Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage

Dimension: px
Commencer à balayer dès la page:

Download "Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage"

Transcription

1 Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012

2 Introduction et contexte 2/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

3 Introduction et contexte 3/27 Comment traiter la non-réponse? Le mécanisme de non-réponse constitue une sélection aléatoire mais non contrôlée par un plan de sondage L échantillon des répondants est-il représentatif de la population U? Peut-on ignorer ce mécanisme? Et si oui, comment?

4 Introduction et contexte 4/27 La non-réponse corrélée à la variable d intérêt Un mécanisme de non-réponse lié à la variable d intérêt peut biaiser l estimateur de son total Des exemples de l enquête emploi ou de l enquête patrimoine

5 Introduction et contexte 5/27 Le contexte On se place dans le cas d une enquête exhaustive U est une population finie de taille N Les éléments de U sont repérés par l indice k Pour chaque élément k on observe les réalisations (x k, y k, z k, r k ) du vecteur aléatoire (X k, Y k, Z k, R k ) Les vecteurs (X k, Y k, R k ) sont i.i.d

6 Non-réponse ignorable 6/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

7 Non-réponse ignorable 7/27 La non-réponse ignorable Elle peut être MCAR ou MAR MCAR : Missing completely at random ; la non-réponse n est pas corrélée à la variable d intérêt MAR : Missing at random ; la non-réponse n est corrélée à la variable d intérêt qu à travers des covariables de Y k observées. Conditionnellement à ces variables, la non-réponse n est pas corrélée à la variable d intérêt Exemple des groupes homogènes de repondération Sexe*groupes d âge

8 Non-réponse ignorable 8/27 La non-réponse ignorable, cas MAR Modèle de régression linéaire de Y k sur U : Y k = α 0 + α 1 X k + ε k où E(ε k /X k ) = 0 Modèle de réponse, E(R k /X k ) = ρ(x k ) Non-réponse MAR : E(ε k R k /X k ) = 0 E(Y k R k /X k ) = E(Y k /X k )E(R k /X k )

9 Non-réponse ignorable 9/27 Modèle de régression linéaire de Y k sur l échantillon des répondants s r : Y k = α 0 + α 1 X k + ε k = α X k + ε k où E(ε k R k /X k ) = 0, α = (α 0, α 1 ) et X k = (1, X k ) L estimateur par les MCO [ ] 1 [ ] 1 1 ˆα = R k X k X k R k X k Y k N N k U converge asymptotiquement vers α k U

10 Non-réponse ignorable 10/27 La non-réponse ignorable, cas MAR Pour estimer le total t y = k U y k, on peut utiliser une estimateur par la régression : où t x = (N, t x = k U x k) ˆt y = t x ˆα

11 Non-réponse non-ignorable 11/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

12 Non-réponse non-ignorable 12/27 La non-réponse non-ignorable On étudie un cas de non-réponse non-ignorable proche du cas précédent Cette fois-ci, une des variables explicatives dans le modèle modèle sur Y k n est pas une variable auxiliaire C est une variable observée uniquement sur l échantillon des répondants C est donc une autre variable d intérêt du modèle

13 Non-réponse non-ignorable 13/27 Notations Variables auxiliaires dont les totaux sont connus sur U X k = (1, X k,1, X k,2 ) Variables explicatives de la non-réponse Z k = (1, X k,1, Z k,2 ) Variables d intérêt Y k = (Y k, Z k,2 ) La variable X k,2 est corrélée positivement à la variable Z k,2

14 Non-réponse non-ignorable 14/27 Modèle de non-réponse Ou : E(R k /Z k, X k, Y k ) = E(R k /Z k ) = ρ(z k ) E(R k X k /Z k ) = E(R k /Z k )E(X k /Z k ) E(R k Y k /Z k ) = E(R k /Z k )E(Y k /Z k ) Remarque : la variable X k,2 est corrélée à Z k,2 mais n a pas d effet explicatif direct sur la non-réponse.

15 Non-réponse non-ignorable 15/27 Modèle de la variable d intérêt On suppose que Y k suit un modèle de régression linéaire Y k = α 0 + α 1 X k,1 + α 2 Z k,2 + ε k E(ε k /Z k, X k ) = 0 Pour autant, on ne peut pas proposer un estimateur Greg de t y car on ne dispose pas de la valeur du total t z2

16 Non-réponse non-ignorable 16/27 Modèle de régression à variable instrumentale On écrit un nouveau modèle "dégradé" pour Y k en utilisant la corrélation entre X k,2 et Z k,2 : Y k = β 0 + β 1 X k,1 + β 2 X k,2 + τ k E(τ k /Z k ) = 0 D un point de vue statistique, il s agit d un modèle de régression à variable instrumentale Ce modèle est moins bien ajusté que le modèle initial, par contre, il reste identifiable sur s r car E(τ k R k /Z k ) = 0

17 Non-réponse non-ignorable 17/27 Modèle de régression à variable instrumentale En effet, sur s r on prendra l estimateur : [ ] 1 [ ] ˆβ VI 1 1 = c k R k Z k X k c k R k Z k Y k N N k U k U [ ] 1 [ ] 1 1 = β + c k R k Z k X k c k R k Z k τ k, N N k U k U où c k s interprète comme un poids de l élément k et est une fonction de Z k : c k = f(z k ).

18 Non-réponse non-ignorable 18/27 Estimateur IVGreg ˆβ VI converge asymptotiquement vers β On peut utiliser cette fois-ci un estimateur par la régression (instrumentale) : ˆt V y I I = t x ˆβV = [ 1 ] c k R k t x c l R l Z l X l Z k Y k k U l U

19 Non-réponse non-ignorable 19/27 Estimateur IVGreg : estimateur linéaire ˆt V I y = k U R k w V I k Y k, où w V I k = c k t x [ 1 ] c l R l Z l X l Z k l U = c k 1 + ( t x k U est le poids d enquête de l élément k. ) [ ] 1 c k R k X k c l R l Z l X l Z k l U

20 Simulations 20/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

21 Simulations 21/27 Simulations Monte Carlo On génère une population de taille N = 1000 Variables explicatives de la non-réponse Z k,1 gamma(20, 20) (observée sur s r ) Z k,2 U[0, 600] (observée sur s r ) Z k,3 U[0, 600], (non observée) Variables auxiliaires X k,1 = Z k,1 X k,2 = 0, 5(Z k,2 + U k,2 ), où U k,2 N(0, ) X k,3 = 0, 5(Z k,2 + Z k,3 )

22 Simulations 22/27 Simulations Monte Carlo La variable Y k est générée par le modèle linéaire : où E N(0, ) Y k = X k,1 + 20Z k,2 + E k.

23 Simulations 23/27 Simulations Monte Carlo K = 1000 simulations du mécanisme de réponse R k suit une loi de Bernoulli de paramètre : ( ) exp( zk, z k, z k,3 ) p k = exp( z k, z k, z k,3 )

24 Simulations 24/27 Simulations Monte Carlo On compare quatre estimateurs du total t y ˆt y : moyenne des valeurs de y sur s r multipliée par N ˆt y,x x : estimateur par la régression habituel ˆt y,x3 z : estimateur par la régression instrumentale avec X 3 comme variable proxy de Z 2 ˆt y,x z : estimateur par la régression instrumentale avec Z 1 et Z 2 comme instruments et X 2 comme variable proxy de Z 2

25 Simulations 25/27 Biais relatifs ˆt y ˆt y,x x ˆt y,x3 z ˆt y,x z

26 Simulations 26/27 Biais relatifs - estimateurs de t z ˆt z2 ˆt z2,x x ˆt z2,x3 zˆt z2,x z

27 Simulations 27/27 Beaumont, J.-F. (2000). Une méthode d estimation en présence de non-réponse non-ignorable. Techniques d enquêtes, vol 26, pp Deville, J.-C. (2004). La correction de la non-réponse par calage généralisé. Actes des journées de méthodologie satistique, 16 et 17 décembre 2002, INSEE Méthodes. Fuller, A.F. (2009). Sampling Statistics. Wiley, 371. Gautier, E. (2005). Eléments sur les mécanismes de la sélection dans les enquêtes et sur la non-réponse non-igorable. Actes des journées de méthodologie satistique, INSEE. Särndal, C.E. and Sixten L. (2005). Estimation in Surveys with Nonresponse. Wiley.

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Prise en compte de la stochasticité dans les modèles : optimisation robuste

Prise en compte de la stochasticité dans les modèles : optimisation robuste Prise en compte de la stochasticité dans les modèles : optimisation robuste Rodolphe Le Riche (CNRS & EMSE) & Victor Picheny (INRA) La Rochelle, 5/11/2014 Plan Introduction 1 Introduction 2 Formulations

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage des variables auxiliaires à utiliser dans l'estimateur par calage Mohammed El Haj Tirari Institut National de Statistique et d'economie Appliquée - roc Laboratoire de Statistique d'enquêtes, CREST - Ensai

Plus en détail

1 Design-based and model-based methods for estimating model parameters

1 Design-based and model-based methods for estimating model parameters Groupe de lecture Econométrie des données d'enquête Compte-rendu de la troisième réunion, 19 janvier 2015 La modélisation en théorie des sondages Suivi par Marine Guillerm et Ronan Le Saout Cette troisième

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Techniques avancées d échantillonnage Estimation de variance

Techniques avancées d échantillonnage Estimation de variance Techniques avancées d échantillonnage Estimation de variance Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 28 janvier 2014 G. Chauvet (ENSAI) Estimation de variance

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

CURRICULUM VITAE. 2004 DEA en Statistique, Université de Rennes 1 Reçu Major

CURRICULUM VITAE. 2004 DEA en Statistique, Université de Rennes 1 Reçu Major CURRICULUM VITAE Guillaume CHAUVET Né le 18 février 1977 à Clermont-Ferrand, France Nationalité française Attaché principal de l Insee - Docteur en Statistique de l Université de Rennes 2 (Centre de Recherche

Plus en détail

Au sujet des corrections du biais pour les enquêtes en ligne

Au sujet des corrections du biais pour les enquêtes en ligne Recueil du Symposium 2014 de Statistique Canada Au-delà des méthodes traditionnelles d enquêtes : l adaptation à un monde en évolution Au sujet des corrections du biais pour les enquêtes en ligne Lingling

Plus en détail

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités

Plus en détail

Régression en composantes principales en sondages

Régression en composantes principales en sondages Régression en composantes principales en sondages (en collaboration avec H. Cardot, M.-A.Shehzad et A. Vanheuverzwyn) IMB, Université de Bourgogne-Dijon et Médiamétrie camelia.goga@u-bourgogne.fr 7ème

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Non-réponse et données manquantes. Sylvie Rousseau & Gilbert Saporta décembre 2011

Non-réponse et données manquantes. Sylvie Rousseau & Gilbert Saporta décembre 2011 Non-réponse et données manquantes Sylvie Rousseau & Gilbert Saporta décembre 2011 1 EXEMPLES DE TAUX DE RÉPONSE À CERTAINES ENQUÊTES Pour les enquêtes auprès des entreprises, le taux de non-réponse est

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Jackknife, bootstrap et cross-validation

Jackknife, bootstrap et cross-validation But de l inférence statistique On a X = (X 1,..., X n) un échantillon i.i.d. de fonction de répartition F θ(f ) une quantité d intérêt, qui dépend de F T (X ) une statistique, estimateur de θ(f ), on voudrait

Plus en détail

THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l Université Européenne de Bretagne. pour le grade de DOCTEUR DE L UNIVERSITÉ DE RENNES 1

THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l Université Européenne de Bretagne. pour le grade de DOCTEUR DE L UNIVERSITÉ DE RENNES 1 ANNÉE 2013 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l Université Européenne de Bretagne pour le grade de DOCTEUR DE L UNIVERSITÉ DE RENNES 1 Mention : Mathématiques et applications Ecole doctorale

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Utilisation des procédures SAS dans l enseignement des sondages

Utilisation des procédures SAS dans l enseignement des sondages Utilisation des procédures SAS dans l enseignement des sondages Yves Aragon Anne Ruiz-Gazen e-mail: aragon@cict.fr, ruiz@cict.fr 1. Introduction Depuis la version 8, SAS [6] propose trois procédures pour

Plus en détail

Jackknife et bootstrap comparés

Jackknife et bootstrap comparés Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X n ) = c + n 1 n 1 α(x i) c constante, α fonction Exemples : X, 1 + n 1 Xi /n Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Internet est-il l avenir des enquêtes Génération?

Internet est-il l avenir des enquêtes Génération? Établissement public sous double tutelle des ministères de l'éducation nationale, de l'enseignement supérieur et de la Recherche du Travail, de l Emploi, de la Formation professionnelle et du Dialogue

Plus en détail

Comment calculer la précision des estimateurs composites d Esane

Comment calculer la précision des estimateurs composites d Esane Comment calculer la précision des estimateurs composites d Esane Thomas Deroyon Insee - 18 Bd Adolphe Pinard Paris, thomas.deroyon@insee.fr Résumé. Les statistiques structurelles d entreprise permettent

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées.

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Baptiste Gregorutti 12, Bertrand Michel 2 & Philippe Saint Pierre 2 1 Safety

Plus en détail

TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES

TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES Jean-Cléophas ONDO (*) (*) Institut Sous-régional de Statistique et d Economie Appliquée (ISSEA) Résumé Les procédures couramment utilisées

Plus en détail

L Estimation de Modèles Log-Linéaires sur des Tableaux de Contingence issus d Enquêtes à plan de sondage complexe :

L Estimation de Modèles Log-Linéaires sur des Tableaux de Contingence issus d Enquêtes à plan de sondage complexe : L Estimation de Modèles Log-Linéaires sur des Tableaux de Contingence issus d Enquêtes à plan de sondage complexe : un Examen de l Approche proposée par Clogg & Eliason Chris Skinner Louis-André Vallet

Plus en détail

16H30 Pratique de l analyse du travail 1. 10H30 Ergonomie de conception 2

16H30 Pratique de l analyse du travail 1. 10H30 Ergonomie de conception 2 P R O G R A M M E D E N O V E M B R E VENDREDI 6 14H30 SALLE 127 Réunion préparatoire à l enseignement Accueil des auditeurs, présentation du Laboratoire de Physiologie du Travail Modalités pratiques de

Plus en détail

Article. Peut-on établir des statistiques officielles à partir d enquêtes en ligne reposant sur le principe de l autosélection? par Jelke Bethlehem

Article. Peut-on établir des statistiques officielles à partir d enquêtes en ligne reposant sur le principe de l autosélection? par Jelke Bethlehem Composante du produit n o -5-X au catalogue de Statistique Canada La série des symposiums internationaux de Statistique Canada : recueil Article Symposium 008 : Collecte des données : défis, réalisations

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Économétrie. Francesco Quatraro M1 EFM 2010/2011

Économétrie. Francesco Quatraro M1 EFM 2010/2011 Francesco Quatraro M1 EFM 2010/2011 1 La violation des hypothèses Le modèle des MCO considère que les hypothèses suivantes sont toutes respectées: H1: le modèle est linéaire en x i,t H2: les valeurs x

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

Rapport de méthodes Analyse de données d enquêtes

Rapport de méthodes Analyse de données d enquêtes Rapport de méthodes Analyse de données d enquêtes 0 Statistische Grundlagen und Übersichten Bases statistiques et produits généraux Basi statistiche e presentazioni generali Quelques méthodes et illustration

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f JFMS Toulouse 24, 25, 26 mars 2010 AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f Benjamin Echard Nicolas Gayton Maurice Lemaire LaMI Laboratoire

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Initiation à la théorie des sondages: cours IREM-Dijon

Initiation à la théorie des sondages: cours IREM-Dijon Initiation à la théorie des sondages: cours IREM-Dijon Camelia Goga IMB, Université de Bourgogne Dijon, 12 novembre 2009 Très court historique Laplace a présenté à l Académie des Sciences en 1783 une nouvelle

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Mémoire. Benjamin Beauregard. Maîtrise en statistiques Maître ès sciences (M.Sc.) Québec, Canada

Mémoire. Benjamin Beauregard. Maîtrise en statistiques Maître ès sciences (M.Sc.) Québec, Canada Comparaison de modèles de régression logistique utilisés pour l analyse de données recueillies dans le cadre d études de type cas-témoins appariés sur le déplacement animal Mémoire Benjamin Beauregard

Plus en détail

L utilisation des historiques d appels pour redresser une enquête téléphonique: une étude par simulation àpartir de l enquête Fecond

L utilisation des historiques d appels pour redresser une enquête téléphonique: une étude par simulation àpartir de l enquête Fecond L utilisation des historiques d appels pour redresser une enquête téléphonique: une étude par simulation àpartir de l enquête Fecond Stéphane Legleye 1, Nirintsoa Razakamanana 2, Géraldine Charrance 2

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle :

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : a. Une opération de «production» b. Visant l ensemble des variables d une enquête c. Recherchant

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Économétrie II. Économétrie II. L3 Économétrie L3 MASS Ch. 5. 9i : E (e i x i ) 6= 0 : Endogénéité. Prof. Philippe Polomé, U. Lyon 2.

Économétrie II. Économétrie II. L3 Économétrie L3 MASS Ch. 5. 9i : E (e i x i ) 6= 0 : Endogénéité. Prof. Philippe Polomé, U. Lyon 2. Économétrie Économétrie L3 Économétrie L3 MASS Prof. Philippe Polomé, U. Lyon 2 Année 2014-2015 Économétrie Rappel 1. E (e i )=0 8i : Espérance nulle 2. X var (e i )=s 2 8i : Homoscédasticité 3. X cov

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

L imputation des données manquantes, la technique

L imputation des données manquantes, la technique Eidgenössische Technische Hochschule Zürich Konjunkturforschungsstelle Centre de recherches conjoncturelles Centro di ricerche congiunturali Center for Business Cycle Research Ecole polytechnique fédérale

Plus en détail

STA108 : Enquêtes et sondages. Pratique des redressements

STA108 : Enquêtes et sondages. Pratique des redressements STA108 : Enquêtes et sondages Pratique des redressements Philippe Périé, janvier 2012 1 Pratique des redressements Utilisez au mieux les sources d information auxiliaire Principe du redressent, les effets

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Démarche Statistique 1 Échantillonnage Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Introduction Objectif statistique descriptive: sur l'échantillon statistique inférentielle:

Plus en détail

STA108 Sondages. Philippe Périé cours n 8 : 21NOV2014

STA108 Sondages. Philippe Périé cours n 8 : 21NOV2014 STA108 Sondages Philippe Périé cours n 8 : 21NOV2014 STA108 - Sondages Philippe Périé (IPSOS) philippe.perie@ipsos.com Sylvie Rousseau (INSEE) sylvie.rousseau@insee.fr Non réponse et données manquantes

Plus en détail

Econométrie et Données d Enquête: les effets de l imputation de la non-réponse partielle sur l estimation des paramètres d un modèle économétrique 1

Econométrie et Données d Enquête: les effets de l imputation de la non-réponse partielle sur l estimation des paramètres d un modèle économétrique 1 Econométrie et Données d Enquête: les effets de l imputation de la non-réponse partielle sur l estimation des paramètres d un modèle économétrique 1 C.Charreaux 2, C. Favre-Martinoz 3, H.Harle 4, R.Le

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Session B2: Assurance

Session B2: Assurance 33 èmes Journées des Économistes de la Santé Français 1 er et 2 décembre 2011 Session B2: Assurance Auteurs: Sophie Guthmuller et Jérôme Wittwer, Université Paris-Dauphine Référé: Aurore Pélissier, CERDI,

Plus en détail

TD «Enquête par questionnaire» 2008 / 2009

TD «Enquête par questionnaire» 2008 / 2009 TD «Enquête par questionnaire» 2008 / 2009 5 ème séance leroy.jeanne@gmail.com Bureau C310 Les 12 étapes de la construction d un questionnaire 1) Définition de l objet d enquête et analyse des moyens matériels

Plus en détail

Evaluer l ampleur des économies d agglomération

Evaluer l ampleur des économies d agglomération Pierre-Philippe Combes GREQAM - Université d Aix-Marseille Ecole d Economie de Paris CEPR Janvier 2008 Supports de la présentation Combes, P.-P., T. Mayer et J.-T. Thisse, 2006, chap. 11. Economie Géographique,

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

SONDAGES D INTENTION DE VOTE : L ESTIMATION DES «MARGES D ERREUR»

SONDAGES D INTENTION DE VOTE : L ESTIMATION DES «MARGES D ERREUR» SONDAGES D INTENTION DE VOTE : L ESTIMATION DES «MARGES D ERREUR» Léo Gerville-Réache Université de Bordeaux 2, CNRS, UMR 5251, Bordeaux, F-33000, France leo.gerville@u-bordeaux2.fr Motivation «En dehors

Plus en détail

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 Utiles pour réaliser r des tirages et simuler des phénom nomènes nes aléatoires atoires Nombres aléatoires: atoires:

Plus en détail

Problématique de la qualité des données statistiques

Problématique de la qualité des données statistiques Revue du Schéma directeur de la Statistique du Mali Problématique de la qualité des données statistiques La qualité : «l ensemble des propriétés et caractéristiques d un produit ou d un service qui lui

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Faut-il pondérer? ...Ou l'éternelle question de l'économètre confronté à un problème de sondage. Laurent Davezies et Xavier D'Haultf uille.

Faut-il pondérer? ...Ou l'éternelle question de l'économètre confronté à un problème de sondage. Laurent Davezies et Xavier D'Haultf uille. Faut-il pondérer?...ou l'éternelle question de l'économètre confronté à un problème de sondage Laurent Davezies et Xavier D'Haultf uille Juin 2009 Résumé Ce papier précise dans quels cas les estimations

Plus en détail

REPÈRES MÉTHODOLOGIQUES MINISTÈRE DU TOURISME

REPÈRES MÉTHODOLOGIQUES MINISTÈRE DU TOURISME REPÈRES MÉTHODOLOGIQUES MINISTÈRE DU TOURISME Étude de provenance et de l importance touristique de l achalandage IMPORTANT : Pour être recevable, l étude doit respecter tous les repères méthodologiques

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE 1 Définir le type de variable Dans notre cas, la variable est quantitative nominale. Note : Une variable est qualitative nominale quand

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

Correction du TP5. ECE 2 - Informatique Mme Marcelin - Lycée Clémenceau- 2015\2016 Correction du TP 2. Exercice 1.

Correction du TP5. ECE 2 - Informatique Mme Marcelin - Lycée Clémenceau- 2015\2016 Correction du TP 2. Exercice 1. Correction du TP5 Exercice 1. 1. A priori le poids dépend de la taille donc la variable explicative est X et la variable à expliquer est Y. 2. -->// série statistique des tailles: -->x=[161 170 152 181

Plus en détail

DETECTION ET TRAITEMENT DES VALEURS EXTREMES ET

DETECTION ET TRAITEMENT DES VALEURS EXTREMES ET DETECTION ET TRAITEMENT DES VALEURS EXTREMES ET INFLUENTES DANS LA MESURE D AUDIENCE INTERNET Magdalena Auvinet 1 & Lucie Cellier 2 1 Médiamétrie 70 rue Rivay 92532 Levallois-Perret Cedex mauvinet@mediametrie.fr

Plus en détail

La méthode des quotas

La méthode des quotas La méthode des quotas Oliviero Marchese, décembre 2006 1 La méthode des quotas Principe de la méthode Point de départ et but recherché Caractère «intuitif» de la méthode A quoi ressemble une feuille de

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE

Plus en détail

Mise à l essai des stratégies de collecte pour les enquêtes en ligne fondées sur l autodéclaration

Mise à l essai des stratégies de collecte pour les enquêtes en ligne fondées sur l autodéclaration Recueil du Symposium 2014 de Statistique Canada Au-delà des méthodes traditionnelles d enquêtes : l adaptation à un monde en évolution Mise à l essai des stratégies de collecte pour les enquêtes en ligne

Plus en détail

Analyse des données longitudinales

Analyse des données longitudinales Analyse des données longitudinales EA Sauleau SémStat 03/10/2006 Table des matières 1 Introduction 2 1.1 Généralités 2 1.2 La structure des données.. 3 1.3 Exemple.. 4 1.4 Des impasses.. 4 2 (M)ANOVA 4

Plus en détail

Curriculum Vitae ÉTAT CIVIL ET CONTACT SITUATION ADMINISTRATIVE

Curriculum Vitae ÉTAT CIVIL ET CONTACT SITUATION ADMINISTRATIVE Curriculum Vitae ÉTAT CIVIL ET CONTACT Guillaume CHAUVET Né le 18 février 1977, à Clermont-Ferrand (63) Célibataire, nationalité française Coordonnées professionnelles : Ecole Nationale de la Statistique

Plus en détail

Estimation des inégalités dans l enquête Patrimoine 2004

Estimation des inégalités dans l enquête Patrimoine 2004 Estimation des inégalités dans l enquête Patrimoine 2004 Eric Gautier, Cédric Houdré To cite this version: Eric Gautier, Cédric Houdré. Estimation des inégalités dans l enquête Patrimoine 2004. Economie

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Spécificités méthodologiques en pédiatrie : gestion des petits effectifs et des effets rares au long cours

Spécificités méthodologiques en pédiatrie : gestion des petits effectifs et des effets rares au long cours Spécificités méthodologiques en pédiatrie : gestion des petits effectifs et des effets rares au long cours Corinne Alberti CIE 5 : modèles et méthodes de l évaluation clinique et thérapeutique en pédiatrie

Plus en détail

Sélection- validation de modèles

Sélection- validation de modèles Sélection- validation de modèles L. Rouvière laurent.rouviere@univ-rennes2.fr JANVIER 2015 L. Rouvière (Rennes 2) 1 / 77 1 Quelques jeux de données 2 Sélection-choix de modèles Critères de choix de modèles

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves

Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves Exemple 7.7 : Modèles multiniveaux de croissance expliquant le soutien social perçu par les élèves Modèle 1 (modèle vide) : GET FILE='C:\Users\Desktop\donnees stats\soutien.sav'. DATASET ACTIVATE Ensemble_de_données2.

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail