Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Dimension: px
Commencer à balayer dès la page:

Download "Une comparaison de méthodes de discrimination des masses de véhicules automobiles"

Transcription

1 p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA

2 Enquêtes en clientèle dans l automobile Dimensionnement fiabiliste des structures automobiles enquêtes en clientèle. Mesures d accélérations et de vitesse. La route est inconnue modélisation dynamique impossible. p.2/34

3 p.3/34 Identification de la classe de masse acceleration (m/s 2 ) m2 5% m2 = 331 kg m2 2% acceleration (m/s 2 ) m2 5% m2 = 331 kg m2 2% time (sec.) expl. de signaux time (sec.) (zoom) Un problème type : identification de la classe de masse d un véhicule à partir des signaux mesurés. Puis, identification des efforts transmis, calcul en fatigue des pièces,....

4 p.4/34 Données expérimentales 4 minutes d enregistrement sur un circuit routier pour trois masses, et. Mesures des accélérations verticales aux 4 pivots de roues accélérations longitudinales, transverses et verticales au centre de gravité mesures de vitesses longitudinales.

5 p.5/34 Identification de systèmes x méthode f(;w) expériences nouveau w f(x;w) optimiseur m distance et connus à travers une base d expériences de taille finie Avantages : Seules les entrées et sorties sont nécessaires (utilisable sans modèle physique). Offre un cadre probabiliste à la modélisation. Une fois identifié, la méthode (classeur ici) est d exécution rapide..

6 p.6/34 Identification de systèmes (2) Mais : Nécessité d une base expérimentale importante. Interprétation physique indirecte : choix des entrées et de la structure du modèle. L. Ljung, System identification: theory for the user, Prentice Hall, G. Saporta, Probabilités, analyse des données et statistique, Technip, 199. R. O. Duda, P. E. Hart et D. G. Stork, Pattern classification, John Wiley and Sons, 2.

7 p.7/34 Principe de la discrimination par masses Plus de 1 points de mesures à traiter pour estimer la masse trop de paramètres pour une identification directe. Les mesures sont traitées par intervalles de durée. signaux masses intervalle i-1 intervalle i intervalle i1 M i-1 choix des variables explicatives discrimination M i M i1 cumul (règle du plus grand nombre de votants) M^

8 p.8/34 Cumul des intervalles La masse finale associée aux mesures est celle la plus représentée dans les intervalles. Si la prob. de succès sur 1 intervalle succès cumulée croît rapidement avec., la prob. de 1 prob. de succès cumulée.8.6 p=.5 p=.6 p=.7 p= nb. d intervalles

9 F ;! 1H G $#" * : # p.9/34 Variables d entrées Les 4 premiers moments statistiques, (vit. uniquement) &(' % &()$ 2 1 / #,.-, La moyenne des minima et maxima des signaux, chaque extremum étant relatif à un horizon de L énergie du signal sur la plage de fréquence <=?> BC Les moments relatifs d ordre 1 à 4 de la DSP,,. BC / <=?> E D / 7 signaux d accélérations et 1 de vitesses, variables d entrées potentielles. 2 1, 81%'9., 763 # 543 et

10 p.1/34 Des optimisations à 4 niveaux On cherche le meilleur jeu [variables d entrées / classeur] pour identifier la masse. Il y a 4 niveaux d optimisation : 1. Choix des variables explicatives (définition de l espace de recherche). 2. Choix d un critère de discrimination (d une méthode ou classeur). 3. Choix d un niveau de complexité du classeur. 4. Choix des paramètres (autres que ceux qui contrôlent la complexité).

11 p.11/34 Complexité et variance d un classeur complexité : taille de l espace des. f* f* f* f* x g faible complexité forte complexité x g régularisation : stabilisation de l espace des solutions par introduction d a priori. variance : mesure quadratique de la dépendance de à la base expérimentale. x o x o fonction génératrice g faible variance forte variance I x o

12 O L M N p.12/34 Contrôle de complexité Contrôle de la structure de polynôme.. Expl. : choix du degré d un Régularisation : ajouter un terme idépendant de l identification du système, dans distance KJ Utilisation d une erreur de validation : les données sont séparées en un ensemble d apprentissage qui sert à règler et un ensemble de validation qui sert à calculer l erreur. But : s affranchir du biais introduit par la taille finie des données, ne pas apprendre le bruit. Validation croisée.,

13 p.13/34 Contrôle de complexité (2) Exemple d utilisation d erreur de validation : arrêt prématuré dans les réseaux de neurones Réseau de Neurones 2 Erreur d Apprentissage Erreur de Validation Erreur Quadratique Moyenne Nb d itérations le réseau de la troisième itération est utilisé.

14 p.14/34 Choix de l espace de recherche 1. Analyse discriminante. 2. Sélection de variables. 3. (Choix de l intervalle de traitement ).

15 G P & W V/ /U Y Y W Z Z # W # # # Y D \ # \ # Analyse discriminante (Choix de l espace de recherche) Recherche de,, nouvelles variables, combinaisons linéaires des, qui séparent en projection les classes observées. Soient, et 4 la mat. de cov. intraclasses, R 7S /U T > la mat. de cov. interclasses, la mat. de cov. totale,. YJ V/ X W V VU V VU 4> Q.- 4 V/ /U V/ /U 4 /- 4 Trouver interclasse, axes WY[# qui maximisent, après projection, l inertie et minimisent l inertie intraclasse,. D# # 6 D# DZ où M est une métrique ( ). Z^] p.15/34

16 # _ p.16/34 Analyse discriminante (2) (Choix de l espace de recherche) Les axes discriminants sont les vecteurs propres associés aux plus grandes valeurs propres de _# # YZ] Représentation des données dans R 3 Classe 1 Classe 2 Classe Représentation des données dans l espaces des axes discriminants Classe 1 Classe 2 Classe z V y x V 1

17 a baaz a ` ` ` ` Sélection de variables (Choix de l espace de recherche) Pour connaître les variables les plus pertinentes et réduire la complexité des classeurs. L évaluation d une sélection par apprentissage est trop coûteuse. On minimise le de Wilks,. 2 méthodes sont comparées. Heuristique d énumération : 1. Sélectionner la variable parmi les dont la suppression induit la plus grande diminution de. 2. La supprimer des, recommencer si seuil. solution peut être sous-optimale, méthode peu coûteuse. Algorithme évolutionnaire : sous-ensembles de7 ` optimisation globale coûteuse. p.17/34

18 c p.18/34 Méthodes de discrimination Elles sont caractérisées par le critère qu elles utilisent pour apprendre à classer les exemples. Maximisation de marges entre classes : machines à supports vectoriels (MSV). Minimisation d erreur de classement : classeurs Bayésiens. Discrimination par fenêtres de Parzen. Discrimination par régression et seuillage : régression par moindres carrés (linéaire ou neuronale) et -SV régression.

19 Classement par Marge maximale : Machines à Supports Vectoriels t z jk k { g g p.19/34 x Learning Data and Margin Les MSV créent une frontière de décision qui maximise les distances entre la frontière et les points les plus proches de chaque classe. Frontière de décision linéaire : f ej d x1 Maximisation de la marge h h Apprentissage : oqpn i l m r rs k uv wyx g i, zcard

20 t } p.2/34 MSV, cas non séparable Lorsque les classes ne sont pas séparables, on introduit des variables d écart et un paramètre de régularisation. Apprentissage : x Learning Data and Margin ξ oqpn i l ~~ ~~ m ˆ k uv wyx r rs ƒ > x card x1 Un problème quadratique, résolu sous sa forme duale (de Wolfe) par un algorithme QP avec stratégie de contraintes actives.

21 Œ d Œ Œ Š U p.21/34 Extensions aux MSV non-linéaires Transformation de l espace des données,, puis on applique l algorithme linéaire aux données transformées. Grace à la forme duale, les données apparaissent que sous la forme de produits scalaires, noyau (condition d existence par Mercer). noyau Gaussien de largeur noyau polynômial de degré Contrôle de complexité : C, noyau (,, Œ \e \ Ž Ž5 ]' \ 1 \ej d \ ou ).

22 Minimisation d erreur de classement : méthodes Bayésiennes C / / p.22/34 si a / C a ce qui est implique, si C a C a La discrimination par fenêtres de Parzen et le seuillage après régression sont des méthodes Bayésiennes.

23 Q w uš Q Q p.23/34 Discrimination par fenêtres de Parzen Une méthode d histogrammes 2 x 1 3 Densité de Probabilité a posteriori des classes Classe 1 Classe 2 Classe 3 lissés dont les barres sont centrées sur les données V V = la fréquence d apparition de la classe dans. U 1 ŸT?ž 1 Q a fenêtre Gaussienne, paramètre d étalement.

24 Discrimination par régression et seuillage ] N c ] p.24/34 La masse du véhicule est une variable fonction de continue, et physiquement pertinente!, scalaire, régression 6 classe de masse. Les seuils sont ajustés par minimisation du taux d erreur sur la base d apprentissage (énumération de seuils sur une grille). Différentes méthodes en fonction de la construction de : moindres carrés régularisés ou -SV régression.

25 Régressions par moindres carrés régularisés L ²Q I p.25/34 est un réseau de neurones ou une fonction linéaire. L estimation de la masse est où est solution de 5± ± ª ««card I J ± ³ U ²Q ³ Puisque peut être non linéaire (réseau de neurones), on effectue la minimisation avec l algorithme de Levenberg-Marquardt. Contrôle de complexité :, contrôle de la structure de (linéaire ou neuronale, combien de neurones dans la couche cachée), arrêt prématuré.

26 Régressions par Machines à Supports Vectoriels Ð c ÑÌ c ã Ë p.26/34 Les données doivent au plus être à de la fonction, qui doit être la plus plate possible. f ej d y Support Vector Machine Regression Espace des caractéristiques Æ Ê ÌÎÍ É ÈÇ h h Æ Å Â ÂÄÃÀ à À Á ¼¾½ KÀ» ÑÌ Ò ] ÑÌ ÒÚÖÇ Ó Ô Õ µ µ µ µ µ µ µ µ µ µ ¹ µ µ µ µ µ µ µ µ µ µ º sous les contraintes, Ó Ô Õ ÛÜ ƒ ƒì Ï Ì card ÇÙ Ø ÒyÖ ] ÇÙ ÑÌ ÒØ Ð ] àâá ß Ý.Þ card ƒ Ì ƒï Ì ³ ƒï Ì ²ƒ ÇÌ x Le problème est équivalent aux MSV en classement (même techniques pour le passage au non-linéaire, mêmes algorithmes). Contrôle de complexité : C, noyau ( ou ),.

27 ø î Ý æ é ä p.27/34 Expériences numériques : contrôle de complexité et calcul des erreurs - Les signaux temporels possèdent une certaine corrélation mesure réaliste de l erreur par validation croisée : plusieurs bases et, qui respectent la chronologie. - La plupart des paramètres exerçant un contrôle sur la complexité des méthodes sont ajustés par minimisation de l erreur de validation croisée. Expl. du des fenêtres de Parzen : åçæ è æ Pour tous les, choisir. 1.1 Pour tous les, apprentissage sur, calcul de l erreur sur. 1.2 Erreur est la moyenne des Apprentissage sur. 4. Calcul de l erreur sur,. ïì îì ñ ðêì ôõ òó êþ î ¼¾½Ì êì ñ ðêì ï ëö û úïþ ùëö ëíì îì Nb d erreur en validation σ

28 ü ü Ð æ æ ü ü î î î î î ü æ ü ü æ ü î ü Ì Variables explicatives pertinentes Unité Dizaine CdgV Vitesse Vitesse Vitesse CdgV Vitesse PivArg PivArg CdgV üþ æ Ô ü ÿ ü ÿ üý ü þ ü ý Ì 1 PivAvg Vitesse CdgV CdgV PivAvd PivAvd PivArd PivArd CdgL CdgL ü ý üþ üþ ü ý üþ ü ý üÿ æ Ô 2 CdgL PivAvg PivArg CdgT CdgT Vitesse PivAvd PivArd PivArd PivArg üþ ü ÿ æ Ô æ Ô 3 PivAvd Vitesse CdgT CdgT CdgT PivArd Vitesse PivAvg PivAvg CdgV ü ý Ì Ì 4 Vitesse CdgV PivArg PivAvd PivArd PivAvg PivAvg PivAvg PivArg PivArg üþ üý æ Ô æ Ô Ì 5 PivAvd CdgL CdgL CdgT CdgT CdgV CdgT CdgL Vitesse... ü ÿ ü þ ü ÿ Ì Sélection par heuristique énumérative, 55 variables pour le seuil de [CdgV et Vitesse] / sont les variables prépondérantes. L algorithme évolutionnaire trouve une solution avec 49 variables. choisit, p.28/34

29 p.29/34 Comparaisons de méthodes 5 méthodes sont comparées : Analyse discriminante fenêtres de Parzen. Analyse discriminante MSV classement (noyau Gaussien). MSV en classement (noyau Gaussien). Régression neuronale seuillage. S1 = 1 neurone linéaire, S2 = 7 neurones sigmoïdaux 1 neurone linéaire, S3 = 8 neurones sigmoïdaux. MSV en régression (noyau polynomial) seuillage.

30 p.3/34 Exemples de frontières de décisions Régression neuronale (S2) seuillage. 81 variables d entrées. Taux de classification correcte 51.3% 2 Réseau de Neurones 2 : Apprentissage Masse réelle Masse estimée 2 Réseau de Neurones 2 : Test Masse réelle Masse estimée Masse Normalisée 1.5 Masse Normalisée Données apprentissage Données test

31 p.31/34 Exemples de frontières de décisions (2) 2 Régression MSV (noyau polynomial) seuillage. 81 variables d entrées. Taux de classification correcte 68.6%. Regression MSV : Apprentissage Masse réelle Masse Estimée 2 Regression MSV : Test Masse réelle Masse Estimée Masse Normalisée 1.5 Masse Normalisée Données apprentissage Données test

32 p.32/34 Exemples de frontières de décisions (3) 4 3 Classification par Analyse Discriminante Noyau de Parzen: Test Classe 1 Classe 2 Classe 3 Frontières de décision 4 3 Classification par Analyse Discriminante et MSV: Test Classe 1 Classe 2 Classe 3 Frontières de décision 2 2 Axe de Projection Axe de Projection Axe de Projection 1 Analyse discriminante fenêtres de Parzen, 81 variables d entrées, taux de classification correcte 74.7% Axe de Projection 1 Analyse discriminante SVM Gaussien, 81 variables d entrées, taux de classification correcte 74.6%.

33 p.33/34 Comparaison de méthodes (2) Méthodes B. inf. moy. B. sup. Analyse Discriminante et Parzen Analyse Discriminante et MSV MSV à noyau gaussien Réseaux de neurones Réseaux de neurones Réseaux de neurones MSV à noyau polynomial Pourcentage de succès de classement pour différentes stratégies en utilisant les 49 variables selectionnées par l algorithme évolutionnaire. Les bornes sont l intervalle de confiance à 8%.

34 p.34/34 Conclusions La meilleure méthode : analyse discriminante MSV à noyau Gaussien en classement, avec plus de 8% de succès en classement. Importance du pré-traitement des variables par analyse discriminante. Cet effet ne s explique pas seulement par la réduction de dimension des variables d entrées (car AD fait mieux que la sélection de variables), mais par la prise en compte conjointe des dispersions des données. Parmi la régression seuillage, la régression par MSV donne de bons résultats (71.8% de succès), meilleurs que la régression linéaire ou neuronale. Les signaux les plus importants sont l accélération verticale au cdg et la vitesse. Les traitements les plus importants sont les moments spectraux relatifs.

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Chapitre 6 Apprentissage des réseaux de neurones et régularisation

Chapitre 6 Apprentissage des réseaux de neurones et régularisation Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

S y l l a b u s RECONNAISSANCE DES FORMES : CLASSIFICATION ET REGROUPEMENT IFT-64321 A

S y l l a b u s RECONNAISSANCE DES FORMES : CLASSIFICATION ET REGROUPEMENT IFT-64321 A RECONNAISSANCE DES FORMES : CLASSIFICATION ET REGROUPEMENT IFT-64321 A S y l l a b u s Jean-Marie Beaulieu Département d'informatique Téléphone: 656-2131 poste 2564 Courriel: jean-marie.beaulieu@ift.ulaval.ca

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Classification dans des bases de données par des méthodes de datamining

Classification dans des bases de données par des méthodes de datamining Classification dans des bases de données par des méthodes de datamining Yawo Eli Amesefe Guillaume Cernier Christophe Labrousse Introduction L utilisation généralisée de l informatique ces dernières dizaines

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012 Extraction et analyse des mesures haut-débit pour l identification de biomarqueurs : problèmes méthodologiques liés à la dimension et solutions envisagées EA 2415 Epidémiologie, Biostatistique et Santé

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Une pénalité de groupe pour des données multivoie de grande dimension

Une pénalité de groupe pour des données multivoie de grande dimension Une pénalité de groupe pour des données multivoie de grande dimension Laurent Le Brusquet 1, Arthur Tenenhaus 1,2, Gisela Lechuga 1, Vincent Perlbarg 2, Louis Puybasset 3 & Damien Galanaud 4. 1 Laboratoire

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise.

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise. décembre 8 Yann DUCHEMIN Citroën C4-Coupé, Entreprise Etude Annuelle Analyse expérimentale et données constructeur Au terme d une année d utilisation d un véhicule de marque Citroën, et de type C4- coupé

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études FacultéPolytechnique Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études Stijn Coorevits Promoteurs : Prof. O. Deblecker Ir C.

Plus en détail

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test 11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex 1 T P-i. oc i LAIVUTS 1 J-13 October SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG U. E. R de l'université Paris-Sud Institut National de

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Données biologiques haut-débit :

Données biologiques haut-débit : Données biologiques haut-débit : problèmes méthodologiques liés à la dimension et utilisation des algorithmes génétiques Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Analyse des erreurs de mesure lors d une opération de soudage ; Définition d une instrumentation optimale.

Analyse des erreurs de mesure lors d une opération de soudage ; Définition d une instrumentation optimale. Analyse des erreurs de mesure lors d une opération de soudage ; Définition d une instrumentation optimale. Morgan DAL 1, Philippe LE MASSON 1, Michel DUMONS 1, Didier LAWRJANIEC 2 1 LIMATB, Université

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Prestations de conseil en SRM (Storage Ressource Management)

Prestations de conseil en SRM (Storage Ressource Management) Prestations de conseil en SRM (Storage Ressource Management) Sommaire 1 BUTS DE LA PRESTATION 2 PRESENTATION DE LA PRESTATION 3 3 3 ETAPE 1 : ELEMENTS TECHNIQUES SUR LESQUELS S APPUIE LA PRESTATION DE

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 commun aux spécialités (MSIR, IDL, TechMed) Type d'u.e. (1) OP Intitulé et descriptif des U.E. GENIE LOGICIEL AVANCE Gestion de projets. Qualité logicielle.

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires M. Bergounioux & E. Trélat MAPMO Université d Orléans Journées du GDR - MOA Porquerolles 19-21 Octobre

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Classe de première L

Classe de première L Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

2.1 Rapport scientifique concis

2.1 Rapport scientifique concis 2.1 Rapport scientifique concis On se contentera de donner les directions générales dans lesquelles les membres du Lamav ont obtenu des résultats durant les quatre dernières années. Pour plus de détails,

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE Jean-Paul Valois, Claude Mouret & Nicolas Pariset Total, 64018 Pau Cédex MOTS CLEFS : Analyse spatiale, ACP, Lissage, Loess PROBLEMATIQUE En analyse multivariée,

Plus en détail

Infolettre #18 : Les graphiques avec Excel 2010

Infolettre #18 : Les graphiques avec Excel 2010 Infolettre #18 : Les graphiques avec Excel 2010 Table des matières Introduction... 1 Hourra! Le retour du double-clic... 1 Modifier le graphique... 4 Onglet Création... 4 L onglet Disposition... 7 Onglet

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ Infos Série M 200.U.003.05 encastrables pour installation à courants forts Série M W/P/ LSP pour montage sur rail normé BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW SY Compteurs horaires Voltmètres partiels

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail