MAP 553 Apprentissage statistique

Dimension: px
Commencer à balayer dès la page:

Download "MAP 553 Apprentissage statistique"

Transcription

1 MAP 553 Apprentissage statistique Université Paris Sud et Ecole Polytechnique PC1 1/39

2 Apprentissage? 2/39

3 Apprentissage? L apprentissage au quotidien 1 filtres SPAM 2 Reconnaissance de chiffre: lecture automatique de codes postaux 3 Diagnostique médical: de cancers, alzheimer, diabète, etc 4 In silico chemometrics: recherche virtuelle de médicaments 5 Business analytics, Google ranking, web-data, etc spamsieve/ 3/39

4 Apprentissage? L apprentissage au quotidien 1 filtres SPAM 2 Reconnaissance de chiffre: lecture automatique de codes postaux 3 Diagnostique médical: de cancers, alzheimer, diabète, etc 4 In silico chemometrics: recherche virtuelle de médicaments 5 Business analytics, Google ranking, web-data, etc 3/39

5 Apprentissage? L apprentissage au quotidien 1 filtres SPAM 2 Reconnaissance de chiffre: lecture automatique de codes postaux 3 Diagnostique médical: de cancers, alzheimer, diabète, etc 4 In silico chemometrics: recherche virtuelle de médicaments 5 Business analytics, Google ranking, web-data, etc 3/39

6 Apprentissage? L apprentissage au quotidien 1 filtres SPAM 2 Reconnaissance de chiffre: lecture automatique de codes postaux 3 Diagnostique médical: de cancers, alzheimer, diabète, etc 4 In silico chemometrics: recherche virtuelle de médicaments 5 Business analytics, Google ranking, web-data, etc 3/39

7 Apprentissage? L apprentissage au quotidien 1 filtres SPAM 2 Reconnaissance de chiffre: lecture automatique de codes postaux 3 Diagnostique médical: de cancers, alzheimer, diabète, etc 4 In silico chemometrics: recherche virtuelle de médicaments 5 Business analytics, Google ranking, web-data, etc 3/39

8 Apprentissage? L apprentissage au quotidien 1 filtres SPAM 2 Reconnaissance de chiffre: lecture automatique de codes postaux 3 Diagnostique médical: de cancers, alzheimer, diabète, etc 4 In silico chemometrics: recherche virtuelle de médicaments 5 Business analytics, Google ranking, web-data, etc 3/39

9 Apprentissage? Les deux aspects de l apprentissage: aspect statistique aspect algorithmique 4/39

10 Le fléau de la dimension 5/39

11 Renversement de point de vue Cadre statistique classique: petit nombre p de paramètres grand nombre n d expériences on étudie le comportement asymptotique des estimateurs lorsque n (résultats type théorème central limite) 6/39

12 Renversement de point de vue Cadre statistique classique: petit nombre p de paramètres grand nombre n d expériences on étudie le comportement asymptotique des estimateurs lorsque n (résultats type théorème central limite) Données actuelles: inflation du nombre p de paramètres taille d échantillon reste réduite: n p ou n p = penser différemment les statistiques! (penser n ne convient plus) 6/39

13 Le fléau de la dimension: exemple 1 On observe X 1,..., X n [0, 1] p i.i.d. selon une densité f : [0, 1] p R inconnue. On cherche à estimer f. Une idée naturelle est de faire un histogramme avec disons des cases de 0.1 de côté. 7/39

14 Le fléau de la dimension: exemple 1 En dimension p = 1: Histogram of x Density Histogramme d un échantillon de n = 100 tirages d une loi beta. x 8/39

15 Le fléau de la dimension: exemple 1 On observe X 1,..., X n [0, 1] p i.i.d. selon une densité f : [0, 1] p R inconnue. On cherche à estimer f. Une idée naturelle est de faire un histogramme avec disons des cases de 0.1 de côté. Questions : 1 Pour avoir en moyenne 10 observations par cases, quelle taille doit avoir n (en fonction de p)? 2 Conclusion? Comment faire avec des échantillons plus petits? 9/39

16 Le fléau de la dimension: exemple 2 Echec des méthodes locales en régression. On observe Y 1,..., Y n R et X 1,..., X n R p avec Y i = f (X i ) + ε i, i = 1,..., n, où f est inconnue et les E[ε i ] = 0. ˆf (x) = Moyenne{Y i : X i B(x, r)} avec un r petit. on supposera les X i i.i.d. U(B(0, 1)) 1 Pour r < 1 montrer P( X i B(0, r)) = 1 (1 r p ) n. 2 Pour quelle valeur de r est-ce supérieur à 1/2? 3 Pour estimer f (0) avec au moins un point, quel est l ordre de grandeur du diamètre r minimal? Conclusion? 10/39

17 Le fléau de la dimension: exemple 2 r log(p) valeurs de r pour lesquelles (1 r p ) n = 1/2, cas n = /39

18 Le fléau de la dimension: exemple 3 Puces ADN: Modèle: log-intensité du spot (après normalisation) X i = θ i + ɛ i avec i.i.d. ε i N (0, 1) Déviation gaussienne à 5%: on a P [ (N (0, 1)) 2 > 3.84 ] 5% 12/39

19 Le fléau de la dimension: exemple 3 Puces ADN: Modèle: log-intensité du spot (après normalisation) X i = θ i + ɛ i avec i.i.d. ε i N (0, 1) Déviation gaussienne à 5%: on a P [ (N (0, 1)) 2 > 3.84 ] 5% Les valeurs X 2 i supérieures à 3.84 sont-elles significatives? 12/39

20 Le fléau de la dimension: exemple x Avec p = 1000 et θ i = 0 i (donc X 2 i = ε 2 i ). Niveaux représentés: 3.84 et 2 log p. z 13/39

21 Le fléau de la dimension: exemple 3 Combien de faux positifs? Supposons que p = 5000 et 4% des gènes sont positifs. Quel est le nombre moyen de faux positifs si on conserve tous les X 2 i > 3.84? Pourquoi un seuil à 2 log(p)? ( ) P max i=1,...,p ε2 i > t p t p α log p { 0 si α 2 1 si α < 2 Quel est le problème si p grand? 14/39

22 Le fléau de la dimension: pour aller plus loin Introduction to High-Dimensional Statistics. To appear. LectureNotes.pdf Jiashun Jin. Impossibility of successful classification when useful features are rare and weak. Proceedings of the National Academy of Sciences of the USA. 106 (22); pp /39

23 Réduction de dimension : ACP 16/39

24 Réduire la dimension Objectif: trouver un espace V de petite dimension tel que (simultanément) les observations X i R p soient proches de leur projection sur cet espace X[,3] X[,2] X[,1] Ex: dimension p = 3 : meilleur plan approximant. 17/39

25 Un exemple visuel : MNIST Base MNIST : 1100 chiffres scannés Figure : chaque image correspond à un vecteur dans R /39

26 Un exemple visuel : MNIST image originale image originale image originale image originale image projetée image projetée image projetée image projetée Figure : Projection des images sur un espace affine de dimension 10 donné par l ACP 19/39

27 Un exemple visuel : MNIST image 1 image MNIST moyenne image 1 recentrée image 1 projetée sur 10 axes Figure : Réduction de dimension d un facteur 25 par ACP 20/39

28 Réduire la dimension: exemple 2 Epreuve d heptathlon, jeux olympiques de Seoul, hurdles highjump shot run200m longjump javelin run800m Joyner-Kersee (USA) John (GDR) Behmer (GDR) Sablovskaite (URS) Choubenkova (URS) Schulz (GDR) Fleming (AUS) Greiner (USA) Lajbnerova (CZE) Bouraga (URS) Wijnsma (HOL) Dimitrova (BUL) Scheider (SWI) Braun (FRG) Ruotsalainen (FIN) Yuping (CHN) Hagger (GB) Brown (USA) Mulliner (GB) Hautenauve (BEL) Kytola (FIN) Geremias (BRA) Hui-Ing (TAI) Jeong-Mi (KOR) Launa (PNG) /39

29 ACP en action Résultat d une ACP sur les données d heptathlon PC highjump 11 run200m longjump hurdles run800m shot 5 javelin PC1 22/39

30 ACP : notations Epreuve d heptathlon, jeux olympiques de Seoul, [ tableau n p : X = X (v) i ] i = 1... n v = 1... p = [ X (1),..., X (p)] = X T 1. X T n p = 7 variables: 1 hurdles: results 100m hurdles. 2 highjump: results high jump. 3 shot: results shot. 4 run200m: results 200m race. 5 longjump: results long jump. 6 javelin: results javelin. 7 run800m: results 800m race. n = 25 athlètes. 23/39

31 Réduire la dimension But: représenter les obervations X i R p dans un espace de plus petite dimension avec le moins de perte d information possible. Ex: avec p = 2 variables: axes de projections (1er en rouge, 2nd en vert). 24/39

32 Réduire la dimension But: représenter les obervations X i R p dans un espace de plus petite dimension avec le moins de perte d information possible. X[,3] X[,2] X[,1] Ex: avec p = 3 variables: meilleur plan approximant. 25/39

33 Etape préliminaire Normalisation: étape préliminaire de normalisation des données: centrer: X (v) X (v) X (v) réduire: X (v) X (v) / var ( X (v)) (sauf si comparables) Dorénavant on supposera les données centrées. 26/39

34 ACP Objectif : Obtenir un espace vectoriel V de petite dimension tel que Proj V (X i ) X i pour i = 1,..., n. Questions : on notera Σ = 1 n XT X 1 Montrer que V d := argmin dim(v )=d = argmax dim(v )=d n X i Proj V (X i ) 2 i=1 n Proj V (X i ) 2 i=1 2 Par quels vecteurs V d est-il engendré? (commencer par d = 1) 3 Que vaut n i=1 Proj V d (X i ) 2? 27/39

35 ACP : définitions Axes principaux: a (1)... a (d) R p vecteurs propres orthonormés de Σ = 1 n XT X, ordonnés selon les valeurs propres décroissantes Composantes principales: c k = Xa (k) R n pour k = 1,..., d Remarques: c 1... c d R n : car c j, c k = n(a (j) ) T Σ a (k) = nλ k δ jk a (k) = 1 et c k 2 = nλ k c 1,..., c d R n vecteurs propres de XX T 28/39

36 ACP : projections Projection des individus: X i, a (k) = (c k ) i donc d Proj Vd (X i ) = (c k ) i a (k) k=1 Projection des variables: X (v), c k / c k 2 = (a (k) ) v donc d Proj <c1,...,c d >(X (v) ) = (a (k) ) v c k k=1 29/39

37 ACP: biplot PC highjump 11 run200m longjump hurdles run800m shot 5 javelin PC1 30/39

38 ACP : variance expliquée valeurs propres pour les données d heptathlon. acp Variances /39

39 Cercle des corrélations Cercle des corrélations: pour chaque variable v on définit le vecteur ρ (v) R d par On a ρ (v) k = cor(x (v), c k ) = X (v), c k X (v), k = 1,..., d. c k ρ (v) 2 = Proj <c 1,...,c d >(X (v) ) 2 X (v) 2 1. La norme de ρ (v) représente la qualité de la représentation de la variable v par les d premiers axes. 32/39

40 Cercle des corrélations : d = 2 PC longjump highjump shot javelin run200m hurdles run800m PC 1 Les variables sont bien expliquées par les deux premières composantes (proche du cercle) 33/39

41 ACP: exemple 3 Exemple: budget de l état français sur 24 années. Les variables: part du budget alloué à différents postes (en pourcentage du budget) PVP: Pouvoirs publics AGR: Agriculture CMI: Commerce et industrie TRA: Travail LOG: Logement EDU: Éducation ACS: Action sociale ANC: Ancien combattants DEF: Défense DET: Remboursement dette DIV: Divers donc p = 11 Observations: on a 24 observations pour chaque variable (n = 24) 34/39

42 ACP: exemple 3 valeurs propres valeurs propres /39

43 ACP: exemple 3 Projection sur les 2 premiers axes 36/39

44 ACP: exemple 3 Projection sur les 3 premiers axes 37/39

45 ACP: exemple 3 Cercle des corrélations Variables proches du cercle: bien expliquées par les deux premiers axes. 38/39

46 ACP : récapitulatif Axes principaux: a (1)... a (d) R p vecteurs propres orthonormés de Σ = 1 n XT X, Composantes principales: c 1... c d R n, avec c k = Xa (k) Projection des individus: Proj Vd (X i ) = d k=1 (c k) i a (k) Projection des variables: Proj <c1,...,c d >(X (v) ) = d k=1 (a(k) ) v c k Ratio de variance expliquée: par les d premières composantes λ λ d λ λ p. 39/39

Cours 2-3 Analyse des données multivariées

Cours 2-3 Analyse des données multivariées Cours 2-3 des données s Ismaël Castillo École des Ponts, 13 Novembre 2012 Plan 1 2 3 4 1. On s intéresse à un jeu de données multi-dimensionel, avec n individus observés et p variables d intérêt ( variables

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

Analyse en Composantes. Principales

Analyse en Composantes. Principales AgroParisTech Analyse en Composantes Principales C Duby, S Robin Table des matières Introduction 3 2 Tableau de données 4 3 Choix d une distance 6 4 Choix de l origine 7 5 Moments d inertie 9 5 Inertie

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

Cours 5: Exemples d application www.enseeiht.fr/~gergaud/teaching

Cours 5: Exemples d application www.enseeiht.fr/~gergaud/teaching Cours 5: Exemples d application www.enseeiht.fr/~gergaud/teaching Joseph Gergaud 30 novembre 5 Exemples d application 1/ 25 1 Inertie Variables Individus Calculs 2 ACP Variables nominales supplémentaires

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech

Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech Méthodes de placement multidimensionnelles Fabrice Rossi Télécom ParisTech Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 2 / 27 F. Rossi Plan Introduction

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées.

Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Sélection de variables groupées avec les forêts aléatoires. Application à l analyse des données fonctionnelles multivariées. Baptiste Gregorutti 12, Bertrand Michel 2 & Philippe Saint Pierre 2 1 Safety

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Méthodes de projection

Méthodes de projection Chapitre 11 Méthodes de projection Contenu 11.1 Analyse en composantes principales........ 138 11.1.1 L Analyse en Composantes Principales........ 139 11.1.2 La (grande) famille des ACP............. 151

Plus en détail

Jackknife et bootstrap comparés

Jackknife et bootstrap comparés Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X n ) = c + n 1 n 1 α(x i) c constante, α fonction Exemples : X, 1 + n 1 Xi /n Jackknife et bootstrap comparés Statistique linéaire θ(x 1,...,X

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

ANALYSE de CAPACITÉ d'un PROCESSUS

ANALYSE de CAPACITÉ d'un PROCESSUS ANALYSE de CAPACITÉ d'un PROCESSUS ( aptitude d'un processus à satisfaire des exigences / spécifications) Définition Limites "naturelles" de variabilité Distinction entre 3 sortes de limites Étapes pour

Plus en détail

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction

Plus en détail

Examen Gestion d Actifs

Examen Gestion d Actifs ESILV 2012 D. Herlemont Gestion d actifs Examen Gestion d Actifs 2 pt 1. On considère un portefeuille investi dans n actifs risqués, normalement distribués d espérance en excès du taux sans risque µ =

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

THEORIE FINANCIERE Préparation à l'examen

THEORIE FINANCIERE Préparation à l'examen THEORIE FINANCIERE Préparation à l'examen N.B. : Il faut toujours justifier sa réponse. 1. Qu'est-ce que l'axiomatique de Von Neumann et Morgenstern? La représentation des préférences des investisseurs

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Méthodes de distances Formation CNRS «Phylogénie moléculaire»

Méthodes de distances Formation CNRS «Phylogénie moléculaire» Méthodes de distances Formation CNRS «Phylogénie moléculaire» Guy Perrière Laboratoire de Biométrie et Biologie Évolutive UMR CNRS n 5558 Université Claude Bernard Lyon 1 2 mars 213 Guy Perrière (BBE)

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Des électeurs, des boules, des cercles, des étudiants satisfaits

Des électeurs, des boules, des cercles, des étudiants satisfaits Fiche TD avec le logiciel : bem5 Des électeurs, des boules, des cercles, des étudiants satisfaits A.B. Dufour, J.R. Lobry & D. Chessel Le calcul des probabilités parle de l échantillon à partir de la population.

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Introduction à l analyse statistique et bioinformatique des puces à ADN

Introduction à l analyse statistique et bioinformatique des puces à ADN Formation INSERM 10 février 2004 Introduction à l analyse statistique et bioinformatique des puces à ADN Gaëlle Lelandais lelandais@biologie.ens.fr 1 Première Partie Analyse d une puce à ADN : Le recherche

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Probabilités et inférence statistique (STAT-S202)

Probabilités et inférence statistique (STAT-S202) Probabilités et inférence statistique (STAT-S202) Partie 2: Inférence statistique Catherine Dehon 2014-2015 (2e édition) Université libre de Bruxelles Solvay Brussels School of Economics and Management

Plus en détail

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES 2011 2012 ANALYSE DE DONNEES 2011 2012 LICENCE 3 SCIENCES ECONOMIQUES COURS DE M. THIERRY BLAYAC Analyse de données [Tapez le sous-titre du document] ANALYSE DE DONNEES Page 1 H34VEN Cours pour Licence

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Dérivés Financiers Contrats à terme

Dérivés Financiers Contrats à terme Dérivés Financiers Contrats à terme Mécanique des marchés à terme 1) Supposons que vous prenez une position courte sur un contrat à terme, pour vendre de l argent en juillet à 10,20 par once, sur le New

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données

Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données Mathématiques en mouvement 2014 Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données Bertrand MICHEL (LSTA - Upmc & INRIA Saclay équipe GEOMETRICA ) Introduction Beaucoup

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Statistiques Multivariées pour la Bioinformatique. Susan Holmes, Stanford, susan@stat.stanford.edu

Statistiques Multivariées pour la Bioinformatique. Susan Holmes, Stanford, susan@stat.stanford.edu BMM 1 Presentation Statistiques Multivariées pour la Bioinformatique Susan Holmes, Stanford, susan@stat.stanford.edu Specificités de cette classe Les données genetiques sont discretes: comptage. En general

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Analyse de Données. Analyse en Composantes Principales (ACP)

Analyse de Données. Analyse en Composantes Principales (ACP) Analyse de Données Analyse en Composantes Principales (ACP) Analyse en composantes principales (ACP) ** Sur toute la fiche, on notera M' la transposée de M. Cadre de travail : On a des données statistiques

Plus en détail

Apprentissage par renforcement (1a/3)

Apprentissage par renforcement (1a/3) Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans Introduction aux CRF via l annotation par des modèles graphiques Isabelle Tellier LIFO, Université d Orléans Plan 1. Annoter pour quoi faire 2. Apprendre avec un modèle graphique 3. Annnoter des chaînes

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail

T.D. 1. Licence 2, 2014 15 - Université Paris 8

T.D. 1. Licence 2, 2014 15 - Université Paris 8 Mathématiques Financières Licence 2, 2014 15 - Université Paris 8 C. FISCHLER & S. GOUTTE T.D. 1 Exercice 1. Pour chacune des suites ci-dessous, répondre aux questions suivantes : Est-ce une suite monotone?

Plus en détail

Autour du cardinal d un ensemble de matrices binaires

Autour du cardinal d un ensemble de matrices binaires Autour du cardinal d un ensemble de matrices binaires Adrien REISNER 1 Abstract. We here study a couple of algebraic and analytic properties of certain binary matrices in the spaces M n(r). In particular,

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Probabilités et statistiques dans le traitement de données expérimentales

Probabilités et statistiques dans le traitement de données expérimentales Probabilités et statistiques dans le traitement de données expérimentales S. LESECQ, B. RAISON IUT1, GEII 1 Module MC-M1 2009-2010 1 V Estimation de paramètres, tests d hypothèse, statistiques Module MC-M1

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Apprentissage non paramétrique en régression

Apprentissage non paramétrique en régression 1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Cours 1: Introduction à l algorithmique

Cours 1: Introduction à l algorithmique 1 Cours 1: Introduction à l algorithmique Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique 2011-12 Algorithmique 2 Aujourd hui Calcul de x n Maximum Complexité d un problème Problème

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail