Apprentissage non paramétrique en régression

Dimension: px
Commencer à balayer dès la page:

Download "Apprentissage non paramétrique en régression"

Transcription

1 1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus classiques : estimation par des polynômes, estimation sur des bases de splines, estimateurs à noyau et par projection sur des bases orthonormées Fourier, ondelettes). Des contrôles du risque quadratique et des calculs de vitesses de convergences sont effectués. ous présentons également les modèles additifs généralisés ainsi que les arbres de régression CART et la méthode KRLS kernel regression least square). Retour au plan du cours 1 Introduction On se place dans le cadre d un modèle de régression : Y i fx i ) + ε i, i 1,... n. ous supposerons que les variables X i appartiennent à R d, les Y i sont réelles. Soit les X i sont déterministes, et nous supposerons les variables ε i sont i.i.d., centrées, de variance σ 2. Soit les X i sont aléatoires et nous supposerons les variables ε i indépendantes des X i, i.i.d., centrées, de variance σ 2. En l absence de toute hypothèse sur la fonction de régression f, nous sommes dans un cadre non paramétrique. ous allons proposer plusieurs types de méthodes d apprentissage pour la fonction f : l estimation par des splines, les estimateurs à noyaux et les estimateurs par projection sur des bases orthonormées, notamment des bases d ondelettes. ous verrons également une méthode qui permet de contourner le fléau de la dimension dans le cas des modèles additifs, enfin nous introduirons les arbres CART. 2 Estimation par des polynômes par morceaux. Dans ce chapitre, on suppose que les X i appartiennent à un compact de R, que l on peut supposer égal à [, 1]. 2.1 Estimation par des constantes par morceaux On peut estimer la fonction f par une fonction constante par morceaux sur une partition de [, 1]. Ces estimateurs sont les analogues en régression des estimateurs par histogramme en densité, on les appelle régressogrammes). On découpe [, 1] en D intervalles de même taille : I k,d 1 ]k/d,k+1)/d], k,..., D 1. Il est naturel d estimer la fonction f sur l intervalle I k,d par la moyenne des valeurs de Y i qui sont telles que X i I k,d, soit pour tout x I k,d, on pose i,x ˆf D x) i I k,d Y i {i, X i I k,d } si {i, X i I k,d } et ˆf D x) si {i, X i I k,d }. On peut aussi écrire ˆf D x) sous la forme n ˆf D x) Y i1 Xi I k,d n 1. X i I k,d On suppose dans la suite que D < n, si pour tout i, X i i/n, ceci entraîne que pour tout k, {i, X i I k,d }. Cet estimateur correspond à l estimateur des moindres carrés de f sur le modèle paramétrique des fonctions constantes par morceaux sur les intervalles I k,d : D S D {fx) a k 1 x Ik,D }.

2 2 Apprentissage non paramétrique en régression En effet, si on cherche à minimiser ha 1,..., a D ) ) 2 D Y i a k 1 Xi I k,d la minimisation est obtenue pour i,x â l i I l,d Y i {i, X i I l,d }, 2.2 Polynômes par morceaux l. D i,x i I k,d Y i a k ) 2, L estimation par des polynômes par morceaux de degré m sur la partition définie par les intervalles I k,d, 1 k D correspond à la minimisation du critère : ) 2 D Y i a k, + a k,1 X i a k,m Xi m )1 Xi I k,d D i,x i I k,d Y i a k, a k,1 X i... a k,m X m i ) 2. Sur tout intervalle I k,d, on ajuste un polynôme de degré m, par la méthode des moindres carrés en minimisant le critère : i,x i I k,d Y i a k, a k,1 X i... a k,m X m i ) 2. Il s agit simplement d un modèle linéaire en les paramètres a k,,..., a k,m ), il y a donc une solution explicite. Le problème du choix des paramètres D et m se pose. 2.3 Ajustement des paramètres Revenons au cas de l estimation par des constantes par morceaux, et considérons le problème du choix du paramètre D. On peut alors distinguer deux cas extrêmes : 1) Si D est de l ordre de n, on a un seul point X i par intervalle I k,d et on estime f par Y i sur chaque intervalle I k,d. On a une fonction très irrégulière, qui reproduit simplement les observations. On fait alors du sur-ajustement. Si D 1, on estime f sur [, 1] par la moyenne de toutes les observations Y i. Si f est très loin d être une fonction constante, l estimateur sera mal ajusté. Il faut donc trouver un bon compromis entre ces deux situations extrêmes pour le choix de D. 2.4 Performances de l estimateur. ous allons majorer le risque quadratique de l estimateur, pour un choix convenable de D, dans le cas où la fonction de régression f est Lipschitzienne : on suppose que f est dans la classe de fonctions S 1,R {f L 2 [, 1]), x, y [, 1], fx) fy) R x y }. THÉORÈME 1. Dans le modèle l estimateur avec vérifie Y i f i n ) + ε i, i 1,..., n, n ˆf D x) Y i1 Xi I k,d n 1, X i I k,d D Dn) [nr 2 ) 1/3 ] sup E f [ ˆf D f 2 2] Cσ)R 2 3 n 2 3. f S 1,R Bien entendu, ce résultat est purement théorique, car en pratique, on ne sait pas si la fonction f appartient à la classe S 1,R. ous verrons à la Section 1 des méthodes pratiques de choix de D par validation croisée. Démonstration.

3 3 Apprentissage non paramétrique en régression Calcul de l espérance Pour tout x I k,d, ) E f ˆfD x) i,x i I k,d fx i ) {i, X i I k,d }. ) i,x E f ˆfD x) fx) i I k,d fx i ) fx)). {i, X i I k,d } Si on fait l hypothèse que f S 1,R alors pour x et X i dans le même intervalle I k,d, x X i 1/D, ce qui implique fx) fx i ) RD 1. Ainsi Biais ˆf ) D x)) E f ˆfD x) fx) R D. Calcul de la variance Var ˆf D x)) E f [ ˆf D x) E f ˆf D x))) 2 ] σ 2 {i, X i I k,d }. On utilise comme critère pour mesurer les performances de notre estimateur le risque L 2 [, 1], dx) c est-à-dire Puisque X i i/n, on remarque aisément que {i, X i I k,d } [n/d] n/2d) si on suppose D n/2. Ceci implique : L ˆf D, f) 2σ2 D n + R 2 D 2. Il reste à choisir D pour optimiser ce risque quadratique. En posant et on obtient D [nr 2 ) 1/3 ], L ˆf D, f) Cσ)R 2 3 n Estimation sur des bases de splines ous supposons ici que les X i appartiennent R. Les estimateurs de la section précédente ne sont pas continus, pour obtenir des estimateurs qui sont des polynômes par morceaux et qui ont des propriétés de régularité, on utilise les bases de splines. 3.1 Splines linéaires et cubiques On a aussi Or, L ˆf D, f) E f [ L ˆf D, f) 1 1 ˆf D x) fx)) 2 dx]. E f [ ˆf D x) fx)) 2 ]dx. E f [ ˆf D x) fx)) 2 ] E f [ ˆfD x) E f ˆf D x)) + E f ˆf D x)) fx)) 2] E f [ ˆf D x) E f ˆf D x))) 2 ] + [E f ˆf D x)) fx)] 2 Var ˆf D x)) + Biais 2 ˆf D x)) σ 2 {i, X i I k,d } + R2 D 2. fx) β + β 1 x + β 2 x a) + + β 3 x b) + + β 4 x c) où < a < b < c... sont les points qui déterminent les intervalles de la partition appelés les nœuds). fx) β + β 1 x si x a β + β 1 x + β 2 x a) + si a x b β + β 1 x + β 2 x a) + + β 3 x b) + si b x c La fonction f est continue, si on veut imposer plus de régularité par exemple f de classe C 2 ), on utilise des splines cubiques. fx) β +β 1 x+β 2 x 2 +β 3 x 3 +β 4 x a) 3 ++β 5 x b) 3 ++β 4 x c)

4 4 Apprentissage non paramétrique en régression La fonction x a) 3 s annule ainsi que ses dérivées d ordre 1 et 2 en a donc f est de classe C 2. Pour éviter les problèmes de bords, on impose souvent des contraintes supplémentaires aux splines cubiques, notamment la linéarité de la fonction sur les deux intervalles correspondant aux extrémités. On se place sur [, 1]. ξ < ξ 1 <... < ξ K < 1. fx) β + β 1 x + β 2 x 2 + β 3 x 3 + K θ k x ξ k ) 3 +. On impose f ) f 3) ), f ξ K ) f 3) ξ K ). On en déduit : β 2 β 3, fx) β + β 1 x + K θ k ξ K ξ k ), K θ k. K θ k [x ξ k ) 3 + x ξ K ) 3 +] K 1 β + β 1 x + θ k ξ K ξ k )[ x ξ k) 3 + x ξ K ) 3 + ] ξ K ξ k ) On pose γ k θ k ξ K ξ k ) et d k x) x ξ k) 3 + x ξ K) 3 + ξ K ξ k ). K 1 γ k. K 2 fx) β + β 1 x + γ k d k x) d K 1 x)). On obtient la base de splines naturels : 1 x) 1, 2 x) x, 1 k K 2, k+2 x) d k x) d K 1 x). On doit choisir la position et le nombre de nœuds. 3.2 Méthodes de régularisation On se place dans un modèle de régression : Y i fx i ) + ɛ i, 1 i n. On minimise parmi les fonctions f splines naturels de nœuds en les X i fx) n θ k k x)) le critère pénalisé : Cf, λ) Y i fx i )) 2 + λ où λ >. En notant Ω l,k 1 à minimiser est La solution est : et THÉORÈME 2. On note k 1 f t)) 2 dt, x) l x)dx et i,j j X i ), le critère Cθ, λ) Y θ 2 + λθ Ωθ. ˆθ + λω) 1 Y ˆfx) ˆθ k k x). 2) F {f, C 2 [, 1]), 1 f 2 t)dt < + }. On se donne n 2, < X 1 <... < X n < 1 et y 1,..., y n ) R n. Pour f F, et λ >, on note Cf, λ) Y i fx i )) 2 + λ 1 f t)) 2 dt. Pour tout λ >, il existe un unique minimiseur dans F de Cf, λ), qui est la fonction définie en 2).

5 5 Apprentissage non paramétrique en régression 4 Estimateurs à noyau On considère le modèle Y i fx i ) + ε i, i 1,..., n 3) où les X i appartiennent à R d, les ε i sont i.i.d. centrées de variance σ 2, les X i et les ε i sont indépendantes. 4.1 Définition des estimateurs a noyau. DÉFIITIO 3. On appelle noyau une fonction K : R d R telle que K 2 < + et K 1. DÉFIITIO 4. On se donne un réel h > appelé fenêtre) et un noyau K. On appelle estimateur à noyau de f dans le modèle 3) associé au noyau K et à la fenêtre h la fonction ˆf h définie par : n ˆf h x) Y ik x X i ) h n K ) x X i. h Dans le cas où les X i sont de loi uniforme sur [, 1] d, on trouve aussi la définition suivante : ˆf h x) 1 ) x Xi nh d Y i K. 4) h Si par exemple d 1 et Ku) 1/2)1 u 1, ˆfh x) est la moyenne des Y i tels que X i x h. Il s agit d un estimateur constant par morceaux. Cas extrêmes : Supposons d 1 et les X i équirépartis sur [, 1]. -Si h 1/n, l estimateur est très irrégulier et reproduit simplement les observations. -Si h 1, pour tout x, ˆf h x) n Y i/n. Il faut donc, ici encore chercher une valeur de h qui réalise un bon compromis entre le terme de biais et le terme de variance. Remarque : on utilise plus généralement des noyaux réguliers, ce qui permet d obtenir des estimateurs réguliers. Exemples de noyaux en dimension 1 : -Le noyau triangulaire Kx) 1 x )1 x 1. -Le noyau gaussien Kx) 1 2π e x2 /2. -Le noyau parabolique Kx) x2 )1 x Propriétés des estimateurs à noyau. Pour simplifier les calculs, on se place dans un modèle où les X i sont aléatoires, de loi uniforme sur [, 1], et on considère l estimateur défini en 4). THÉORÈME 5. On suppose que f Σβ, R) définie par { Σβ, R) f C l [, 1]), x, y [, 1], f l) x) f l) y) R x y α}, où β l + α avec l entier et α ], 1]. On fait les hypothèses suivantes sur K : H1 u j Ku)du pour j 1,..., l. H2 u β Ku) du < +. En choisissant h de sorte que h nr 2 ) 1/1+2β), on obtient, f Σβ, R), 1 ) E f ˆf h x) fx)) 2 Démonstration. Calcul du biais : en notant K h 1/h)K./h), E f ˆf h x)) 1 Cβ, σ, s )R 2 1+2β n 2β 1+2β. fy)k h x y)dy f K h x). On a alors, puisque K 1, E f ˆf h x)) fx) fx uh) fx))ku)du.

6 6 Apprentissage non paramétrique en régression On utilise un développement de Taylor : fx uh) fx) f x)uh + f x) uh)2 2 avec τ 1. En utilisant l hypothèse H1, E f ˆf h x)) fx) f l) x τuh) uh)l l! f l) x τuh) uh)l Ku)du l! f l) x τuh) f l) x)) uh)l Ku)du. l! Puisque f Σβ, R), et en utilisant l hypothèse H2, on obtient Calcul de la variance : E f ˆf h x)) fx) Rτ α h β 1 l! V ar ˆf h x)) 1 n n 2 V ary i K h x X i )). De plus, 1 n 2 n E s [Y 2 i K 2 hx X i )] u β Ku) du. 1 n n 2 E[f 2 X i )Khx 2 X i ) + ε 2 i Khx 2 X i )]. E[f 2 X i )K 2 hx X i )] f 2 y) 1 h 2 K2 x y h )dy f 2 x uh) 1 h K2 u)du f 2 1 K 2. h Il en résulte que Puisque E f 1 on obtient E f 1 1 E[ε 2 i Khx 2 X i )] σ 2 h 2 K2 x y h )dy σ2 K 2. h ) ˆf h x) fx)) 2 dx V ar ˆf h x)) C f, σ) 1 nh. ) ˆf h x) fx)) 2 dx En choisissant h de sorte que 1 Biais 2 ˆf h x)) + V ar ˆf ) h x)) dx, Cβ, σ, f ) R 2 h 2β + 1 ). nh R 2 h 2β 1 nh, c est-à-dire h nr 2 ) 1/1+2β), on obtient le résultat souhaité. 5 Estimation ponctuelle par des polynômes locaux Dans la section 2, nous nous étions donné une partition à priori, elle ne dépendait pas des observations. L estimation de la fonction de régression en un point x était construite à partir des observations pour lesquelles X i était dans le même intervalle de la partition que x, ce qui conduit à des estimateurs irréguliers. Une idée naturelle est d estimer la fonction de régression en un point x à partir des observations pour lesquelles X i est "proche" de x. Plus généralement, on introduit une fonction de poids w i x)) construite à partir

7 7 Apprentissage non paramétrique en régression d un noyau : w i x) KX i x)/h) qui va attribuer un poids plus important aux observations pour lesquelles X i est "proche" de x, et on minimise en a) la somme des carrés pondérée : La solution est donnée par w i x)y i a) 2. a ˆf n x) n w ix)y i n w ix), 5) ce qui correspond à l estimateur à noyau de la fonction de régression! On peut généraliser la formule ci-dessus en remplaçant la constante a par un polynôme de degré p : on se donne un point x en lequel on souhaite estimer la fonction de régression. Pour u dans un voisinage de x, on considère le polynôme P x u, a) a + a 1 u x) a p p! u x)p. On cherche à estimer la fonction de régression au voisinage de x par le polynôme P x u, a) où le vecteur a a,... a p ) est obtenu par minimisation de la somme des carrés pondérée : w i x)y i a a 1 X i x)... a p p! X i x) p ) 2. La solution obtenue est le vecteur âx) â x),... â p x)), l estimateur local de la fonction de régression f est ˆf n u) â x) + â 1 x)u x) âpx) u x) p. p! Au point x, où l on souhaite réaliser l estimation, on obtient : ˆf n x) â x). Attention, cet estimateur ne correspond pas à celui que l on obtient en 5), qui correspond à p c est l estimateur à noyau). Si p 1, on parle de régression linéaire locale. On peut expliciter la valeur de â x) à partir d un critère des moindres carrés pondérés : soit X x la matrice X 1 X 1 x... 1 x) p p! X 1 X 2 x... 2 x) p p! X x X n x... X n x) p p! Soit W x la matrice diagonale de i-ème élément sur la diagonale w i x). On a alors : w i x)y i a a 1 X i x)... a p p! X i x) p ) 2 Y X x a) W x Y X x a). Minimiser l expression ci-dessus conduit à l estimateur des moindres carrés pondérés : âx) X xw x X x ) 1 X xw x Y, et l estimateur par polynômes locaux au point x correspond à ˆf n x) â x), c est-à-dire au produit scalaire du vecteur Y avec la première ligne de la matrice X xw x X x ) 1 X xw x. On obtient le théorème suivant : THÉORÈME 6. L estimateur par polynômes locaux au point x est où lx) l 1 x),..., l n x)), avec e 1 1,,..., ). ˆf n x) l i x)y i lx) e 1X xw x X x ) 1 X xw x, E ˆf n x)) l i x)fx i ) Var ˆf n x)) σ 2 n l 2 i x).

8 8 Apprentissage non paramétrique en régression 6 Estimateurs par projection On se place dans le modèle Y i fx i ) + ε i, i 1,..., n. 6) Soit φ j, j 1) une base orthonormée de L 2 [, 1]). On se donne D 1 et on pose S D Vect{φ 1,..., φ D }. On note f D la projection orthogonale de f sur S D dans L 2 [, 1]) : où Il est naturel d estimer θ j par f D D f, φ j φ j, j1 θ j f, φ j ˆθ j 1 n En effet, si les X i sont déterministes, Eˆθ j ) 1 n 1 fx)φ j x)dx. Y i φ j X i ). fx i )φ j X i ), et si fφ j est régulière et les X i équirépartis sur [, 1], ceci est proche de θ j. Si les X i sont aléatoires, de loi uniforme sur [, 1], on a On introduit alors l estimateur ˆf D x) Eˆθ j ) θ j. D ˆθ j φ j x), j1 appelé estimateur par projection. Exemple de la base Fourier On note φ j, j 1) la base trigonométrique de L 2 [, 1]) : φ 1 x) 1 [,1], φ 2k x) 2 cos2πkx) k 1 φ 2k+1 x) 2 sin2πkx) k 1. On obtient pour tout D 1, l estimateur ˆf D x) 1 D Y i φ j X i )φ j x). n j1 ous allons énoncer les performances de l estimateur, lorsque la fonction de régression f appartient à une classe de fonctions périodiques, régulières. DÉFIITIO 7. Soit L > et β l + α avec l et α ], 1]. On définit la classe Σ per β, R) par { Σ per β, R) f C l [, 1]), j,..., l, f j) ) f j) 1), x, y [, 1], f l) x) f l) y) R x y α}. THÉORÈME 8. Dans le modèle Y i f i n ) + ε i, i 1,..., n, où les ε i sont i.i.d. de loi, σ 2 ), l estimateur ˆf D défini pour tout x [, 1] par : ˆf D x) 1 D Y i φ j X i )φ j x) n j1 avec D [nr 2 ) 1/1+2β) ], vérifie pour tout β > 1, R >, sup E f ˆf ) D f 2 2 Cβ, σ)r 2 f Σ per β,r) 2β 1+2β n 1+2β. ous introduisons, dans le chapitre suivant, la définition des bases d ondelettes, qui sont utilisées en particulier si la fonction à estimer est très irrégulière.

9 9 Apprentissage non paramétrique en régression 7 Bases d ondelettes et estimation par seuillage Dans ce chapitre, on s intéresse à l estimation de fonctions spatialement inhomogènes, c est-à-dire qui peuvent être très régulières dans certaines zones puis très irrégulières présentant des pics) dans certaines parties de l espace. Les bases d ondelettes sont des bases orthonormées, qui sont bien adaptées pour l estimation de fonctions de ce type. ous supposerons ici que les X i appartiennent à [, 1], mais nous traiterons également en TP des exemples en dimension 2 dans le cadre du traitement d images. 7.1 Bases d ondelettes Base de Haar La base de Haar est la base d ondelettes la plus simple. L ondelette père ou fonction d échelle) est définie par φx) 1 si x [, 1[, sinon. L ondelette mère ou fonction d ondelette) est définie par Pour tout j, k, on pose ψx) 1 si x [, 1/2], φ j,k x) 2 j/2 φ2 j x k), 1 si x ]1/2, 1]. ψ j,k x) 2 j/2 ψ2 j x k). THÉORÈME 9. Les fonctions φ, ψ j,k, j, k {,..., 2 j 1}) forment une base orthonormée de L 2 [, 1]). Il résulte de ce théorème que l on peut développer une fonction de L 2 [, 1]) dans cette base : fx) αφx) + 2 j 1 j k β j,k ψ j,k x). α 1 fx)φx)dx est appelé "coefficient d échelle" et les β j,k 1 fx)ψ j,kx)dx sont appelés "détails". On appelle approximation de f au niveau de résolution J la fonction J 1 f J αφx) + 2 j 1 j k β j,k ψ j,k x). Cette expression comporte 2 J coefficients. Comme l espace engendré par les fonctions φ, ψ j,k, j J 1, k 2 j 1) est l espace des fonctions constantes par morceaux sur les intervalles de longueur 1/2 J, c est-à-dire l espace engendré par les fonctions φ J,k, k 2 J 1), on a aussi f J où α J,k 1 fx)φ J,kx)dx. 2 J 1 k α J,k φ J,k x), La base de Haar est simple à définir, les fonctions sont à support compact, néanmoins cette base fournit des approximations qui ne sont pas régulières. Il existe d autres bases d ondelettes à la fois à support compact et régulières, par exemple les ondelettes de Daubechies voir Daubechies 1992) : Ten Lectures on wavelets). 7.2 Estimation d une fonction de régression avec des ondelettes Les ondelettes sont bien adaptées pour l analyse des signaux recueillis sur une grille régulière, dyadique. On les utilise en traitement du signal et de l image. On considère le modèle Y k f k ) + ɛ k, k 1,..., 2 J,

10 1 Apprentissage non paramétrique en régression On considère les 2 J premières fonctions d une base d ondelettes sur [, 1] : φ, ψ j,k, j J 1, k 2 j 1). On note W la matrice W 1 φ1/) ψ, 1/)... ψ J 1,2J 11/).... φi/) ψ, i/)... ψ J 1,2 J 1i/).... φ/) ψ, /)... ψ J 1,2J 1/) Dans le cas de la base de Haar, W est une matrice orthogonale la base est orthonormée pour le produit scalaire discret). On note W la transposée de W et ˆθ W Y, la tranformée en ondelettes du vecteur Y. Il s agit de l estimateur des moindres carrés de θ dans le modèle Y W θ + ε si W est orthogonale. Débruitage par approximation linéaire : On approxime la fonction de régression f par projection orthogonale de f sur V J : f J αφ + J 1 j 2 j 1 k β j,k ψ j,k, ce qui correspond à regarder seulement les 2 J premiers coefficients d ondelettes. Pour estimer f J, dans ˆθ, on ne garde que les 2 J premiers coefficients, les autres sont annulés, cela forme le vecteur noté ˆθ J, puis on reconstruit le signal débruité : Ŷ J W ) 1 ˆθJ. La fonction de régression f est alors estimée par ˆf J x) 1 φx), ψ, x),..., ψ J 1,2 J 1x))ˆθ J. ˆθ j,k 1 l1 ψ j,k l )Y l 1 l1 β j,k + ɛ l ψ j,k l )f l ) + ɛ l ˆf J x) ˆαφx) + J 1 j 2 j 1 k ˆβ j,k ψ j,k x) où ɛ l 1 l1, σ2 ψ j,k l )ɛ l ψj,k 2 l )). Dans le cas de la base de Haar, σ2 l1 ψ2 j,k l ) σ2. On peut reconstruire le signal à partir de sa transformée en ondelettes par la transformation inverse : l1 Y W ) 1 ˆθ. Y W ˆθdans le cas de la base de Haar. où ˆθ J ˆα, ˆβ j,k, j,... J 1, k,..., 2 j 1,,..., ). Il faut choisir le paramètre J de manière optimale. Débruitage par approximation non linéaire via le seuillage : La méthode de seuillage consiste à minimiser en θ R le critère pénalisé avec une pénalité de type l 1 : Cθ) Y W θ 2 + 2λ θ 1, avec θ 1 θ i. ous supposerons ici que la matrice W est orthogonale, ce qui permet de trouver une solution explicite. Cθ) Y 2 + W θ 2 2 Y, W θ + 2λ θ 1, Y 2 + θ 2 2θ W Y + 2λ θ 1.

11 11 Apprentissage non paramétrique en régression Minimiser Cθ) équivaut à minimiser en θ C θ) θ 2 2θ W Y + 2λ θ 1 2 θ i ˆθi + 2λ θ i + θi 2. Ceci est minimal si pour tout i, θ i est du même signe que ˆθ i. On a donc θ i ˆθi θ i ˆθ i. C θ) 2 θ i ˆθ i + 2λ θ i + Minimiser ce critère en θ équivaut à minimiser La solution est donc : ) 2 θ i ˆθ i λ) ˆθ i λ) 2. θ i ˆθ i λ)) 2. θ i ˆθ i λ si ˆθ i λ si ˆθ i λ θ i signeˆθ i ) ˆθ i λ)1 ˆθi λ. Il s agit du seuillage dit "doux" soft thresholding), on applique une fonction continue à ˆθ i. Le seuillage dur "soft thresholding") consiste à poser on reconstruit le signal débruité : θ i ˆθ i 1 ˆθi λ. Ỹ W θ. La fonction de régression f est estimée par ˆf x) 1 φx), ψ, x),..., ψ J 1,2J 1x)) θ. θ 2 i En notant θ α, β j,k, j,..., J 1, k,... 2 j 1 ), on obtient J 1 ˆf x) αφx) + 2 j 1 j k β j,k ψ j,k x). En pratique, il faut choisir le seuil λ, on prend généralement λ σ 2 log). avec On peut montrer que ˆθ W Y 1 l1 ψ j,k l )f l ) + ɛ l ɛ W ɛ, σ 2 I ). ) E sup 1 i ɛ i σ 2 log). Les coefficients qui sont inférieurs à σ 2 log) sont considérés comme du bruit et sont annulés. Ces méthodes de seuillages fournissent des estimateurs permettant d estimer des signaux très irréguliers notamment des fonctions avec des pics). 8 Modèles additifs généralisés Les méthodes d estimation présentées précédemment vont se heurter au fléau de la dimension. Sous certaines hypothèses de structure sur la fonction de régression, on peut contourner ce problème. ous allons nous intéresser ici à des fonctions de régression additives. ous nous plaçons dans le modèle Y i fx i ) + ε i, où les ε i sont i.i.d. centrées de variance σ 2, et les X i R d. ous supposons que la fonction de régression f est additive, c est-à-dire que fx i,1,..., X i,d ) α + f 1 X i,1 ) f d X i,d ).

12 12 Apprentissage non paramétrique en régression Pour assurer l unicité d une telle écriture, on impose que f j x j )dx j, j 1,..., d. R ous allons décrire dans ce chapitre une méthode d estimation des composantes de ce modèle additif, il s agit des modèles GAM Generalized Additive Models). ous supposerons que chacune des fonctions unidimensionnelles est estimée à l aide de Splines comme dans la section 3.2. On introduit alors le critère pénalisé : Critα, f 1, f 2,..., f p ) + Y i α d λ j j1 d f j X i,j ) j1 f j ) 2 x j )dx j, où les λ j sont des paramètres de régularisation. On peut montrer que la solution de la minimisation de ce critère est un modèle de additif de splines cubiques, chaque fonction ˆf j étant un spline cubique de la variable x j, dont les nœuds correspondent aux valeurs différentes des X i,j, i 1,... n. Pour garantir l unicité du minimiseur, on impose les contraintes j 1,..., d, f j X i,j ). Sous ces conditions, on obtient ˆα n Y i/n, et si la matrice des variables d entrées X i,j n est pas singulière, on peut montrer que le critère est strictement convexe, et admet donc un unique minimiseur. L algorithme suivant, appelé algorithme de backfitting, converge vers la solution : Algorithme de backfitting pour les modèles GAM : 1. Initialisation : ˆα n Y i/n, ˆf j j. 2. Pour l 1 à iter Pour j 1 à d 2 ˆf j minimise Y i ˆα ˆf k X i,k ) f j X i,j ) k j ˆf j : ˆf j 1 n n ˆf j X i,j ). 2 + λ j Arrêt lorsque toutes les fonctions ˆf j sont "stabilisées". f j ) 2 x j )dx j, Le même algorithme peut être utilisée avec d autres méthodes d ajustement que les splines : estimateurs par polynômes locaux, à noyaux, par projection.. Les modèles additifs généralisés sont une extension des modèles linéaires, les rendant plus flexibles, tout en restant facilement interprétables. Ces modèles sont très largement utilisés en modélisation statistique, néanmoins, en très grande dimension, il est difficile de les mettre en œuvre, et il sera utile de les combiner à un algorithme de sélection pour réduire la dimension). 9 Kernel Regression Least Square Un exemple élémentaire de machine à noyau. L objectif est ici de présenter une méthode qui fournit des prédicteurs non linéaires. Le point commun avec les méthodes présentées précédemment est qu il s agit d une méthode de régularisation basée sur un critère des moindres carrés pénalisés. On note X i, Y i ) 1 i n les observations, avec X i R p, Y i R. On se donne un noyau k défini sur R p, symétrique, semi-défini positif : kx, y) ky, x); c i c j kx i, X j ). i,j1 Exemples de noyaux sur R p : Linéaire : kx i, X j ) X i X j X i, X j Polynomial : kx i, X j ) X i X j + 1) d

13 13 Apprentissage non paramétrique en régression Gaussien : Xi X j 2 ) kx i, X j ) exp. On cherche un prédicteur de la forme fx) c j kx j, x), c R n. On note K la matrice définie par K i,j kx i, X j ). La méthode consiste à minimiser pour f de la forme ci-dessus le critère des moindres carrés pénalisés : Y i fx i )) 2 + λ f 2 K, où f 2 K σ 2 c i c j kx i, X j ). i,j1 De manière équivalente, on minimise pour c R n le critère La solution est explicite : On obtient le prédicteur Y Kc 2 + λc Kc. ĉ K + λi n ) 1 Y. ˆfx) ĉ j kx j, x). j1 Ŷ Kĉ. Avec le noyau correspondant au produit scalaire, on retrouve un estimateur linéaire : K XX, ĉ XX + λi n ) 1 Y, ˆfx) ĉ j X j, x. j1 La méthode fournit des estimateurs non linéaires pour les noyaux polynomiaux ou gaussiens par exemple. Un intérêt important de la méthode précédente est la possibilité de généralisation à des prédicteurs X i qui ne sont pas nécessairement dans R p mais qui peuvent être de nature complexe graphes, séquence d AD..) dès lors que l on sait définir un noyau kx, y) symétrique et semi-défini positif agissant sur ces objets. Ceci fait appel à la théorie des RKHS Reproducing Kernel Hilbert Spaces ou Espaces de Hilbert à noyau reproduisant. 1 Arbres de régression CART Les méthodes basées sur les arbres reposent sur une partition de l espace des variables d entrée, puis on ajuste un modèle simple par exemple un modèle constant) sur chaque élément de la partition. On suppose que l on a un échantillon de taille n : X i, Y i ) 1 i n avec X i R d et Y i R. L algorithme CART permet de définir, à partir de l échantillon d apprentissage, une partition automatique de l espace des variables d entrées X i. Supposons que l espace où varient les X i soit partitionné en M régions, notées R 1,... R M. On introduit la classe F des fonctions constantes par morceaux sur chacune des régions : M F {f, fx) c m 1 x Rm }. m1 L estimateur des moindres carrés de la fonction de régression f sur la classe F minimise le critère M Y i fx i )) 2, m1 parmi les fonctions f F. La solution est ˆfx) M ĉ m 1 x Rm, m1 où ĉ m est la moyenne des observations Y i pour lesquelles X i R m. Pour construire la partition, CART procède de la manière suivante : étant donné

14 14 Apprentissage non paramétrique en régression une variable de séparation X j) et un point de séparation s, on considère les demi-espaces R 1 j, s) {X X 1),..., X d) )/X j) s} et R 2 j, s) {X/X j) > s}. La variable de séparation X j) et un point de séparation s sont choisis de manière à résoudre min [ Y i ĉ 1 ) 2 + Y i ĉ 2 ) 2 ]. j,s i,x i R 1j,s) i,x i R 2j,s) Ayant déterminé j et s, on partitionne les données en les deux régions correspondantes, puis on recommence la procédure de séparation sur chacune des deux sous-régions, et ainsi de suite sur chacune des sous-régions obtenues. La taille de l arbre est un paramètre à ajuster, qui va gouverner la complexité du modèle : un arbre de trop grande taille va conduire à un sur-ajustement trop grande variance), au contraire un arbre de petite taille va mal s ajuster à la fonction de régression biais trop élevé). Il est donc nécessaire de choisir une taille "optimale" de manière adaptative à partir des observations. La stratégie adoptée consiste à construire un arbre de grande taille, puis à l élaguer en introduisant un critère pénalisé. On dira que T est un sous-arbre de T si T peut être obtenu en élaguant T, c est-à-dire en réduisant le nombre de nœuds de T. On note T le nombre de nœuds terminaux de l arbre T et R m, m 1,... T, la partition correspondant à ces nœuds terminaux. On note m le nombre d observations pour lesquelles X i R m. On a donc et on introduit le critère C λ T ) ĉ m 1 m T m1 i,x i R m Y i, i,x i R m Y i ĉ m ) 2 + λ T. Pour tout λ, on peut montrer qu il existe un unique arbre minimal T λ qui minimise le critère C λ T ). Pour trouver l arbre T λ, on supprime par étapes successives le nœud interne de l arbre T qui réduit le moins le critère m i,x i R m Y i ĉ m ) 2. Ceci donne une succession de sous-arbres, dont on peut montrer qu elle contient l arbre T λ. Le paramètre de régularisation λ doit à son tour être calibré pour réaliser un bon compromis entre le biais et la variance de l estimateur ainsi obtenu, ou de manière équivalente entre un bon ajustement aux données et une taille pas trop importante pour l arbre. La méthode de validation croisée, décrite en annexe, peut être utilisée. Annexe : Choix d un paramètre de lissage par validation croisée Dans le cas des estimateurs à noyaux, et pour les estimateurs par polynômes locaux, on doit choisir la fenêtre h ; pour les estimateurs constants par morceaux ou polynômes par morceaux), ainsi que pour les estimateurs par projection, on doit choisir un paramètre D nombre de morceaux de la partition ou dimension de l espace de projection sur lequel on réalise l estimation), pour les arbres CART, on doit choisir le paramètre λ de la procédure d élaguage. Dans ce chapitre, nous allons décrire la méthode de validation croisée, qui est une méthode possible pour choisir ces paramètres, ce qui correspond à sélectionner un estimateur dans une collection d estimateurs. otons λ le paramètre à choisir. Soit ˆfn,λ l estimateur de la fonction de régression f associé à ce paramètre λ. On considère l erreur quadratique moyenne : ) 1 Rλ) E n ˆf n,λ X i ) fx i )) 2. Idéalement, on souhaiterait choisir λ de manière à minimiser Rλ), mais cette quantité dépend de la fonction inconnue f. Une première idée est d estimer Rλ) par l erreur d apprentissage : 1 n Y i ˆf n,λ X i )) 2, mais cette quantité sous-estime Rλ) et conduit à un sur-ajustement. Ceci est dû au fait que l on utilise les mêmes données pour construire l estimateur ˆf n,λ

15 15 Apprentissage non paramétrique en régression qui est construit pour bien s ajuster à l échantillon d apprentissage) et pour estimer l erreur commise par cet estimateur. Pour avoir une meilleure estimation du risque, on doit construire l estimateur du risque avec des observations qui n ont pas été utilisées pour construire l estimateur ˆf n,λ. Idéalement, si on avait assez d observations, on pourrait les séparer en un échantillon d apprentissage et un échantillon test. Ce n est généralement pas le cas, et on souhaite utiliser l ensemble des données d apprentissage pour la construction de l estimateur. On va alors avoir recours à la validation croisée. On partitionne l échantillon d apprentissage en V blocs, notés B 1,... B V, de tailles à peu près identiques. v) Pour tout v de 1 à V, on note ˆf n,λ l estimateur obtenu en supprimant de l échantillon d apprentissage les données appartenant au bloc B v. DÉFIITIO 1. On définit le score de validation croisée V -fold par : ˆf vi)) CV ˆRλ) 1 Y i ˆf vi)) n,λ X i )) 2, où n,λ est l estimateur de f obtenu en enlevant les observations du bloc qui contient l observation i. Le principe de la validation croisée est de choisir une valeur ˆλ de λ qui minimise la quantité ˆRλ). Un cas particulier correspond à la validation croisée leave-one-out, obtenue quand on considère n blocs, chacun réduits à une observation. DÉFIITIO 11. par : où Le score de validation croisée leave-one-out est défini CV ˆRλ) 1 n Y i ˆf i) n,λ X i)) 2, ˆf i) n,λ est l estimateur de f obtenu en enlevant l observation X i, Y i ). L idée de la validation croisée leave-one-out vient du calcul suivant : EY i i) ˆf n,λ X i)) 2 i) ) EY i fx i ) + fx i ) ˆf n,λ X i)) 2 ) σ 2 + EfX i ) ˆf i) n,λ X i)) 2 ) σ 2 + EfX i ) ˆf n,λ X i )) 2 ). On obtient donc E ˆRλ)) σ 2 + Rλ). Le calcul de ˆRλ) peut s avérer long, mais dans certains cas, il n est pas nécessaire de recalculer n fois un estimateur de la fonction de régression. Pour la plupart des méthodes traitées dans ce chapitre, l estimateur correspond à un algorithme de moyennes locales, c est-à-dire est de la forme ˆf n,λ x) Y j l j x), j1 avec n j1 l jx) 1, et on peut montrer que avec ˆf i) n,λ x) n j1 l i) j x) si j i Y j l i) j x), l j x) k i l si j i. kx) THÉORÈME 12. Sous les hypothèses ci-dessus concernant l estimateur, le score de validation croisée leave-one-out est égal à : CV ˆRλ) 1 n Y i ˆf ) 2 n,λ X i ). 1 l i X i ) On trouve également dans les logiciels une définition légèrement différente : DÉFIITIO 13. quantité : On appelle score de validation croisée généralisée la GCV λ) 1 n où ν/n n l ix i )/n. Y i ˆf ) 2 n,λ X i ), 1 ν/n

16 16 Apprentissage non paramétrique en régression Dans cette définition, l i X i ) est remplacé par la moyenne des l i X i ). En pratique, les deux méthodes donnent généralement des résultats assez proches. En utilisant l approximation 1 x) x pour x proche de, on obtient : GCV λ) 1 n Y i ˆf n,λ X i )) 2 + 2νˆσ2 n, où ˆσ 2 1 n n Y i ˆf n,λ X i )) 2. Cela correspond au critère C p de Mallows.

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Économetrie non paramétrique I. Estimation d une densité

Économetrie non paramétrique I. Estimation d une densité Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Stéphane Chrétien & Franck Corset Université de Franche-Comté, UMR6623, Département Mathématiques 16 route

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure

Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Estimation et modélisation de dépendance dans des modèles de survie bivariés en présence de censure Svetlana Gribkova, Olivier Lopez Laboratoire de Statistique Théorique et Appliquée, Paris 6 4 Mars 2014

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Transformée de Fourier discrète.

Transformée de Fourier discrète. Université Bordeaux Transformée de Fourier discrète. Préliminaire : Téléchargement de Wavelab Wavelab est une toolbox matlab, c est à dire un ensemble de programmes matlab élaborés par une équipe de l

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail