Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Dimension: px
Commencer à balayer dès la page:

Download "Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA"

Transcription

1 Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université Montpellier II par Pierre Lafaye de Micheaux 16 décembre 2002 < R > 1/35

2 PLAN DE LA PRÉSENTATION Goodness-of-fit tests of normality for the innovations in ARMA models Objectifs Notion de test lisse de Neyman d ordre K Conditions sur le processus ARMA(p,q) La stratégie du test lisse appliquée au modèle ARMA Choix de l ordre K du test lisse A multivariate empirical characteristic function test of independence with normal marginals Objectifs et notations Tester l indépendance : cas non sériel Tester l indépendance : cas sériel Propriétés du processus limite Perspectives de recherche < R > 2/35

3 1. Goodness-of-fit tests of normality for the innovations in ARMA models 1.1. Objectifs Problème : On cherche à construire un test d ajustement de la normalité des innovations d un modèle ARMA(p, q) de moyenne connue. < R > 3/35

4 Le modèle ARMA(p,q) Processus stationnaire (Y t ; t Z) p q Y t ϕ i Y t i = θ i ɛ t i + ɛ t, t Z i=1 i=1 où les ϕ i et les θ i sont des réels et où (ɛ t ; t Z) est un bruit blanc de variance σ 2. Intéressant de tester la normalité de ce modèle? Intervalles de confiance pour une valeur prédite Y T +h. Efficacité des estimateurs des paramètres. Test de la validité du modèle (Pierce (1985), Brockett et al. (1988)). < R > 4/35

5 Autres tests existants? Tests basés sur la propriété : Y t Normale ɛ t Normale. perte de puissance. Utilisation de tests standards développés pour des observations i.i.d dans lesquels on injecte les résidus ɛ t. Ex : (Brockwell & Davis, 1991, p.314) suggèrent d appliquer le test de Shapiro-Francia aux résidus du modèle. Prendre des précautions. Simulations par Gasser (1975) qui montrent que le niveau et la puissance des tests du χ 2, d applatissement et d asymétrie peuvent être sérieusement affectés lorsqu ils sont utilisés dans le cadre des modèles ARMA. < R > 5/35

6 Notre approche : Test d ajustement de la normalité des innovations d un modèle ARMA(p, q) de moyenne connue, basé sur l approche des tests lisses de Neyman. < R > 6/35

7 1.2. Notion de test lisse de Neyman d ordre K Échantillon X 1,..., Xn de f.r. F : on veut tester H 0 : F = F 0 Transformation des données : U i = 2F 0 (X i ) 1 de densité g. On est ramené à tester H 0 : g = g 0 = Unif[ 1, 1] Emboîtement de la densité g 0 par la forme supposée de la densité g K g g K (y, η) = C(η) exp η i π i (y) 1l[ 1, 1] i=1 On est ramené à tester H 0 : η = 0 vs H 1 : η 0. < R > 7/35

8 Application du test du score de Rao : Rn = na T n,η 0 I 1 η 0 an,η 0 L χ 2 K sous H 0 où anη = 1 n Log(g K (U i, η)),..., 1 n Log(g K (U i, η)) n η i=1 1 n η i=1 K est le vecteur du score et où la matrice Iη 0 définie par n Iη 0 (i, j) = Eη=η 2 0 Log(g η l=1 i η K (U l, η)) j est l information de Fisher évaluée en η 0. Ici bien sûr, η 0 = 0. < R > 8/35 T

9 1.3. Conditions sur le processus ARMA(p,q) Causalité Inversibilité Les polynômes 1 ϕ 1 z... ϕpz p et 1 + θ 1 z θqz q n ont pas de racines communes. Sous ces conditions, on a les deux écritures : et Y t = ψ j ɛ t j j=0 ɛ t = δ j Y t j. j=0 < R > 9/35

10 1.4. La stratégie du test lisse appliquée au modèle ARMA On dispose d un échantillon {Y 1,..., Y T } que l on ajuste par Maximum de vraisemblance à un ARMA(p,q) de bruit blanc (ɛ t, t Z). Soit Φ la f.r. d une N(0,1). Nous définissons ) ( ɛt Û t = 2Φ 1 t = 1,..., T σ avec ɛ t = δ j Y t j j=0 et où δ j est fonction des EVM ϕ et θ. < R > 10/35

11 Le vecteur du score pour la famille d emboîtement K g K (y, ω) = C(ω) exp ω k L k (y) 1l[ 1, 1] k=1 s écrit alors L = 1 T où T L t t=1 L t = (L 1 (Ût ),..., L K (Ût ))T. < R > 11/35

12 Nous avons alors pu démontrer le théorème suivant. Théorème R K = T L T ( I K 1 2 b K bt K ) 1 L L χ 2 K où b K = (b 1,..., b k ) T avec b k = R L k (2Φ(x) 1)x2 φ(x)dx. < R > 12/35

13 En utilisant la décomposition de Choleski, nous avons montré ( I K 1 2 b K bt K) 1 = P P T avec P = (p ij ). En posant L k (Ût ) = k l=1 p lk L l (Ût ), nous avons pu écrire R K = K 1 T 2 L T k (Ût). k=1 t=1

14 En utilisant la décomposition de Choleski, nous avons montré ( I K 1 2 b K bt K) 1 = P P T avec P = (p ij ). En posant L k (Ût ) = k l=1 p lk L l (Ût ), nous avons pu écrire R K = K 1 T 2 L T k (Ût). k=1 t=1 } {{ } L χ 2 1 < R > 13/35

15 1.5. Choix de l ordre K du test lisse Posons K = min [ Argmax{Rs slog(t)} d s D ] d = 2 et D = 10 Nous avons démontré le Théorème Sous H 0, K P d et R K(d) L χ 2 d. Simulations g K(, ω) < R > 14/35

16 2. A multivariate empirical characteristic function test of independence with normal marginals 2.1. Objectifs et notations Objectif 1 : Soit ɛ = (ɛ (1),..., ɛ (p) ) T R pq. On veut construire un test d indépendance des composantes ɛ (j), j = 1,..., p. Conditions : On suppose que ces composantes sont de loi normale Nq(µ, Σ). < R > 15/35

17 Objectif 2 : Soit u 1, u 2,... une suite stationnaire de vecteurs aléatoires de loi Nq(µ, Σ). On veut construire un test d indépendance de ces u i. < R > 16/35

18 Les marginales ɛ (1),..., ɛ (p) sont indépendantes si et seulement si µ A 0, pour tout A {1,..., p}, A > 1. µ A (t) = ( 1) A\B Cp(t B ) C (j) (t (j) ), B A j A\B (t B ) (i) { = t (i), i B; 0, i Ip\B. < R > 17/35

19 Cas p = 3. µ {1,2} (t) = Cp(t {1,2} ) C (1) (t (1) )C (2) (t (2) ). On voit que µ {i,j} = 0 ɛ (i) ɛ (j), i, j = 1, 2, 3; i < j. µ {1,2,3} (t) = Cp(t {1,2,3} 3 ) + 3 C (j) (t (j) ) j=1 Cp(t {1,2} )C (3) (t (3) ) Cp(t {1,3} )C (2) (t (2) ) Cp(t {2,3} )C (1) (t (1) 3 ) C (j) (t (j) ). j=1 On voit que µ {1,2,3} = 0 {ɛ (1), ɛ (2), ɛ (3) } indépendants. < R > 18/35

20 2.2. Tester l indépendance : cas non sériel On pose e (k) = S 1 2(ɛ (k) ɛ), où ɛ = j j np 1 nj=1 p k=1 ɛ(k) j et S = np 1 nj=1 p k=1 (ɛ(k) ɛ)(ɛ (k) ɛ) j j T. Le processus que l on considère, pour un sous-ensemble A de {1,..., p}, est R n,a (t) = n ( 1) A\B φn,p(t B ) φ(t (i) ) B A i A\B où φn,p(t) = 1 n n exp(i t, e j ) j=1 et où φ est la fonction caractéristique d une Nq(0, Iq). < R > 19/35

21 En utilisant la formule multinomiale, on peut écrire R n,a (t) = 1 n n j=1 [exp(i t (k), e (k) ) φ(t (k) )]. j k A < R > 20/35

22 Nous avons alors démontré le Théorème Si ɛ (1) 1,..., ɛ(p) 1 sont indépendants, les processus { R n,a : A > 1} convergent dans C(R pq, C) vers des processus complexes Gaussiens indépendants de moyenne 0 {R A : A > 1} ayant pour fonction d autocovariance C A définie par C A (s, t) = [ φ(t (k) s (k) ) φ(t (k) )φ(s (k) ] ) k A et pour fonction de pseudo-autocovariance C A (s, t) = E[R A (s)r A (t)] = C A ( s, t). < R > 21/35

23 La statistique de test de Cramér-von Mises que nous proposons, pour un ensemble A donné, est T n,b,a = 1 n R pq R n,a (t) 2 ϕ b (t)dt où ϕ b est la densité d une Npq(0, b 2 I). < R > 22/35

24 Nous avons alors pu écrire cette statistique sous la forme { [ 1 n n n 2 exp b2 ] l=1 l 2 e(k) e (k) l l 2 =1 k A [ (b 2 + 1) q 2 exp 1 b 2 ] 2 b e(k) 2 l [ (b 2 + 1) q 2 exp 1 b 2 ] } 2 b e(k) l 2 + (2b 2 + 1) q 2 Invariance par les transformations affines (distance de Mahalanobis). < R > 23/35

25 La fonctionnelle de Cramér-von Mises n est pas continue ; on ne peut donc pas utiliser le Théorème principal de Billingsley (1968). Nous avons donc démontré le théorème suivant. Théorème (Généralisation de Kellermeier (1980)) Soient y n et y des éléments aléatoires de C(R pq, C) 2 tels que D y n y sur toutes les boules compactes. Soit f : C 2 R une fonction continue et soit G une mesure de probabilité sur R pq. On définit wn = f(y n (t))dg(t) et w = f(y(t))dg(t). Supposons que wn et w sont bien définies avec probabilité 1. De plus, supposons qu il existe α 1 tel que pour tout ɛ > 0, lim lim sup j n R pq \R pq j E f(y n (t)) α dg(t) = 0. Alors wn D w quand n. < R > 24/35

26 En utilisant le théorème précédent, nous avons montré le Théorème ( R n,a (t) 2, R n,b (t) 2) ϕ b (t)dt D ( R A (t) 2, R B (t) 2) ϕ b (t)dt. On peut alors considérer tous les ensembles A simultanément en utilisant les statistiques de test Sn = n T n,b,a A >1 ou Mn = n max A >1 T n,b,a. < R > 25/35

27 2.3. Tester l indépendance : cas sériel On veut tester l indépendance des u i qui sont supposés de loi Nq(µ, Σ). On définit ɛ i = (u i,..., u i+p 1 ) R pq et e i = (û i,..., û i+p 1 ) R pq, i = 1,..., n p + 1. On définit aussi û i = S 1 2(u i u), S = n 1 nj=1 (u j u)(u j u) T et u = 1 n nj=1 u j. Encore une fois, le processus que nous utilisons est R n,a (t) = n ( 1) A\B φn,p(t B ) φ(t (i) ), B A i A\B où φn,p(t) = 1 n n p+1 j=1 exp(i t, e j ). < R > 26/35

28 Théorème Si les u i sont indépendants, les processus { R n,a : A > 1} convergent dans C(R pq, C) vers des processus complexes Gaussiens indépendants de moyenne 0 {R A : A > 1} ayant pour fonction d auto et de pseudo-covariance C A et C A comme précédemment. Les mêmes statistiques de test que dans le cas non sériel sont alors utilisable et on obtient les mêmes résultats. Test universel pour détecter toute forme de dépendance. Test convergent. < R > 27/35

29 2.4. Propriétés du processus limite Notons k = A. R pq R A (t) 2 ϕ b (t)dt T b,a = (i 1,...,i k ) N k λ (i1,...,i k ) Z 2 (i 1,...,i k ) où les Z (i1,...,i k ) i.i.d. sont des variables aléatoires réelles N(0, 1) < R > 28/35

30 On a λ (i1,...,i k ) = k l=1 λ il où les λ j sont les valeurs propres de l opérateur intégral O défini par O(f)(s) = R q f(t)k(s, t)ϕ b (t)dt avec K(s, t) = exp( 1 2 s t 2 ) exp( 1 2 ( s 2 + t 2 )). Le problème est donc de résoudre, en λ (et f), l équation linéaire intégrale de Fredholm homogène d ordre 2 λf(s) = R q f(t)k(s, t)ϕ b (t)dt. Noyau possédant de bonnes propriétés. < R > 29/35

31 Calcul explicite des valeurs propres impossible. Calcul approché possible en discrétisant le problème. q R q f(ν)(2π) 2e ν 2 N 2 dν = B j f(ν j ) j=1 où les paramètres B j et ν j = (ν j,1,..., ν j,q ), j = 1,..., N peuvent être respectivement les coefficients et les points d une formule de cubature, ou alors peuvent être obtenus par une simulation de Monte-Carlo auquel cas B j = N 1 et ν j N(0, I), j = 1,..., N. Connaissant les valeurs propres on peut utiliser l algorithme de Davies (1973, 1980), consistant en une inversion de la fonction caractéristique, pour obtenir les valeurs critiques du test. < R > 30/35

32 Une autre possibilité pour obtenir les valeurs critiques du test est de calculer tous les cumulants de T b,a et ensuite d appliquer la méthode de Cornish-Fisher. Nous avons pu obtenir les cumulants de façon explicite grâce à une formule de récurrence. Vérification de la méthode utilisant les valeurs propres. < R > 31/35

33 3. Perspectives de recherche Extension des résultats du test lisse pour le modèle ARMA au cas d autres modèles comme les ARIMA, SARIMA, etc... Généralisation du test basé sur la fonction caractéristique à des marginales de loi non fixée. < R > 32/35

34 Table des matières 1 Goodness-of-fit tests of normality for the innovations in ARMA models Objectifs Notion de test lisse de Neyman d ordre K Conditions sur le processus ARMA(p,q) La stratégie du test lisse appliquée au modèle ARMA Choix de l ordre K du test lisse A multivariate empirical characteristic function test of independence with normal marginals Objectifs et notations Tester l indépendance : cas non sériel Tester l indépendance : cas sériel Propriétés du processus limite Perspectives de recherche 32 < R > 33/35

35 Références BILLINGSLEY, P. (1968). Convergence of probability measures. New York : John Wiley & Sons Inc. BROCKETT, P. L., HINICH, M. J. & PATTERSON, D. (1988). Bispectral-based tests for the detection of gaussianity and linearity in time series. Journal of the American Statistical Association 83, BROCKWELL, P. J. & DAVIS, R. A. (1991). Time series : Theory and Methods. Springer-Verlag New York, 2nd ed. DAVIES, R. B. (1973). Numerical inversion of a characteristic function. Biometrika 60, DAVIES, R. B. (1980). [Algorithm AS 155] The distribution of a linear combination of χ 2 random variables (AS R53 : 84V33 p ). Applied Statistics 29, GASSER, T. (1975). Goodness-of-fit tests for correlated data. Biometrika 62, < R > 34/35

36 KELLERMEIER, J. (1980). The empirical characteristic function and large sample hypothesis testing. J. Multivariate Anal. 10, PIERCE, D. (1985). Testing normality in autoregressive models. Biometrika 72, < R > 35/35

37 Formule multinomiale Soit A = {k 1,..., k A } un ensemble fini ( A désigne le cardinal de A) et u, v R A. On adopte la notation u = (u 1,..., u A ) T N = (u (k 1 ) (k,..., u A ) ) T. Alors u (i) v (j) = (u (i) + v (i)) B A i B j A\B i A < R > 36/35

38 Pour aller à la page k : CTRL+N puis k puis Enter. Pour aller à la page suivante : Page Down (ou cliquer sur > en bas de page). Pour revenir à la page précédente : Page Up (ou cliquer sur < en bas de page). On peut cliquer sur le texte écrit en rouge sur certaines pages pour accéder à la cible qu il désigne. Ensuite cliquer sur R (ou taper CTRL+<-) en bas de page pour revenir à la page d où l on vient. Pour fermer le document, taper sur la touche Esc (ou Echap). Pour mettre en plein écran, taper CTRL+L. < R > 37/35

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Modèles ARIMA et SARIMA Estimation dans R 1 et SAS 2 Novembre 2007 Yves Aragon aragon@cict.fr

Modèles ARIMA et SARIMA Estimation dans R 1 et SAS 2 Novembre 2007 Yves Aragon aragon@cict.fr Modèles ARIMA et SARIMA Estimation dans R 1 et SAS 2 Novembre 2007 Yves Aragon aragon@cict.fr Cette note examine les différences entre R et SAS dans l estimation des modèles ARIMA et SARIMA. Elle illustre

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Zaher Mohdeb Université Mentouri Département de Mathématiques, Constantine, Algérie E-mail: zaher.mohdeb@umc.edu.dz

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Modèles GARCH et à volatilité stochastique

Modèles GARCH et à volatilité stochastique Christian Francq Chapitre 3: GARCH asymétriques Plan 1 Asymétrie des séries financières et inadéquation des GARCH standard 2 3 1 Asymétrie des séries financières et inadéquation des GARCH standard 2 3

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Procédure diagnostique en arbre utilisant les tests lisses d adéquation

Procédure diagnostique en arbre utilisant les tests lisses d adéquation Procédure diagnostique en arbre utilisant les tests lisses d adéquation Walid A AKHRAS 1 & Gilles DUCHARME 1 aboratoire de probabilités et statistique cc 051, Université Montpellier, 34095 Montpellier

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008) Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Svetlana Gribkova, Olivier Lopez Laboratoire de Statistique Théorique et Appliquée, Paris 6 4 Mars 2014

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 La méthode CGSM pour l analyse statique des plaques avec variabilité Mahyunirsyah MAHJUDIN 1,2 *, Frédéric DRUESNE 1, Irwan KATILI

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

COURS DE STATISTIQUE APPLIQUÉE

COURS DE STATISTIQUE APPLIQUÉE UNIVERSITE PROTESTANTE AU CONGO CENTRE CONGOLAIS-ALLEMAND DE MICROFINANCE COURS DE STATISTIQUE APPLIQUÉE Professeur Daniel MUKOKO Samba daniel_mukoko@yahoo.fr Quelques références Droesbeke, Jean-Jacques,

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Le pire des cas dans le choix de la copule

Le pire des cas dans le choix de la copule Comment éviter le pire Département de Mathématique Université de Bretagne Occidentale 29200 Brest Solvency 2 impose aux assureurs une analyse des risques accumulés sur plusieurs produits d assurances.

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Détection de ruptures offline et online pour des processus causaux

Détection de ruptures offline et online pour des processus causaux Détection de ruptures offline et online pour des processus causaux Travaux avec W. Kengne (Paris 1, Yaoundé) et O. Wintenberger (Paris IX) Jean-Marc Bardet bardet@univ-paris1.fr Trimestre du Laboratoire

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Éléments spectraux d une fonction cyclostationnaire

Éléments spectraux d une fonction cyclostationnaire Éléments spectraux d une fonction cyclostationnaire Alain BOUDOU 1 & Sylvie VIGUIR-PLA 1 & 2 1 quipe de Stat. et Proba., Institut de Mathématiques, UMR5219 Université Paul Sabatier, 118 Route de Narbonne,

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

L analyse de variance à un critère de classification (ANOVA)

L analyse de variance à un critère de classification (ANOVA) Bio 041 L analyse de variance à un critère de classification (ANOVA) Pierre Legendre & Daniel Borcard, Université de Montréal Référence: Scherrer (007), section 14.1.1.1 et 14.1. 1 - Introduction Objectif:

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS. par. Stef Graillat

SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS. par. Stef Graillat SUR LA SIGNATURE DE L AUTOMORPHISME DE FROBENIUS par Stef Graillat Résumé. Dans cette note, nous calculons la signature de l automorphisme de Frobenius dans un corps fini. Nous serons amené pour cela à

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail