Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Dimension: px
Commencer à balayer dès la page:

Download "Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA"

Transcription

1 Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université Montpellier II par Pierre Lafaye de Micheaux 16 décembre 2002 < R > 1/35

2 PLAN DE LA PRÉSENTATION Goodness-of-fit tests of normality for the innovations in ARMA models Objectifs Notion de test lisse de Neyman d ordre K Conditions sur le processus ARMA(p,q) La stratégie du test lisse appliquée au modèle ARMA Choix de l ordre K du test lisse A multivariate empirical characteristic function test of independence with normal marginals Objectifs et notations Tester l indépendance : cas non sériel Tester l indépendance : cas sériel Propriétés du processus limite Perspectives de recherche < R > 2/35

3 1. Goodness-of-fit tests of normality for the innovations in ARMA models 1.1. Objectifs Problème : On cherche à construire un test d ajustement de la normalité des innovations d un modèle ARMA(p, q) de moyenne connue. < R > 3/35

4 Le modèle ARMA(p,q) Processus stationnaire (Y t ; t Z) p q Y t ϕ i Y t i = θ i ɛ t i + ɛ t, t Z i=1 i=1 où les ϕ i et les θ i sont des réels et où (ɛ t ; t Z) est un bruit blanc de variance σ 2. Intéressant de tester la normalité de ce modèle? Intervalles de confiance pour une valeur prédite Y T +h. Efficacité des estimateurs des paramètres. Test de la validité du modèle (Pierce (1985), Brockett et al. (1988)). < R > 4/35

5 Autres tests existants? Tests basés sur la propriété : Y t Normale ɛ t Normale. perte de puissance. Utilisation de tests standards développés pour des observations i.i.d dans lesquels on injecte les résidus ɛ t. Ex : (Brockwell & Davis, 1991, p.314) suggèrent d appliquer le test de Shapiro-Francia aux résidus du modèle. Prendre des précautions. Simulations par Gasser (1975) qui montrent que le niveau et la puissance des tests du χ 2, d applatissement et d asymétrie peuvent être sérieusement affectés lorsqu ils sont utilisés dans le cadre des modèles ARMA. < R > 5/35

6 Notre approche : Test d ajustement de la normalité des innovations d un modèle ARMA(p, q) de moyenne connue, basé sur l approche des tests lisses de Neyman. < R > 6/35

7 1.2. Notion de test lisse de Neyman d ordre K Échantillon X 1,..., Xn de f.r. F : on veut tester H 0 : F = F 0 Transformation des données : U i = 2F 0 (X i ) 1 de densité g. On est ramené à tester H 0 : g = g 0 = Unif[ 1, 1] Emboîtement de la densité g 0 par la forme supposée de la densité g K g g K (y, η) = C(η) exp η i π i (y) 1l[ 1, 1] i=1 On est ramené à tester H 0 : η = 0 vs H 1 : η 0. < R > 7/35

8 Application du test du score de Rao : Rn = na T n,η 0 I 1 η 0 an,η 0 L χ 2 K sous H 0 où anη = 1 n Log(g K (U i, η)),..., 1 n Log(g K (U i, η)) n η i=1 1 n η i=1 K est le vecteur du score et où la matrice Iη 0 définie par n Iη 0 (i, j) = Eη=η 2 0 Log(g η l=1 i η K (U l, η)) j est l information de Fisher évaluée en η 0. Ici bien sûr, η 0 = 0. < R > 8/35 T

9 1.3. Conditions sur le processus ARMA(p,q) Causalité Inversibilité Les polynômes 1 ϕ 1 z... ϕpz p et 1 + θ 1 z θqz q n ont pas de racines communes. Sous ces conditions, on a les deux écritures : et Y t = ψ j ɛ t j j=0 ɛ t = δ j Y t j. j=0 < R > 9/35

10 1.4. La stratégie du test lisse appliquée au modèle ARMA On dispose d un échantillon {Y 1,..., Y T } que l on ajuste par Maximum de vraisemblance à un ARMA(p,q) de bruit blanc (ɛ t, t Z). Soit Φ la f.r. d une N(0,1). Nous définissons ) ( ɛt Û t = 2Φ 1 t = 1,..., T σ avec ɛ t = δ j Y t j j=0 et où δ j est fonction des EVM ϕ et θ. < R > 10/35

11 Le vecteur du score pour la famille d emboîtement K g K (y, ω) = C(ω) exp ω k L k (y) 1l[ 1, 1] k=1 s écrit alors L = 1 T où T L t t=1 L t = (L 1 (Ût ),..., L K (Ût ))T. < R > 11/35

12 Nous avons alors pu démontrer le théorème suivant. Théorème R K = T L T ( I K 1 2 b K bt K ) 1 L L χ 2 K où b K = (b 1,..., b k ) T avec b k = R L k (2Φ(x) 1)x2 φ(x)dx. < R > 12/35

13 En utilisant la décomposition de Choleski, nous avons montré ( I K 1 2 b K bt K) 1 = P P T avec P = (p ij ). En posant L k (Ût ) = k l=1 p lk L l (Ût ), nous avons pu écrire R K = K 1 T 2 L T k (Ût). k=1 t=1

14 En utilisant la décomposition de Choleski, nous avons montré ( I K 1 2 b K bt K) 1 = P P T avec P = (p ij ). En posant L k (Ût ) = k l=1 p lk L l (Ût ), nous avons pu écrire R K = K 1 T 2 L T k (Ût). k=1 t=1 } {{ } L χ 2 1 < R > 13/35

15 1.5. Choix de l ordre K du test lisse Posons K = min [ Argmax{Rs slog(t)} d s D ] d = 2 et D = 10 Nous avons démontré le Théorème Sous H 0, K P d et R K(d) L χ 2 d. Simulations g K(, ω) < R > 14/35

16 2. A multivariate empirical characteristic function test of independence with normal marginals 2.1. Objectifs et notations Objectif 1 : Soit ɛ = (ɛ (1),..., ɛ (p) ) T R pq. On veut construire un test d indépendance des composantes ɛ (j), j = 1,..., p. Conditions : On suppose que ces composantes sont de loi normale Nq(µ, Σ). < R > 15/35

17 Objectif 2 : Soit u 1, u 2,... une suite stationnaire de vecteurs aléatoires de loi Nq(µ, Σ). On veut construire un test d indépendance de ces u i. < R > 16/35

18 Les marginales ɛ (1),..., ɛ (p) sont indépendantes si et seulement si µ A 0, pour tout A {1,..., p}, A > 1. µ A (t) = ( 1) A\B Cp(t B ) C (j) (t (j) ), B A j A\B (t B ) (i) { = t (i), i B; 0, i Ip\B. < R > 17/35

19 Cas p = 3. µ {1,2} (t) = Cp(t {1,2} ) C (1) (t (1) )C (2) (t (2) ). On voit que µ {i,j} = 0 ɛ (i) ɛ (j), i, j = 1, 2, 3; i < j. µ {1,2,3} (t) = Cp(t {1,2,3} 3 ) + 3 C (j) (t (j) ) j=1 Cp(t {1,2} )C (3) (t (3) ) Cp(t {1,3} )C (2) (t (2) ) Cp(t {2,3} )C (1) (t (1) 3 ) C (j) (t (j) ). j=1 On voit que µ {1,2,3} = 0 {ɛ (1), ɛ (2), ɛ (3) } indépendants. < R > 18/35

20 2.2. Tester l indépendance : cas non sériel On pose e (k) = S 1 2(ɛ (k) ɛ), où ɛ = j j np 1 nj=1 p k=1 ɛ(k) j et S = np 1 nj=1 p k=1 (ɛ(k) ɛ)(ɛ (k) ɛ) j j T. Le processus que l on considère, pour un sous-ensemble A de {1,..., p}, est R n,a (t) = n ( 1) A\B φn,p(t B ) φ(t (i) ) B A i A\B où φn,p(t) = 1 n n exp(i t, e j ) j=1 et où φ est la fonction caractéristique d une Nq(0, Iq). < R > 19/35

21 En utilisant la formule multinomiale, on peut écrire R n,a (t) = 1 n n j=1 [exp(i t (k), e (k) ) φ(t (k) )]. j k A < R > 20/35

22 Nous avons alors démontré le Théorème Si ɛ (1) 1,..., ɛ(p) 1 sont indépendants, les processus { R n,a : A > 1} convergent dans C(R pq, C) vers des processus complexes Gaussiens indépendants de moyenne 0 {R A : A > 1} ayant pour fonction d autocovariance C A définie par C A (s, t) = [ φ(t (k) s (k) ) φ(t (k) )φ(s (k) ] ) k A et pour fonction de pseudo-autocovariance C A (s, t) = E[R A (s)r A (t)] = C A ( s, t). < R > 21/35

23 La statistique de test de Cramér-von Mises que nous proposons, pour un ensemble A donné, est T n,b,a = 1 n R pq R n,a (t) 2 ϕ b (t)dt où ϕ b est la densité d une Npq(0, b 2 I). < R > 22/35

24 Nous avons alors pu écrire cette statistique sous la forme { [ 1 n n n 2 exp b2 ] l=1 l 2 e(k) e (k) l l 2 =1 k A [ (b 2 + 1) q 2 exp 1 b 2 ] 2 b e(k) 2 l [ (b 2 + 1) q 2 exp 1 b 2 ] } 2 b e(k) l 2 + (2b 2 + 1) q 2 Invariance par les transformations affines (distance de Mahalanobis). < R > 23/35

25 La fonctionnelle de Cramér-von Mises n est pas continue ; on ne peut donc pas utiliser le Théorème principal de Billingsley (1968). Nous avons donc démontré le théorème suivant. Théorème (Généralisation de Kellermeier (1980)) Soient y n et y des éléments aléatoires de C(R pq, C) 2 tels que D y n y sur toutes les boules compactes. Soit f : C 2 R une fonction continue et soit G une mesure de probabilité sur R pq. On définit wn = f(y n (t))dg(t) et w = f(y(t))dg(t). Supposons que wn et w sont bien définies avec probabilité 1. De plus, supposons qu il existe α 1 tel que pour tout ɛ > 0, lim lim sup j n R pq \R pq j E f(y n (t)) α dg(t) = 0. Alors wn D w quand n. < R > 24/35

26 En utilisant le théorème précédent, nous avons montré le Théorème ( R n,a (t) 2, R n,b (t) 2) ϕ b (t)dt D ( R A (t) 2, R B (t) 2) ϕ b (t)dt. On peut alors considérer tous les ensembles A simultanément en utilisant les statistiques de test Sn = n T n,b,a A >1 ou Mn = n max A >1 T n,b,a. < R > 25/35

27 2.3. Tester l indépendance : cas sériel On veut tester l indépendance des u i qui sont supposés de loi Nq(µ, Σ). On définit ɛ i = (u i,..., u i+p 1 ) R pq et e i = (û i,..., û i+p 1 ) R pq, i = 1,..., n p + 1. On définit aussi û i = S 1 2(u i u), S = n 1 nj=1 (u j u)(u j u) T et u = 1 n nj=1 u j. Encore une fois, le processus que nous utilisons est R n,a (t) = n ( 1) A\B φn,p(t B ) φ(t (i) ), B A i A\B où φn,p(t) = 1 n n p+1 j=1 exp(i t, e j ). < R > 26/35

28 Théorème Si les u i sont indépendants, les processus { R n,a : A > 1} convergent dans C(R pq, C) vers des processus complexes Gaussiens indépendants de moyenne 0 {R A : A > 1} ayant pour fonction d auto et de pseudo-covariance C A et C A comme précédemment. Les mêmes statistiques de test que dans le cas non sériel sont alors utilisable et on obtient les mêmes résultats. Test universel pour détecter toute forme de dépendance. Test convergent. < R > 27/35

29 2.4. Propriétés du processus limite Notons k = A. R pq R A (t) 2 ϕ b (t)dt T b,a = (i 1,...,i k ) N k λ (i1,...,i k ) Z 2 (i 1,...,i k ) où les Z (i1,...,i k ) i.i.d. sont des variables aléatoires réelles N(0, 1) < R > 28/35

30 On a λ (i1,...,i k ) = k l=1 λ il où les λ j sont les valeurs propres de l opérateur intégral O défini par O(f)(s) = R q f(t)k(s, t)ϕ b (t)dt avec K(s, t) = exp( 1 2 s t 2 ) exp( 1 2 ( s 2 + t 2 )). Le problème est donc de résoudre, en λ (et f), l équation linéaire intégrale de Fredholm homogène d ordre 2 λf(s) = R q f(t)k(s, t)ϕ b (t)dt. Noyau possédant de bonnes propriétés. < R > 29/35

31 Calcul explicite des valeurs propres impossible. Calcul approché possible en discrétisant le problème. q R q f(ν)(2π) 2e ν 2 N 2 dν = B j f(ν j ) j=1 où les paramètres B j et ν j = (ν j,1,..., ν j,q ), j = 1,..., N peuvent être respectivement les coefficients et les points d une formule de cubature, ou alors peuvent être obtenus par une simulation de Monte-Carlo auquel cas B j = N 1 et ν j N(0, I), j = 1,..., N. Connaissant les valeurs propres on peut utiliser l algorithme de Davies (1973, 1980), consistant en une inversion de la fonction caractéristique, pour obtenir les valeurs critiques du test. < R > 30/35

32 Une autre possibilité pour obtenir les valeurs critiques du test est de calculer tous les cumulants de T b,a et ensuite d appliquer la méthode de Cornish-Fisher. Nous avons pu obtenir les cumulants de façon explicite grâce à une formule de récurrence. Vérification de la méthode utilisant les valeurs propres. < R > 31/35

33 3. Perspectives de recherche Extension des résultats du test lisse pour le modèle ARMA au cas d autres modèles comme les ARIMA, SARIMA, etc... Généralisation du test basé sur la fonction caractéristique à des marginales de loi non fixée. < R > 32/35

34 Table des matières 1 Goodness-of-fit tests of normality for the innovations in ARMA models Objectifs Notion de test lisse de Neyman d ordre K Conditions sur le processus ARMA(p,q) La stratégie du test lisse appliquée au modèle ARMA Choix de l ordre K du test lisse A multivariate empirical characteristic function test of independence with normal marginals Objectifs et notations Tester l indépendance : cas non sériel Tester l indépendance : cas sériel Propriétés du processus limite Perspectives de recherche 32 < R > 33/35

35 Références BILLINGSLEY, P. (1968). Convergence of probability measures. New York : John Wiley & Sons Inc. BROCKETT, P. L., HINICH, M. J. & PATTERSON, D. (1988). Bispectral-based tests for the detection of gaussianity and linearity in time series. Journal of the American Statistical Association 83, BROCKWELL, P. J. & DAVIS, R. A. (1991). Time series : Theory and Methods. Springer-Verlag New York, 2nd ed. DAVIES, R. B. (1973). Numerical inversion of a characteristic function. Biometrika 60, DAVIES, R. B. (1980). [Algorithm AS 155] The distribution of a linear combination of χ 2 random variables (AS R53 : 84V33 p ). Applied Statistics 29, GASSER, T. (1975). Goodness-of-fit tests for correlated data. Biometrika 62, < R > 34/35

36 KELLERMEIER, J. (1980). The empirical characteristic function and large sample hypothesis testing. J. Multivariate Anal. 10, PIERCE, D. (1985). Testing normality in autoregressive models. Biometrika 72, < R > 35/35

37 Formule multinomiale Soit A = {k 1,..., k A } un ensemble fini ( A désigne le cardinal de A) et u, v R A. On adopte la notation u = (u 1,..., u A ) T N = (u (k 1 ) (k,..., u A ) ) T. Alors u (i) v (j) = (u (i) + v (i)) B A i B j A\B i A < R > 36/35

38 Pour aller à la page k : CTRL+N puis k puis Enter. Pour aller à la page suivante : Page Down (ou cliquer sur > en bas de page). Pour revenir à la page précédente : Page Up (ou cliquer sur < en bas de page). On peut cliquer sur le texte écrit en rouge sur certaines pages pour accéder à la cible qu il désigne. Ensuite cliquer sur R (ou taper CTRL+<-) en bas de page pour revenir à la page d où l on vient. Pour fermer le document, taper sur la touche Esc (ou Echap). Pour mettre en plein écran, taper CTRL+L. < R > 37/35

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Modèles ARIMA et SARIMA Estimation dans R 1 et SAS 2 Novembre 2007 Yves Aragon aragon@cict.fr

Modèles ARIMA et SARIMA Estimation dans R 1 et SAS 2 Novembre 2007 Yves Aragon aragon@cict.fr Modèles ARIMA et SARIMA Estimation dans R 1 et SAS 2 Novembre 2007 Yves Aragon aragon@cict.fr Cette note examine les différences entre R et SAS dans l estimation des modèles ARIMA et SARIMA. Elle illustre

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Procédure diagnostique en arbre utilisant les tests lisses d adéquation

Procédure diagnostique en arbre utilisant les tests lisses d adéquation Procédure diagnostique en arbre utilisant les tests lisses d adéquation Walid A AKHRAS 1 & Gilles DUCHARME 1 aboratoire de probabilités et statistique cc 051, Université Montpellier, 34095 Montpellier

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Modèles GARCH et à volatilité stochastique

Modèles GARCH et à volatilité stochastique Christian Francq Chapitre 3: GARCH asymétriques Plan 1 Asymétrie des séries financières et inadéquation des GARCH standard 2 3 1 Asymétrie des séries financières et inadéquation des GARCH standard 2 3

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Détection de ruptures offline et online pour des processus causaux

Détection de ruptures offline et online pour des processus causaux Détection de ruptures offline et online pour des processus causaux Travaux avec W. Kengne (Paris 1, Yaoundé) et O. Wintenberger (Paris IX) Jean-Marc Bardet bardet@univ-paris1.fr Trimestre du Laboratoire

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

Initiation à la Statistique IS-Math314

Initiation à la Statistique IS-Math314 Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Initiation à la Statistique IS-Math314 Chapitres 1 4 Charles SUQUET

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 La méthode CGSM pour l analyse statique des plaques avec variabilité Mahyunirsyah MAHJUDIN 1,2 *, Frédéric DRUESNE 1, Irwan KATILI

Plus en détail

Modèles références de régression multinomiale.

Modèles références de régression multinomiale. Modèles références de régression multinomiale. Propriétés et applications en classification supervisée. Jean Peyhardi 1,3, Catherine Trottier 1,2 & Yann Guédon 3 1 UM2, Institut de Mathématiques et Modélisation

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Algorithmique et Programmation TD n 9 : Fast Fourier Transform

Algorithmique et Programmation TD n 9 : Fast Fourier Transform Algorithmique et Programmation TD n 9 : Fast Fourier Transform Ecole normale supérieure Département d informatique td-algo@di.ens.fr 2011-2012 1 Petits Rappels Convolution La convolution de deux vecteurs

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Estimation améliorée explicite d un degré de confiance conditionnel

Estimation améliorée explicite d un degré de confiance conditionnel Estimation améliorée explicite d un degré de confiance conditionnel Dominique Fourdrinier & Patrice Lepelletier UMR CNRS 6085, Université de Rouen, Site Colbert, 76 821 Mont-Saint-Aignan cedex, France

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement Estimation consistante des paramètres d un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement Consistent estimation of parameters in a nonlinear model for functional data with

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de

Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de Analyse de variance à 2 facteurs imbriqués sur données de comptage - Application au contrôle de qualité Florence Loingeville 1,2,3, Julien Jacques 1,2, Cristian Preda 1,2, Philippe Guarini 3 & Olivier

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Tavakoli, Shahin Fourier analysis of functional time series, with applications to DNA... 2014

Tavakoli, Shahin Fourier analysis of functional time series, with applications to DNA... 2014 resultats sont ensuite utilises pour construire des estimateurs des operateurs de densite spectrale bases sur des versions lissees du periodogramme, le generalisation fonctionnelle de la matrice de periodogramme.

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Svetlana Gribkova, Olivier Lopez Laboratoire de Statistique Théorique et Appliquée, Paris 6 4 Mars 2014

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38 Table des matières I Séries chronologiques 3 I.1 Introduction................................... 3 I.1.1 Motivations et objectifs......................... 3 I.1.2 Exemples de séries temporelles.....................

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Paramètre de longue mémoire d une série temporelle : le cas non linéaire Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Notion de longue mémoire Les valeurs d une série temporelle X = (X l )

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Christophe Pouzat. SELECT : 26 Octobre 2009

Christophe Pouzat. SELECT : 26 Octobre 2009 Une application simple du théorème de Donsker pour la construction de tests de qualité d ajustement de modèles de l intensité conditionnelle d un processus de comptage Christophe Pouzat Laboratoire de

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Introduction générale

Introduction générale Chapitre 1 Introduction générale Ce chapitre est consacré à une présentation rapide des méthodes numériques qui sont étudiées en détail dans ce cours Nous y donnons une approche très simplifiée des quatre

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Clustering par quantification en présence de censure

Clustering par quantification en présence de censure Clustering par quantification en présence de censure Svetlana Gribkova 1 Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, 75005 Paris Résumé.

Plus en détail