Simulation de variables aléatoires

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Simulation de variables aléatoires"

Transcription

1 Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo Method, chap 3. Cadre: Scilab possède une fonction rand) dont les appels successifs fournissent une suite de variables aléatoires indépendantes et identiquement distribuées, de loi uniforme sur [, 1]. Nous ne nous intéresserons pas ici à la conception d une telle fonction. Problème: Comment simuler une variable aléatoire ou un vecteur aléatoire suivant une loi donnée, différente de la loi uniforme sur [,1]? 1.1 Premiers exemples de lois classiques Loi de Bernoulli de paramètre p: pδ p)δ Ecrire une fonction bernoulli1p) qui renvoit un tirage selon la loi de Bernoulli de paramètre p. Ecrire une fonction bernoulli2k,p) qui renvoit un k-echantillon suivant la loi de Bernoulli de paramètres p Loi binomiale de paramètres n, p): n k= ) n p k 1 p) n k δ k k Lemme Si X i ) 1 i n sont des variables aléatoires indépendantes et identiquement distribuées de loi de Bernoulli de paramètre p, alors S = n i=1 X i suit une loi binomiale de paramètres n, p). Ecrire une fonction binomialen,p) qui renvoit un tirage selon la loi binomiale de paramètres n,p). Faire un histogramme d un échantillon de taille 1 de loi binomiale de paramètres 8,1/3). histplot, clf 2

2 1.1.3 Loi uniforme sur {, 1,..., n 1}: function x=uniforme1n) 1 n 1 n k= // tirage suivant la loi uniforme sur {,...,n-1} x=floorn*rand)); Démonstration: On note X la variable aléatoire rendue par cette fonction. Comme P rand) < 1) = 1, on a P n*rand) < n) = 1 et δ k Pfloorn*rand)) [..n 1]) = 1. Donc X prend ses valeurs dans [..n 1]. Maintenant, soit k [..n 1]: PX = k) = Pfloorn*rand)) = k) = Pk n*rand) < k + 1) = P k n rand) < k + 1 n ) = 1 n Loi uniforme sur [a, b]: fx) = 1 b a 1 [a,b]x) Lemme Si U suit la loi uniforme sur [,1], alors, si α > et β R, αu + β suit la loi uniforme sur [β,β + α]. Démonstration: Soit ϕ : R R une fonction continue bornée: en faisant le changement de variable x = αu + β, on a EϕαU + β)) = 1 ϕαu + β)du = β+α β ϕx) 1 α dx, ce qui signifie que X est une variable aléatoire de densité fx) = 1 α 1 [β,β+α], et on reconnaît la densité de la loi uniforme sur [β,β + α]. function x=uniforme2a,b) // tirage suivant la loi uniforme sur [a,b] x=a+b-a)*rand); Loi exponentielle de paramètre λ: fx) = λ exp λx)1 R+ x) La fonction de répartition de la loi exponentielle est Ft) = PX t) = 1 exp λt). Cette fonction est une bijection de ],+ [ dans ],1[, d inverse Gu) = 1 ln1 u). λ Exercice 1: Montrer que si U est de loi uniforme sur [,1], alors GU) suit la loi exponentielle de paramètre λ. 3

3 function x=exponentiellea) // tirage suivant la loi exponentielle de parametre a x=-logrand))/a; Exercice 2: Pourquoi a-t-on remplacé 1 U par U dans l algorithme? Loi géométrique de paramètre p: Méthode 1: à partir du jeu de pile ou face: + k=1 1 p) k 1 pδ k Lemme Si X i ) i N sont des variables aléatoires iid de Bernoulli de paramètre p, alors N = min{i : X i = 1} suit une loi géométrique de paramètre p. function x=geometrique1p) // tirage suivant la loi geometrique de parametre p x=1; while rand)>p, x=x+1; end; Méthode 2: à partir de la loi exponentielle: ) Lemme Soit U suit la loi uniforme sur [,1], alors 1+E lnu ln1 p) de paramètre p. Démonstration: Notons X = 1 + E ln U ln1 p) X prend ses valeurs dans N. Soit maintenant k N : suit la loi géométrique ). Par définition de la partie entière, ) ) ) ) ln U ln U PX = k) = P 1 + E = k = P E = k 1 ln1 p) ln1 p) = P k 1 ln U ) ln1 p) < k = P k ln1 p) < U k 1)ln1 p)) = P 1 p) k < U 1 p) k 1) = 1 p) k 1 1 p) k = 1 p) k 1 p. function x=geometrique2p) // tirage suivant la loi geometrique de parametre p x=1+floorlogrand))/log1-p)); 4

4 1.1.7 Loi de Poisson de paramètre λ: + k= exp λ) λk k! δ k Lemme Soit X i ) i N sont des variables aléatoires iid exponentielles de paramètre λ. La variable aléatoire définie par N = si X 1 1 et N = max{i 1 : i X j 1} sinon, j=1 suit une loi de Poisson de paramètre λ. Démonstration: Soit k N. PN = k) k k+1 = P X j 1 < = = = R k+ 1 + R k + R k + j=1 j=1 X j λ k+1 exp λx x k+1 )1 {x1 + +x k 1}1 {xk+1 >1 x 1 + +x k )}dx 1...dx k+1 + λ k exp λx x k )1 {x1 + +x k 1} λexp λx k+1 )dx k+1 )dx 1...dx k 1 x 1 + +x k ) λ k exp λx x k )1 {x1 + +x k 1} exp λ)expλx x k ))dx 1...dx k = λ k exp λ) R k + 1 {x1 + +x k 1}dx 1...dx k. Pour calculer la dernière intégrale, on pose s 1 = x 1, s 2 = x 1 + x 2,..., s k = x x k : 1 {x1 + +x k 1}dx 1...dx k = R k + ce qui termine la preuve. = R k {s1 s 2 s k 1}ds 1... ds k ds k sk s2 ds k 1... ds 1 = 1 k!, Soit U i ) i N des variables aléatoires iid de loi uniforme sur [,1], alors si X i = 1 λ lnu i), les X i ) i N sont des variables aléatoires iid exponentielles de paramètre λ, et i X j 1 1 i i λ ln 1 U j exp λ). j=1 j=1 U j j=1 function x=poissona) // tirage suivant la loi de Poisson de parametre a test=exp-a);x=;prod=rand); while prod>=test), x=x+1; prod=prod*rand); end; 5

5 1.1.8 Loi gaussienne centrée réduite: Méthode de Box-Mueller Rappelons la formule de changement de variable en plusieurs dimensions: Théorème Soit G un ouvert de R n, et g : G R n une application de classe C 1, injective et dont le jacobien detj g x)) ne s annule pas sur G. Soit f une application mesurable de gg) dans R, intégrable sur gg). Alors fy)dy = fgx)) detj g x)) dx. gg) On en déduit la densité d un vecteur image: G Proposition Soit X un vecteur aléatoire à valeur dans R n de densité f X. Soit g : R n R n une application de classe C 1, injective et dont le jacobien detj g x)) ne s annule pas. Alors le vecteur aléatoire Y = gx) a pour densité: f Y y) = f X g 1 y)) detjg 1 y)). Démonstration: Soit ϕ : R n R une application mesurable, positive, bornée. On applique le théorème précédent avec g 1 : ce qui prouve le résultat. En particulier, on obtient: EϕY )) = EϕgX))) = ϕgx))f X x)dx R n = ϕy)f X g 1 y)) detjg 1 y)), R n Lemme Soit R une variable aléatoire de loi exponentielle de paramètre 1/2 et Θ une variable aléatoire de loi uniforme sur [, 2π], supposées de plus indépendantes. Alors, si on pose X = R cosθ) et Y = R sinθ), les variables aléatoires X et Y sont iid de loi gaussienne centrée réduite. function [x,y]=boxmueller // tirage de deux N,1) independantes r=sqrt-2*logrand))); t=2*%pi*rand); x=r*cost); y=r*sint); Exercice 3: Comment simuler une variable aléatoire gaussienne de moyenne m et de variance σ 2? 6

6 1.2 Méthodes générales Méthode générale pour une variable aléatoire discrète Soit X une variable aléatoire telle que XΩ) = {x,x 1,...} et, pour tout i N, p i = PX = x i ). On rappelle que p i et i N p i = 1. function y=simuldiscretex,p) // simule une va de loi discrete, // x=vecteur des valeurs prises, p=vecteur des probabilites u=rand); q=p); i=; while u>q); i=i+1; q=q+pi); end; y=xi); Démonstration: PX = x ) = Prand) p ) = p et pour k 1, PY = x k ) = P k 1 p i < rand) i= i= ) k p i = p i. Exercice 4: Ecrire une fonction en Scilab pour simuler suivant ce procédé la loi géométrique et la loi de Poisson. Remarque: Le nombre N de tests nécessaires satisfait N = 1 ssi u p, et pour i > 1, i 1 i N = i p i < u p i. On a donc intérêt à réordonner les x i ) i dans l ordre des p i ) i décroissants Simulation par inversion de la fonction de répartition j= La méthode utilisée pour simuler une loi exponentielle est en fait générale: dès que l on sait inverser une fonction de répartition F, il est très facile de simuler une variable aléatoire de fonction de répartition F. Lemme Soit U suit la loi uniforme sur [, 1], et F une fonction de répartition bijective de ]a,b[ dans ],1[ d inverse F 1. Alors F 1 U) est une variable aléatoire de fonction de répartition F. Démonstration: On pose X = F 1 U), elle prend ses valeurs dans ]a,b[. Remarquons que nécessairement F est strictement croissante de ]a,b[ dans ],1[. Soit t ]a,b[: j= PX t) = PF 1 U) t) = PU Ft)) = Ft). Donc la fonction de répartition de X est bien F. Exercice 5: En utilisant la méthode de la fonction de répartition, simuler une loi de Cauchy de densité ft) = 1 π 1 1+t 2. 7

7 1.2.3 Simulation par rejet Exemple: Commençons par un exemple très simple: comment simuler une loi uniforme sur le disque unité {x 2 + y 2 1}? function [x,y]=disque // simule un point uniformement sur le disque unite [x,y]=2*rand1,2)-[1,1]; while x^2+y^2>1), [x,y]=2*rand1,2)-[1,1]; end; L idée est la suivante: on tire des points uniformément dans le carré, et on les jette jusqu à en obtenir un qui tombe dans le disque. La loi du point obtenue est la loi d un point tiré uniformément dans le carré conditionnellement à être dans le disque, ce qui est encore la loi uniforme sur le disque. Exercice 6: Quel est la loi du nombre N de passages dans la boucle? Lemme Soit X une variable aléatoire de densité f sur R d ) à simuler. On suppose qu il existe k > et une densité g sur R d aussi, facile à simuler) tels que x fx) kgx). Soit U une variable aléatoire de loi uniforme sur [, 1] et Z une variable aléatoire, indépendante de U, de densité g. On pose V = kugz). Alors, la loi de Z conditionnellement à l événement {V < fz)} a pour densité f. Remarque: Notons que nécessairement k 1 car f, g sont des densités). Démonstration: On fait la démonstration pour le cas de R. Notons que pour tout fz) z R, kgz) 1. On a tout d abord PV < fz)) = PkUgZ) < fz)) = = dzgz) fz) kgz) = 1 k. P{Z t} {V < fz)}) = Donc PZ t V < fz)) = = R t t t que {V < fz)} a bien pour densité f. dzgz) R dzgz) 1 du1 {kugz)<fz)} t dzgz) fz) kgz) = 1 k dzfz). 1 du1 {kugz)<fz)} dzfz), donc la loi conditionnelle de Z sachant Dans R d, on utilise la généralisation de la fonction de répartition. On obtient donc l algorithme de simulation par rejet on suppose qu on possède une fonction simulg qui simule une variable aléatoire de densité g): 8

8 function z=simulf // simule par rejet une va de densite f u=rand); z=simulg; v=k*u*gz); while v>=fz)); u=rand); z=simulg; v=k*u*gz); end; Démonstration: Notons N le nombre de tests fait lors de cette fonction: c est une variable aléatoire, à valeurs dans N. Notons U n ) n 1 la suite des appels à la fonction rand), et Z n ) n 1 la suite des appels à la fonction simulg. Toutes ces variables aléatoires sont indépendantes, les premières de loi uniforme sur [, 1], les secondes de densité g. On note V n = ku n gz n ), et on note X la sortie de la fonction. Soit t R. PX t et N = 1) = PV 1 < fz 1 ) et Z 1 t) 1 k t dzfz) par la démonstration précédente. Soit maintenant i 2. Par indépendance, et comme précédemment: PX t et N = i) = PV 1 fz 1 ), V 2 fz 2 ),..., V i 1 fz i 1 ), V i < fz i ), Z i t) Finalement rappelons que k 1): = PV 1 fz 1 ))PV 2 fz 2 ))... PV i 1 fz i 1 ))PV i < fz i ), Z i t) = 1 1 ) i 1 1 t dzfz). k k PX t) = = + i=1 + i=1 PX t et N = i) 1 1 ) i 1 1 t t dzfz) = dzfz), k k donc la densité de X est bien f. Exercice 7: Simulation de la gaussienne par rejet par rapport à la double exponentielle. On pose fz) = 1 2π exp z 2 /2) et gz) = 1 2 exp z ). 1. Montrer que g est bien une densité sur R. 2. Déterminer une constante k satisfaisant z R, fz) kgz). On aura intérêt à prendre 2e k la plus petite possible: [k = π = 1,3155]. 3. Ecrire un algorithme de simulation d une loi gaussienne centrée réduite par rejet. Exercice 8: Montrer que le nombre de passage dans la boucle suit une loi géométrique dont le paramètre ne dépend que de k. Justifier alors l intérêt de prendre k la plus petite possible. 9

9 1.2.4 Simulation par composition Exercice 9: Soit F et G deux fonctions de répartition sur R. On construit une variable aléatoire X de la façon suivante: on lance une pièce qui tombe sur pile avec probabilité 1/3 et sur face avec probabilité 2/3, si pile sort, on tire un nombre au hasard suivant la loi donnée par F, sinon, on tire un nombre au hasard suivant la loi donnée par G. Déterminer la fonction de répartition H de X. L exemple précédent est un exemple de mélane de variables aléatoires. On suppose maintenant qu on veut simuler une variable aléatoire X de fonction de répartition F = n i=1 θ if i, où les θ i sont des poids: θ i et n i=1 θ i = 1 et les F i sont des fonctions de répartition dont les lois sont faciles à simuler. On suppose qu on a à notre disposition des fonctions simulfi qui simulent des variables aléatoires de fonction de répartition F i et une fonction simultheta qui simule une variable aléatoire Θ à valeur dans {1,...,n} telle que PΘ = i) = θ i. function x = melange // simulation par melange i=simultheta; x=simulfi; Exercice 1: Simuler un mélange d exponentielles Fz) = α1 exp az)) + 1 α)1 exp bz)). Exercice 11: Simuler une variable aléatoire de loi 1 2 δ e x 1 R+ x)dx. Cette méthode se généralise immédiatement à un nombre infini dénombrable de poids θ i ) i N, et même à un mélange continu de lois: on suppose qu on veut simuler une variable aléatoire X de densité fz) = θ gθ)f θz)dθ, où g est une densité de probabilité, ainsi que tous les f θ. L algorithme est alors simple: on tire θ suivant g, puis x suivant f θ. Exercice 12: Soit a >, et fx) = aléatoire X à simuler. 1. Vérifier que fx) = 1 a a λ exp λx)dx. 2. En déduire un algorithme pour simuler X. 1 ax + 1)exp ax) ax 2 1 x> la densité de la variable 1.3 Simulation de vecteurs aléatoires Cas indépendant Soit Z une vecteur aléatoire de R d à simuler. Si ses composantes sont indépendantes, on est ramené au cas de la simulation de variables aléatoires réelles indépendantes traité dans les sections précédentes on rappelle que les sorties successives de rand donnent des variables aléatoires indépendantes de loi uniforme sur [, 1]). Le problème est différent quand les coordonnées ne sont pas indépendantes. 1

10 1.3.2 Vecteur gaussien Un vecteur gaussien dans R d est caractérisé par un vecteur moyenne m R d, et une matrice de covariance K, de taille d d, symétrique et positive. On suppose pour l instant que K est définie positive. Théorème Décomposition de Cholesky) Si K est une matrice symétrique définie positive de taille d d, il existe au moins une matrice réelle triangulaire inférieure L telle que : K = L t L. On peut également imposer que les éléments diagonaux de la matrice L soient tous strictement positifs, et la factorisation correspondante est alors unique. Démonstration: On procède par récurrence sur la dimension d. C est clair pour d = 1. Soit K une matrice symétrique définie positive de taille d d, avec d 2. On note e 1,e 2,...,e d ) la base canonique de R d. La restriction de la forme bilinéaire symétrique définie par K au sous-espace vectoriel engendré par e 1,...,e d 1 ) est encore définie positive: il existe une matrice K d 1 symétrique définie positive de taille d 1) d 1), un vecteur colonne C de taille d 1) 1 et un réel positif a tels que K = K d 1 t C ) C. a Si on cherche L triangulaire inférieure de taille d d sous la forme ) L d 1 L = b t V alors on doit résoudre L t Ld 1 t L d 1 L d 1 V L = t V L t d 1 t V V + b 2 ) = K L d 1 t L d 1 = K d 1 L d 1 V = C t V V + b 2 = a L hypothèse de récurrence assure l existence et l unicité de L d 1, triangulaire inférieure de taille d 1) d 1) avec coefficients diagonaux strictement positifs, telle que L d 1 t L d 1 = K d 1. En particulier, L d 1 est inversible, ce qui permet de résoudre de façon unique V = L 1 d 1 C. Il reste donc à voir que a t V V >, et b sera alors la racine carrée de a t V V. On va calculer par blocs le déterminant de K, qui est strictement positif. On fait apparaitre des dans les d 1 premiers coefficients de la dernière colonne de K en soustrayant à cette colonne une combinaison linéaire adéquate des d 1 premières colonnes de la matrice K: ) C a Kd 1 t C ) 11 K 1 d 1 C) = a t CK 1 d 1 C )

11 Cette manipulation ne change pas le déterminant, et on se retrouve avec une matrice tringulaire par blocs: ) K d 1 detk) = det t C a t CK 1 d 1 C Comme detk d 1 ) >, il vient a t CK 1 d 1C >. Mais = detk d 1 )a t CK 1 d 1C) >. t CK 1 d 1 C =t CL d 1 t L d 1 ) 1 C = t L 1 d 1 C)L 1 d 1 C) =t V V, ce qui conclut la preuve. En pratique: on cherche L par coefficient indéterminés et identification, colonne par colonne. Voir l exemple juste après. Remarque: Si K est seulement semi-définie positive, la décomposition de Cholesky existe encore mais elle n est plus unique. Lemme Soit T un vecteur gaussien de dimension d centré de matrice de covariance I d dont les coordonnées sont des variables aléatoires iid normales centrées réduites). Soit m R d, et K une matrice définie positive de taille d d. Soit L la matrice triangulaire inférieure donnée par la factorisation de Cholesky de K. Alors le vecteur aléatoire Z = m + LT est un vecteur gaussien de moyenne m et de matrice de covariance K. Démonstration: Comme L est une application linéaire de R d dans R d, Z est encore un vecteur gaussien d-dimensionnel. Pour l espérance: EZ) = Em + LT) = m + LET) = m, puisque T est centré. Pour la matrice de covariance, comme celle de T est I d, EZ m) t Z m)) = ELT t T t L) = LET t T) t L = LI t d L = Lt L = K. Exemple: On veut simuler le vecteur gaussien Z de R 3 de moyenne m et de matrice de covariance K avec m = et K = On commence par chercher la matrice de factorisation de Cholesky L par coefficients indéterminés et identification: l 11 L = l 21 l 22. l 31 l 32 l 33 On calcule LL t et on identifie, colonne par colonne:. 12

12 1. l11 2 = k 11 = 1 l 11 = l 11 l 21 = k 21 = 1 l 21 = l 11 l 31 = k 31 = l 31 =. 4. l l2 22 = k 22 = 5 l 22 = l 21 l 31 + l 22 l 32 = k 32 = 6 l 32 = l l l2 33 = k 33 = 1 l 33 = 1. Donc Z = T, ou T est un vecteur gaussien de R 3 dont les trois composantes sont iid centrées réduites Cas général 1. Le cas d une v.a. discrète à valeurs dans R d se traite comme celui d une variable aléatoire réelle discrète. 2. La méthode de rejet a été présentée dans la cas d une variable aléatoire à valeurs dans R d. 3. On peut encore utiliser les lois conditionnelles. Nous allons illustrer cette méthode, dite méthode récurrente, par un exemple: Exemple: On veut simuler un vecteur X,Y ) de loi uniforme sur le triangle ABC avec A =,), B = 1,1) et C =,1). On commence par déterminer la densité de cette loi: On peut alors calculer la densité de X: fx,y) = 21 x 1 1 y 1 1 x y. f X x) = 21 x)1 x 1, puis la densité de la loi conditionnelle de Y sachant X: f Y X y x) = 1 1 x 1 x y 1. Pour la simulation, on procède maintenant de la façon suivante: on simule X suivant sa densité en utilisant par exemple la méthode de la fonction de répartition), on obtient une valeur x, puis on simule Y suivant la densité f Y X y x) = 1 1 x 1 x y 1 on reconnait par exemple une loi usuelle). Remarque: Remarquons que la seconde étape ressemble beaucoup à la simulation par mélange. Exercice 13: Simuler un vecteur de loi fx,y,z)dxdydz, où fx,y,z) = 61 x>,y>,z> 1 x+y+z<1 : a) en utilisant les lois conditionnelles. 13

13 b) par la méthode du rejet. c) Comparer. Exercice 14: Simuler un vecteur de loi fx,y)dxdy, où fx,y) = 1 2 x + y)e x+y) 1 x> 1 y>. 14

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

Compléments sur les couples aléatoires

Compléments sur les couples aléatoires Licence Math et MASS, MATH54 : probabilités et statistiques Compléments sur les couples aléatoires 1 Couple image ans ce paragraphe, on va s intéresser à la loi d un vecteur aléatoire S, T qui s obtient

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Démontrer le caractère injectif / surjectif / bijectif d une application

Démontrer le caractère injectif / surjectif / bijectif d une application Démontrer le caractère injectif / surjectif / bijectif d une application Il s agit donc de montrer une propriété commençant par un symbole. La démonstration débute donc par : Soit (x 1, x 2 ) E 2. La propriété

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Contrôle de statistiques Sujet 2 Corrigé

Contrôle de statistiques Sujet 2 Corrigé Contrôle de statistiques Sujet 2 Corrigé L2 d économie - Université Paris 1 Panthéon-Sorbonne Nom : Prénom : Les exercices sont indépendants. Le barème est indicatif. L utilisation de documents, calculatrices,

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

le triangle de Pascal - le binôme de Newton

le triangle de Pascal - le binôme de Newton 1 / 51 le triangle de Pascal - le binôme de Newton une introduction J-P SPRIET 2015 2 / 51 Plan Voici un exposé présentant le triangle de Pascal et une application au binôme de Newton. 1 2 3 / 51 Plan

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés.

Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés. Université d Orléans Deug MASS, MIAS et SM Unité MA. Probabilités et Graphes Examen partiel du 5 décembre durée: h Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés. Le

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail