Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage

Dimension: px
Commencer à balayer dès la page:

Download "Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage"

Transcription

1 Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012

2 Introduction et contexte 2/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

3 Introduction et contexte 3/27 Comment traiter la non-réponse? Le mécanisme de non-réponse constitue une sélection aléatoire mais non contrôlée par un plan de sondage L échantillon des répondants est-il représentatif de la population U? Peut-on ignorer ce mécanisme? Et si oui, comment?

4 Introduction et contexte 4/27 La non-réponse corrélée à la variable d intérêt Un mécanisme de non-réponse lié à la variable d intérêt peut biaiser l estimateur de son total Des exemples de l enquête emploi ou de l enquête patrimoine

5 Introduction et contexte 5/27 Le contexte On se place dans le cas d une enquête exhaustive U est une population finie de taille N Les éléments de U sont repérés par l indice k Pour chaque élément k on observe les réalisations (x k, y k, z k, r k ) du vecteur aléatoire (X k, Y k, Z k, R k ) Les vecteurs (X k, Y k, R k ) sont i.i.d

6 Non-réponse ignorable 6/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

7 Non-réponse ignorable 7/27 La non-réponse ignorable Elle peut être MCAR ou MAR MCAR : Missing completely at random ; la non-réponse n est pas corrélée à la variable d intérêt MAR : Missing at random ; la non-réponse n est corrélée à la variable d intérêt qu à travers des covariables de Y k observées. Conditionnellement à ces variables, la non-réponse n est pas corrélée à la variable d intérêt Exemple des groupes homogènes de repondération Sexe*groupes d âge

8 Non-réponse ignorable 8/27 La non-réponse ignorable, cas MAR Modèle de régression linéaire de Y k sur U : Y k = α 0 + α 1 X k + ε k où E(ε k /X k ) = 0 Modèle de réponse, E(R k /X k ) = ρ(x k ) Non-réponse MAR : E(ε k R k /X k ) = 0 E(Y k R k /X k ) = E(Y k /X k )E(R k /X k )

9 Non-réponse ignorable 9/27 Modèle de régression linéaire de Y k sur l échantillon des répondants s r : Y k = α 0 + α 1 X k + ε k = α X k + ε k où E(ε k R k /X k ) = 0, α = (α 0, α 1 ) et X k = (1, X k ) L estimateur par les MCO [ ] 1 [ ] 1 1 ˆα = R k X k X k R k X k Y k N N k U converge asymptotiquement vers α k U

10 Non-réponse ignorable 10/27 La non-réponse ignorable, cas MAR Pour estimer le total t y = k U y k, on peut utiliser une estimateur par la régression : où t x = (N, t x = k U x k) ˆt y = t x ˆα

11 Non-réponse non-ignorable 11/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

12 Non-réponse non-ignorable 12/27 La non-réponse non-ignorable On étudie un cas de non-réponse non-ignorable proche du cas précédent Cette fois-ci, une des variables explicatives dans le modèle modèle sur Y k n est pas une variable auxiliaire C est une variable observée uniquement sur l échantillon des répondants C est donc une autre variable d intérêt du modèle

13 Non-réponse non-ignorable 13/27 Notations Variables auxiliaires dont les totaux sont connus sur U X k = (1, X k,1, X k,2 ) Variables explicatives de la non-réponse Z k = (1, X k,1, Z k,2 ) Variables d intérêt Y k = (Y k, Z k,2 ) La variable X k,2 est corrélée positivement à la variable Z k,2

14 Non-réponse non-ignorable 14/27 Modèle de non-réponse Ou : E(R k /Z k, X k, Y k ) = E(R k /Z k ) = ρ(z k ) E(R k X k /Z k ) = E(R k /Z k )E(X k /Z k ) E(R k Y k /Z k ) = E(R k /Z k )E(Y k /Z k ) Remarque : la variable X k,2 est corrélée à Z k,2 mais n a pas d effet explicatif direct sur la non-réponse.

15 Non-réponse non-ignorable 15/27 Modèle de la variable d intérêt On suppose que Y k suit un modèle de régression linéaire Y k = α 0 + α 1 X k,1 + α 2 Z k,2 + ε k E(ε k /Z k, X k ) = 0 Pour autant, on ne peut pas proposer un estimateur Greg de t y car on ne dispose pas de la valeur du total t z2

16 Non-réponse non-ignorable 16/27 Modèle de régression à variable instrumentale On écrit un nouveau modèle "dégradé" pour Y k en utilisant la corrélation entre X k,2 et Z k,2 : Y k = β 0 + β 1 X k,1 + β 2 X k,2 + τ k E(τ k /Z k ) = 0 D un point de vue statistique, il s agit d un modèle de régression à variable instrumentale Ce modèle est moins bien ajusté que le modèle initial, par contre, il reste identifiable sur s r car E(τ k R k /Z k ) = 0

17 Non-réponse non-ignorable 17/27 Modèle de régression à variable instrumentale En effet, sur s r on prendra l estimateur : [ ] 1 [ ] ˆβ VI 1 1 = c k R k Z k X k c k R k Z k Y k N N k U k U [ ] 1 [ ] 1 1 = β + c k R k Z k X k c k R k Z k τ k, N N k U k U où c k s interprète comme un poids de l élément k et est une fonction de Z k : c k = f(z k ).

18 Non-réponse non-ignorable 18/27 Estimateur IVGreg ˆβ VI converge asymptotiquement vers β On peut utiliser cette fois-ci un estimateur par la régression (instrumentale) : ˆt V y I I = t x ˆβV = [ 1 ] c k R k t x c l R l Z l X l Z k Y k k U l U

19 Non-réponse non-ignorable 19/27 Estimateur IVGreg : estimateur linéaire ˆt V I y = k U R k w V I k Y k, où w V I k = c k t x [ 1 ] c l R l Z l X l Z k l U = c k 1 + ( t x k U est le poids d enquête de l élément k. ) [ ] 1 c k R k X k c l R l Z l X l Z k l U

20 Simulations 20/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations

21 Simulations 21/27 Simulations Monte Carlo On génère une population de taille N = 1000 Variables explicatives de la non-réponse Z k,1 gamma(20, 20) (observée sur s r ) Z k,2 U[0, 600] (observée sur s r ) Z k,3 U[0, 600], (non observée) Variables auxiliaires X k,1 = Z k,1 X k,2 = 0, 5(Z k,2 + U k,2 ), où U k,2 N(0, ) X k,3 = 0, 5(Z k,2 + Z k,3 )

22 Simulations 22/27 Simulations Monte Carlo La variable Y k est générée par le modèle linéaire : où E N(0, ) Y k = X k,1 + 20Z k,2 + E k.

23 Simulations 23/27 Simulations Monte Carlo K = 1000 simulations du mécanisme de réponse R k suit une loi de Bernoulli de paramètre : ( ) exp( zk, z k, z k,3 ) p k = exp( z k, z k, z k,3 )

24 Simulations 24/27 Simulations Monte Carlo On compare quatre estimateurs du total t y ˆt y : moyenne des valeurs de y sur s r multipliée par N ˆt y,x x : estimateur par la régression habituel ˆt y,x3 z : estimateur par la régression instrumentale avec X 3 comme variable proxy de Z 2 ˆt y,x z : estimateur par la régression instrumentale avec Z 1 et Z 2 comme instruments et X 2 comme variable proxy de Z 2

25 Simulations 25/27 Biais relatifs ˆt y ˆt y,x x ˆt y,x3 z ˆt y,x z

26 Simulations 26/27 Biais relatifs - estimateurs de t z ˆt z2 ˆt z2,x x ˆt z2,x3 zˆt z2,x z

27 Simulations 27/27 Beaumont, J.-F. (2000). Une méthode d estimation en présence de non-réponse non-ignorable. Techniques d enquêtes, vol 26, pp Deville, J.-C. (2004). La correction de la non-réponse par calage généralisé. Actes des journées de méthodologie satistique, 16 et 17 décembre 2002, INSEE Méthodes. Fuller, A.F. (2009). Sampling Statistics. Wiley, 371. Gautier, E. (2005). Eléments sur les mécanismes de la sélection dans les enquêtes et sur la non-réponse non-igorable. Actes des journées de méthodologie satistique, INSEE. Särndal, C.E. and Sixten L. (2005). Estimation in Surveys with Nonresponse. Wiley.

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

1 Design-based and model-based methods for estimating model parameters

1 Design-based and model-based methods for estimating model parameters Groupe de lecture Econométrie des données d'enquête Compte-rendu de la troisième réunion, 19 janvier 2015 La modélisation en théorie des sondages Suivi par Marine Guillerm et Ronan Le Saout Cette troisième

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

Techniques avancées d échantillonnage Estimation de variance

Techniques avancées d échantillonnage Estimation de variance Techniques avancées d échantillonnage Estimation de variance Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 28 janvier 2014 G. Chauvet (ENSAI) Estimation de variance

Plus en détail

Prise en compte de la stochasticité dans les modèles : optimisation robuste

Prise en compte de la stochasticité dans les modèles : optimisation robuste Prise en compte de la stochasticité dans les modèles : optimisation robuste Rodolphe Le Riche (CNRS & EMSE) & Victor Picheny (INRA) La Rochelle, 5/11/2014 Plan Introduction 1 Introduction 2 Formulations

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

CURRICULUM VITAE. 2004 DEA en Statistique, Université de Rennes 1 Reçu Major

CURRICULUM VITAE. 2004 DEA en Statistique, Université de Rennes 1 Reçu Major CURRICULUM VITAE Guillaume CHAUVET Né le 18 février 1977 à Clermont-Ferrand, France Nationalité française Attaché principal de l Insee - Docteur en Statistique de l Université de Rennes 2 (Centre de Recherche

Plus en détail

Non-réponse et données manquantes. Sylvie Rousseau & Gilbert Saporta décembre 2011

Non-réponse et données manquantes. Sylvie Rousseau & Gilbert Saporta décembre 2011 Non-réponse et données manquantes Sylvie Rousseau & Gilbert Saporta décembre 2011 1 EXEMPLES DE TAUX DE RÉPONSE À CERTAINES ENQUÊTES Pour les enquêtes auprès des entreprises, le taux de non-réponse est

Plus en détail

Au sujet des corrections du biais pour les enquêtes en ligne

Au sujet des corrections du biais pour les enquêtes en ligne Recueil du Symposium 2014 de Statistique Canada Au-delà des méthodes traditionnelles d enquêtes : l adaptation à un monde en évolution Au sujet des corrections du biais pour les enquêtes en ligne Lingling

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées.

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Baptiste Gregorutti 12, Bertrand Michel 2 & Philippe Saint Pierre 2 1 Safety

Plus en détail

Initiation à la théorie des sondages: cours IREM-Dijon

Initiation à la théorie des sondages: cours IREM-Dijon Initiation à la théorie des sondages: cours IREM-Dijon Camelia Goga IMB, Université de Bourgogne Dijon, 12 novembre 2009 Très court historique Laplace a présenté à l Académie des Sciences en 1783 une nouvelle

Plus en détail

Utilisation des procédures SAS dans l enseignement des sondages

Utilisation des procédures SAS dans l enseignement des sondages Utilisation des procédures SAS dans l enseignement des sondages Yves Aragon Anne Ruiz-Gazen e-mail: aragon@cict.fr, ruiz@cict.fr 1. Introduction Depuis la version 8, SAS [6] propose trois procédures pour

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Mémoire. Benjamin Beauregard. Maîtrise en statistiques Maître ès sciences (M.Sc.) Québec, Canada

Mémoire. Benjamin Beauregard. Maîtrise en statistiques Maître ès sciences (M.Sc.) Québec, Canada Comparaison de modèles de régression logistique utilisés pour l analyse de données recueillies dans le cadre d études de type cas-témoins appariés sur le déplacement animal Mémoire Benjamin Beauregard

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage

Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage des variables auxiliaires à utiliser dans l'estimateur par calage Mohammed El Haj Tirari Institut National de Statistique et d'economie Appliquée - roc Laboratoire de Statistique d'enquêtes, CREST - Ensai

Plus en détail

Méthodes de sondage Echantillonnage et Redressement

Méthodes de sondage Echantillonnage et Redressement Méthodes de sondage Echantillonnage et Redressement Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 27 avril 2015 Guillaume Chauvet (ENSAI) Echantillonnage 27 avril

Plus en détail

L imputation des données manquantes, la technique

L imputation des données manquantes, la technique Eidgenössische Technische Hochschule Zürich Konjunkturforschungsstelle Centre de recherches conjoncturelles Centro di ricerche congiunturali Center for Business Cycle Research Ecole polytechnique fédérale

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique»

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» M1_presentation_generale_4juil05.doc 1/11 MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» La mention s articule autour de 6 spécialités : Recherche en éthique : Pr Christian HERVE (herve@necker.fr)

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Jackknife, bootstrap et cross-validation

Jackknife, bootstrap et cross-validation But de l inférence statistique On a X = (X 1,..., X n) un échantillon i.i.d. de fonction de répartition F θ(f ) une quantité d intérêt, qui dépend de F T (X ) une statistique, estimateur de θ(f ), on voudrait

Plus en détail

STA108 : Enquêtes et sondages. Pratique des redressements

STA108 : Enquêtes et sondages. Pratique des redressements STA108 : Enquêtes et sondages Pratique des redressements Philippe Périé, janvier 2012 1 Pratique des redressements Utilisez au mieux les sources d information auxiliaire Principe du redressent, les effets

Plus en détail

Evaluer l ampleur des économies d agglomération

Evaluer l ampleur des économies d agglomération Pierre-Philippe Combes GREQAM - Université d Aix-Marseille Ecole d Economie de Paris CEPR Janvier 2008 Supports de la présentation Combes, P.-P., T. Mayer et J.-T. Thisse, 2006, chap. 11. Economie Géographique,

Plus en détail

Article. Peut-on établir des statistiques officielles à partir d enquêtes en ligne reposant sur le principe de l autosélection? par Jelke Bethlehem

Article. Peut-on établir des statistiques officielles à partir d enquêtes en ligne reposant sur le principe de l autosélection? par Jelke Bethlehem Composante du produit n o -5-X au catalogue de Statistique Canada La série des symposiums internationaux de Statistique Canada : recueil Article Symposium 008 : Collecte des données : défis, réalisations

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Jackknife et bootstrap comparés

Jackknife et bootstrap comparés Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X n ) = c + n 1 n 1 α(x i) c constante, α fonction Exemples : X, 1 + n 1 Xi /n Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Économétrie II. Économétrie II. L3 Économétrie L3 MASS Ch. 5. 9i : E (e i x i ) 6= 0 : Endogénéité. Prof. Philippe Polomé, U. Lyon 2.

Économétrie II. Économétrie II. L3 Économétrie L3 MASS Ch. 5. 9i : E (e i x i ) 6= 0 : Endogénéité. Prof. Philippe Polomé, U. Lyon 2. Économétrie Économétrie L3 Économétrie L3 MASS Prof. Philippe Polomé, U. Lyon 2 Année 2014-2015 Économétrie Rappel 1. E (e i )=0 8i : Espérance nulle 2. X var (e i )=s 2 8i : Homoscédasticité 3. X cov

Plus en détail

STA108 Sondages. Philippe Périé cours n 8 : 21NOV2014

STA108 Sondages. Philippe Périé cours n 8 : 21NOV2014 STA108 Sondages Philippe Périé cours n 8 : 21NOV2014 STA108 - Sondages Philippe Périé (IPSOS) philippe.perie@ipsos.com Sylvie Rousseau (INSEE) sylvie.rousseau@insee.fr Non réponse et données manquantes

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Estimation des inégalités dans l enquête Patrimoine 2004

Estimation des inégalités dans l enquête Patrimoine 2004 Estimation des inégalités dans l enquête Patrimoine 2004 Eric Gautier, Cédric Houdré To cite this version: Eric Gautier, Cédric Houdré. Estimation des inégalités dans l enquête Patrimoine 2004. Economie

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

La qualité dans les enquêtes par sondage

La qualité dans les enquêtes par sondage La qualité dans les enquêtes par sondage Anne-Marie Dussaix Professeur honoraire à l ESSEC 7 ème Colloque francophone sur les sondages Rennes, 5-7 novembre 2012 1 La qualité dans les enquêtes par sondage

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Curriculum Vitae ÉTAT CIVIL ET CONTACT SITUATION ADMINISTRATIVE

Curriculum Vitae ÉTAT CIVIL ET CONTACT SITUATION ADMINISTRATIVE Curriculum Vitae ÉTAT CIVIL ET CONTACT Guillaume CHAUVET Né le 18 février 1977, à Clermont-Ferrand (63) Célibataire, nationalité française Coordonnées professionnelles : Ecole Nationale de la Statistique

Plus en détail

TD «Enquête par questionnaire» 2008 / 2009

TD «Enquête par questionnaire» 2008 / 2009 TD «Enquête par questionnaire» 2008 / 2009 5 ème séance leroy.jeanne@gmail.com Bureau C310 Les 12 étapes de la construction d un questionnaire 1) Définition de l objet d enquête et analyse des moyens matériels

Plus en détail

Internet est-il l avenir des enquêtes Génération?

Internet est-il l avenir des enquêtes Génération? Établissement public sous double tutelle des ministères de l'éducation nationale, de l'enseignement supérieur et de la Recherche du Travail, de l Emploi, de la Formation professionnelle et du Dialogue

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Rapport de méthodes Analyse de données d enquêtes

Rapport de méthodes Analyse de données d enquêtes Rapport de méthodes Analyse de données d enquêtes 0 Statistische Grundlagen und Übersichten Bases statistiques et produits généraux Basi statistiche e presentazioni generali Quelques méthodes et illustration

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Le modèle linéaire généralisé avec R : fonction glm()

Le modèle linéaire généralisé avec R : fonction glm() SEMIN- Le modèle linéaire généralisé avec R : fonction glm() Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Ecole Normale Supérieure 46 rue d'ulm F-75230 Paris Cedex 05 sebastien.ballesteros@biologie.ens.fr

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

DISTINGUER LES EFFETS DE SELECTION ET DE MESURE. Céreq, 10 Place de la Joliette, BP 21321, 13567 Marseille cedex 02, dzikowski@cereq.

DISTINGUER LES EFFETS DE SELECTION ET DE MESURE. Céreq, 10 Place de la Joliette, BP 21321, 13567 Marseille cedex 02, dzikowski@cereq. COMPARAISON DES MODES DE COLLECTE PAR TELEPHONE ET PAR INTERNET DANS LE CADRE DE L ENQUETE GENERATION DU CEREQ. ANALYSE DES ABANDONS EN COURS ET TENTATIVE POUR DISTINGUER LES EFFETS DE SELECTION ET DE

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

Analyse des données longitudinales

Analyse des données longitudinales Analyse des données longitudinales EA Sauleau SémStat 03/10/2006 Table des matières 1 Introduction 2 1.1 Généralités 2 1.2 La structure des données.. 3 1.3 Exemple.. 4 1.4 Des impasses.. 4 2 (M)ANOVA 4

Plus en détail

Analyse de données catégorielles

Analyse de données catégorielles 1 Analyse de données catégorielles Ce cours est librement inspiré du livre de Agresti ([1]), ainsi que du livre [2]. Il reprend par ailleurs des parties et des graphiques issues du cours de Patrick Taffé

Plus en détail

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f JFMS Toulouse 24, 25, 26 mars 2010 AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f Benjamin Echard Nicolas Gayton Maurice Lemaire LaMI Laboratoire

Plus en détail

Les cessions de créances restent-elles possibles en IFRS?

Les cessions de créances restent-elles possibles en IFRS? Conférence IMA France Mardi 30 janvier 2007 - www.ima-france.com Les cessions de créances restent-elles possibles en IFRS? Lionel Escaffre Professeur associé à l Université d Angers Commissaire aux Comptes

Plus en détail

Machines à sous (compléments)

Machines à sous (compléments) CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE

DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE 1 Définir le type de variable Dans notre cas, la variable est quantitative nominale. Note : Une variable est qualitative nominale quand

Plus en détail

Clustering par quantification en présence de censure

Clustering par quantification en présence de censure Clustering par quantification en présence de censure Svetlana Gribkova 1 Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, 75005 Paris Résumé.

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

Faut-il pondérer? ...Ou l'éternelle question de l'économètre confronté à un problème de sondage. Laurent Davezies et Xavier D'Haultf uille.

Faut-il pondérer? ...Ou l'éternelle question de l'économètre confronté à un problème de sondage. Laurent Davezies et Xavier D'Haultf uille. Faut-il pondérer?...ou l'éternelle question de l'économètre confronté à un problème de sondage Laurent Davezies et Xavier D'Haultf uille Juin 2009 Résumé Ce papier précise dans quels cas les estimations

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Gestion des Risques Financiers

Gestion des Risques Financiers Gestion des Risques Financiers Thierry Roncalli 9 janvier 2008 Merci de rédiger entièrement vos réponses. 1 La réglementation Bâle II 1. Quelles sont les principales diérences entre l'accord originel de

Plus en détail

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement Estimation consistante des paramètres d un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement Consistent estimation of parameters in a nonlinear model for functional data with

Plus en détail

REPÈRES MÉTHODOLOGIQUES MINISTÈRE DU TOURISME

REPÈRES MÉTHODOLOGIQUES MINISTÈRE DU TOURISME REPÈRES MÉTHODOLOGIQUES MINISTÈRE DU TOURISME Étude de provenance et de l importance touristique de l achalandage IMPORTANT : Pour être recevable, l étude doit respecter tous les repères méthodologiques

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Exercice 2 du cours Management Bancaire : «Calcul de la VaR d une position de marché»

Exercice 2 du cours Management Bancaire : «Calcul de la VaR d une position de marché» Exercice du cours Management Bancaire : «Calcul de la VaR d une position de marché» La réglementation bancaire impose aux banques de maintenir un niveau de capital minimum pour absorber les pertes dues

Plus en détail

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 Utiles pour réaliser r des tirages et simuler des phénom nomènes nes aléatoires atoires Nombres aléatoires: atoires:

Plus en détail

ANALYSE GRAPHIQUE DE DONNÉES PROVENANT D ENQUÊTES À PLAN COMPLEXE

ANALYSE GRAPHIQUE DE DONNÉES PROVENANT D ENQUÊTES À PLAN COMPLEXE Assemblée annuelle de la SSC, mai 2004 Recueil de la Section des méthodes d enquête ANALYSE GRAPHIQUE DE DONNÉES PROVENANT D ENQUÊTES À PLAN COMPLEXE Yves Lafortune et Martin Pantel 1 RÉSUMÉ L analyse

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Comprendre, construire et interpréter les statistiques

Comprendre, construire et interpréter les statistiques Comprendre, construire et interpréter les statistiques Petit précis d usage des statistiques à l attention des non statisticiens NOTE METHODOLOGIQUE Note méthodologique réalisée par Léo Mignot, sociologue,

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES

TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES TEST DE MONTE CARLO DE DETECTION DE MODIFICATIONS CLIMATIQUES Jean-Cléophas ONDO (*) (*) Institut Sous-régional de Statistique et d Economie Appliquée (ISSEA) Résumé Les procédures couramment utilisées

Plus en détail