiques (Chap 2) Les régimes périodiques (Chap 2)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. Propriétés des grandeurs physiques : La période T, est le plus petit intervalle de temps, au bout duquel

Plus en détail

L analyse discriminante

L analyse discriminante L analyse discriminante À Propos de ce document... Introduction... La démarche à suivre sous SPSS... 2. Statistics... 2 2. Classify... 2 Analyse des résultats... 3. Vérification de l existence de différences

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

46 e journées de statistique

46 e journées de statistique 46 e journées de statistique Le 5 juin 2014 à Rennes Construction et estimation des capacités d un score pronostique : intérêts de la pénalisation de LASSO et de l estimateur bootstrap 0.632+ appliqués

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

C3 : Manipulations statistiques

C3 : Manipulations statistiques C3 : Manipulations statistiques Dorat Rémi 1- Génération de valeurs aléatoires p 2 2- Statistiques descriptives p 3 3- Tests statistiques p 8 4- Régression linéaire p 8 Manipulations statistiques 1 1-

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Développements récents de la méthode des scores de la Banque de France

Développements récents de la méthode des scores de la Banque de France Développements récents de la méthode des scores de la Banque de France Au cours de la décennie quatre-vingt et au début des années quatre-vingt-dix, devant la multiplication des défaillances d entreprises,

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28 MIXMOD Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD F. Langrognet () MIXMOD Avril 2012 1 / 28 PLAN 1 La classification des données 2 MIXMOD, ensemble logiciel de classification

Plus en détail

partie a Introduction à la statistique 1

partie a Introduction à la statistique 1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer

Plus en détail

4. Résultats et discussion

4. Résultats et discussion 17 4. Résultats et discussion La signification statistique des gains et des pertes bruts annualisés pondérés de superficie forestière et du changement net de superficie forestière a été testée pour les

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Simulation de réseaux radio sous OPNET Modeler

Simulation de réseaux radio sous OPNET Modeler Simulation de réseaux radio sous OPNET Modeler ARC IRAMUS 19 Mai 2005 Fabrice Valois fabrice.valois@insa-lyon.fr Agenda Un peu de rappel sur la simulation Échéancier à temps discret Intervalles de confiance

Plus en détail

Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables

Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables 31 décembre 2013 Georges-Marie Saulnier, William Castaings, Anne Johannet, Gérard Dreyfus Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables Sommaire 1. INTRODUCTION...

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Post-processing of multimodel hydrological forecasts for the Baskatong catchment

Post-processing of multimodel hydrological forecasts for the Baskatong catchment + Post-processing of multimodel hydrological forecasts for the Baskatong catchment Fabian Tito Arandia Martinez Marie-Amélie Boucher Jocelyn Gaudet Maria-Helena Ramos + Context n Master degree subject:

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

11. Evaluation de la qualité des essais

11. Evaluation de la qualité des essais 11. Evaluation de la qualité des essais L évaluation de la qualité méthodologique d un essai thérapeutique est une tâche difficile [117]. L essai thérapeutique contrôlé randomisé est considéré comme étant

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

C. Huber Master 2. Exercices 1 6 2 7 3 11 4 11 5 14 6 14. DEUXIEME PARTIE : EXEMPLES PRATIQUES AVEC SPLUS et R

C. Huber Master 2. Exercices 1 6 2 7 3 11 4 11 5 14 6 14. DEUXIEME PARTIE : EXEMPLES PRATIQUES AVEC SPLUS et R C. Huber Master 2 Le Bootstrap I PREMIERE PARTIE : COURS I Le principe 1 1 Illustration 1 2 Elimination du biais 3 II Notations et Remarques 4 3 Notations 4 4 Remarques 5 III Simulations 6 IV Deux applications

Plus en détail

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation THEME 7 Choix en situations de risque et d incertitude. Choix inter-temporels de consommation Concepts et définitions essentiels Risque et incertitude Théorie de l utilité espérée Aversion au risque Loterie

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Jean Gaudart Laboratoire d Enseignement et de Recherche sur le Traitement de l Information Médicale jean.gaudart@univmed.fr

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Études. Un score sur variables qualitatives pour la détection précoce des défaillances d entreprises

Études. Un score sur variables qualitatives pour la détection précoce des défaillances d entreprises Un score sur variables qualitatives pour la détection précoce des défaillances d entreprises L intérêt de recourir à des éléments qualitatifs pour compléter une analyse financière et porter une appréciation

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Propagation des incertitudes et calcul de courbes de fragilité

Propagation des incertitudes et calcul de courbes de fragilité Titre : Propagation des incertitudes et calcul de courbes [...] Date : 12/02/2013 Page : 1/9 Propagation des incertitudes et calcul de courbes de fragilité Résumé : Ce document donne les éléments pour

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

Statistique et Médias: la partie immergée de l iceberg. Philippe Tassi Journées ENS - ENSAI Rennes, 28 septembre 2007

Statistique et Médias: la partie immergée de l iceberg. Philippe Tassi Journées ENS - ENSAI Rennes, 28 septembre 2007 Statistique et Médias: la partie immergée de l iceberg Philippe Tassi Journées ENS - ENSAI Rennes, 28 septembre 2007 Les médias A priori, un objectif simple en terme de mesure : Compter et qualifier -

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

Une approche régionale pour l'analyse du changement climatique : le climat ne connaît pas de frontière

Une approche régionale pour l'analyse du changement climatique : le climat ne connaît pas de frontière Une approche régionale pour l'analyse du changement climatique : le climat ne connaît pas de frontière Par Lucie Vincent 1 et Enric Aguilar 2 1 Climate Research Division, Environment Canada, Toronto, Canada

Plus en détail

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB PAR : MAROOF ASIM DAN BENTOLILA WISSAM ESSID GROUPE 1 LM206 Lundi 10H45 INTRODUCTION : ( Ce rapport est un compte

Plus en détail

UN NOUVEAU PARADIGME POUR LA

UN NOUVEAU PARADIGME POUR LA GESTION RÉSILIENTE DU RISQUE: UN NOUVEAU PARADIGME POUR LA MODÉLISATION DES CATASTROPHES Dr. Laurent Marescot Director, Model Product Management Risk Management Solutions LES INNOVATIONS FACE AU DÉVELOPPEMENT

Plus en détail

Théorie des graphes pour l analyse de réseaux d intéractions

Théorie des graphes pour l analyse de réseaux d intéractions Théorie des graphes pour l analyse de réseaux d intéractions Bertrand Jouve Laboratoire ERIC - IXXI - Université Lyon 2 SMAI 2013 Plan 1 Introduction 2 Décomposition en Clans Exemple d étude : modélisation

Plus en détail

Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification

Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification 1/54 Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification Étienne Baudrier CReSTIC vendredi 9 décembre 2005 2/54 Contexte programme national de

Plus en détail

UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins. Emmanuel Pichon 2013 V1.1

UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins. Emmanuel Pichon 2013 V1.1 UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins 2013 V1.1 Objectif Diagramme de classes (class diagram) pour le recueil des besoins et l analyse Présenter un ensemble

Plus en détail

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Rapport LAAS-CNRS Numéro N o 13077 Quynh Anh DO HOANG, Jérémie GUIOCHET, Mohamed

Plus en détail

EIE P ARC ÉOLIEN DE SPY EDF LUMINUS ANNEXE 7

EIE P ARC ÉOLIEN DE SPY EDF LUMINUS ANNEXE 7 EIE P ARC ÉOLIEN DE SPY EDF LUMINUS Edition: MARS 2014 Révision: RAPPORT FINAL ANNEXE 7 Note technique relative aux critères à considérer (P50, P90, facteur de capacité et productions électriques nettes)

Plus en détail

Probabilité et méthodes de fiabilité utilisées en géotechnique

Probabilité et méthodes de fiabilité utilisées en géotechnique Probabilité et méthodes de fiabilité utilisées en géotechnique Fernando Lopez-Caballero Laboratoire MSS-Mat École Centrale Paris fernando.lopez-caballero@ecp.fr 4 février 2011 Plan général Formulation

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

Générateur de Nombres Aléatoires

Générateur de Nombres Aléatoires Générateur de Nombres Aléatoires Les générateurs de nombres aléatoires sont des dispositifs capables de produire une séquence de nombres dont on ne peut pas tirer facilement des propriétés déterministes.

Plus en détail

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01) (19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informations de l'unité d'enseignement Implantation IPL Cursus de Intitulé Bachelier en biologie médicale Introduction à la Statistique B1110 Cycle 1 Bloc 1 Quadrimestre 2 Pondération 1 Nombre de crédits

Plus en détail

Chapitre 2 L actualisation... 21

Chapitre 2 L actualisation... 21 III Table des matières Avant-propos Remerciements.... Les auteurs... XI XII Chapitre 1 L intérêt.... 1 1. Mise en situation.... 1 2. Concept d intérêt... 1 2.1. L unité de temps... 2 2.2. Le taux d intérêt...

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Cours de gestion financière (M1)

Cours de gestion financière (M1) Cours de gestion financière (M1) Séance du 2 octobre 2015 Beta et risque de marché, MEDAF S&P500 vs high beta stocks 1 Séance du 2 octobre 2015 Beta et risque de marché, MEDAF 2 Partie 2 : Médaf, relation

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

3 Caractéristiques de la vague de chaleur d août 2003

3 Caractéristiques de la vague de chaleur d août 2003 3 Caractéristiques de la vague de chaleur d août 2003 3.1 Caractéristiques météorologiques Les données de Météo France indiquent qu en 2003, la période de survenue des fortes chaleurs s'étend principalement

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Partie I : Séries statistiques descriptives univariées (SSDU)... 1

Partie I : Séries statistiques descriptives univariées (SSDU)... 1 Table des matières Préface Avant-propos Pourquoi un tel ouvrage?... À propos de l ouvrage... À propos de la statistique................................................................ Remerciements....

Plus en détail

De la mesure à l analyse des risques

De la mesure à l analyse des risques De la mesure à l analyse des risques Séminaire ISFA - B&W Deloitte Jean-Paul LAURENT Professeur à l'isfa, Université Claude Bernard Lyon 1 laurent.jeanpaul@free.fr http://laurent.jeanpaul.free.fr/ 0 De

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

APPEL A PROJETS 2007 DE LA VILLE DE PARIS PROGRAMME DE RECHERCHE SUR PARIS. Projet EPICEA

APPEL A PROJETS 2007 DE LA VILLE DE PARIS PROGRAMME DE RECHERCHE SUR PARIS. Projet EPICEA APPEL A PROJETS 2007 DE LA VILLE DE PARIS PROGRAMME DE RECHERCHE SUR PARIS Projet EPICEA Etude Pluridisciplinaire des Impacts du Changement climatique à l Echelle de l Agglomération parisienne Rapport

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

DÉTECTION PRÉCOCE DES DÉFAILLANCES D ENTREPRISES À PARTIR DES DOCUMENTS COMPTABLES

DÉTECTION PRÉCOCE DES DÉFAILLANCES D ENTREPRISES À PARTIR DES DOCUMENTS COMPTABLES DÉTECTION PRÉCOCE DES DÉFAILLANCES D ENTREPRISES À PARTIR DES DOCUMENTS COMPTABLES 1 Dans le but d affiner l analyse du risque, la direction des Entreprises mettra prochainement à la disposition des établissements

Plus en détail

Téléphonie mobile comme indicateur de localisation de population

Téléphonie mobile comme indicateur de localisation de population Observation dynamique de la densité de population à partir de la téléphonie mobile - Etude de cas sur le Territoire de Belfort Séminaire sur les recueils de données organisé par le CERTU : Paris, le 25

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Notice de sélection pour Consultant Individuel IC-UPS/021/2013

Notice de sélection pour Consultant Individuel IC-UPS/021/2013 Notice de sélection pour Consultant Individuel IC-UPS/021/2013 Date: 15 Février 2013 Pays Intitulé de la mission : République Démocratique du Congo RDC Sélection d un consultant Chef d équipe pour l élaboration

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

GESTION DES VENTES - ECARTS SUR VENTES

GESTION DES VENTES - ECARTS SUR VENTES GESTION DES VENTES - ECARTS SUR VENTES Objectif(s) : o Analyse des écarts sur chiffre d'affaires : Pré requis : o Modalités : o o écart sur prix de vente, écart sur quantité. évaluation du chiffre d'affaires.

Plus en détail

Perspectives d applications de la télédétection en grandes culture à court et moyen terme dans le Sud-Ouest

Perspectives d applications de la télédétection en grandes culture à court et moyen terme dans le Sud-Ouest Perspectives d applications de la télédétection en grandes culture à court et moyen terme dans le Sud-Ouest Jean-François DEJOUX CESBIO & Luc CHAMPOLIVIER CETIOM Télédétection en agriculture : nouveau

Plus en détail

Méthodes de caractérisation avancée pour l évaluation de la fiabilité des filières GaN

Méthodes de caractérisation avancée pour l évaluation de la fiabilité des filières GaN Méthodes de caractérisation avancée pour l évaluation de la fiabilité des filières GaN Le salon des radiofréquences, des hyperfréquences, du wireless, de la CEM et de la Fibre Optique CNIT - Paris La Défense

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

Mortalité observée et mortalité attendue au cours de la vague de chaleur de juillet 2006 en France métropolitaine

Mortalité observée et mortalité attendue au cours de la vague de chaleur de juillet 2006 en France métropolitaine Mortalité observée et mortalité attendue au cours de la vague de chaleur de uillet en France métropolitaine FOUILLET A 1, REY G 1, JOUGLA E, HÉMON D 1 1 Inserm, U75, Villeuif, France. Inserm CépiDc, IFR9,

Plus en détail