Mesure agnostique de la qualité des images.

Dimension: px
Commencer à balayer dès la page:

Download "Mesure agnostique de la qualité des images."

Transcription

1 Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34

2 Sommaire 1 Introduction C. Charrier NR-IQA 2 / 34

3 Sommaire Introduction Évaluation de la qualité des images Les SSN Travaux antérieurs 1 Introduction C. Charrier NR-IQA 3 / 34

4 Évaluation de la qualité des images Les SSN Travaux antérieurs Algorithmes d évaluation de la qualité 1 Algorithmes avec référence (FR-IQA) fonction de similarité 2 Algorithmes avec référence réduite (RR-IQA) Seules certaines mesures globales de défauts sont conservées 3 Algorithmes sans référence (NR-IQA) Difficulté de mise en œuvre C. Charrier NR-IQA 4 / 34

5 Algorithmes d évaluation de la qualité 1 Algorithmes avec référence (FR-IQA) fonction de similarité Évaluation de la qualité des images Les SSN Travaux antérieurs 2 Algorithmes avec référence réduite (RR-IQA) Seules certaines mesures globales de défauts sont conservées 3 Algorithmes sans référence (NR-IQA) Difficulté de mise en œuvre Points communs entre les méthodes d évaluation 1 et 2 Besoin d une image de référence Concept d image parfaite mesure de fidélité à l image de référence dégradation visible par un observateur humain C. Charrier NR-IQA 4 / 34

6 Évaluation de la qualité des images Les SSN Travaux antérieurs Algorithmes d évaluation de la qualité 1 Algorithmes avec référence (FR-IQA) fonction de similarité 2 Algorithmes avec référence réduite (RR-IQA) Seules certaines mesures globales de défauts sont conservées 3 Algorithmes sans référence (NR-IQA) Objectif Difficulté de mise en œuvre Obtenir la meilleure prédiction au regard des résultats du jugement humain ( = DMOS) C. Charrier NR-IQA 4 / 34

7 Évaluation de la qualité des images Les SSN Travaux antérieurs Algorithmes d évaluation de la qualité 1 Algorithmes avec référence (FR-IQA) fonction de similarité 2 Algorithmes avec référence réduite (RR-IQA) Seules certaines mesures globales de défauts sont conservées 3 Algorithmes sans référence (NR-IQA) Objectif Difficulté de mise en œuvre Obtenir la meilleure prédiction au regard des résultats du jugement humain ( = DMOS) C. Charrier NR-IQA 4 / 34

8 Évaluation de la qualité des images Les SSN Travaux antérieurs Algorithmes d évaluation de la qualité sans référence Peu de travaux Quasiment exclusivement spécifiques aux distorsions Dégradation JPEG2000 / ringing [H.R. Sheikh et al., 2005 ; Z.M. Parvez et al., 2008] Dégradation JPEG / bloc [Z. Wang et al., 2002 ; X. Zhu et al., 2009] Dégradation de flou [X. Zhu et al., 2009 ; R. Ferzli et al., 2007] Calcul du score Cumul des dégradations Approche basée NN [C. Li and al., 2011 ; Jung et al, 2002 ; Tsoy et al, 2007] C. Charrier NR-IQA 5 / 34

9 Évaluation de la qualité des images Les SSN Travaux antérieurs Schéma générique d une métrique de qualité sans référence Blocs Flou Bruit masquage interdégradation cumul spatial et/ou fréquentiel Score Image dégradée Contours Artefacts C. Charrier NR-IQA 6 / 34

10 Évaluation de la qualité des images Les SSN Travaux antérieurs Schéma générique d une métrique de qualité sans référence Blocs Flou Bruit masquage interdégradation cumul spatial et/ou fréquentiel Score Image dégradée Contours Artefacts Sommation E = ( de Minkowski m n e(m, n) β) 1/β C. Charrier NR-IQA 6 / 34

11 Évaluation de la qualité des images Les SSN Travaux antérieurs Hypothèses liées à la sommation de Minkowski 1 La qualité d une image ne dépend pas des relations spatiales entre les pixels. 2 La qualité d une image ne dépend pas des relations entre le signal d origine et le signal dégradé. 3 La qualité d une image dépend exclusivement de l amplitude du signal d erreur. 4 Tous les pixels de l image ont la même importance visuelle. C. Charrier NR-IQA 7 / 34

12 Évaluation de la qualité des images Les SSN Travaux antérieurs Hypothèses liées à la sommation de Minkowski 1 La qualité d une image ne dépend pas des relations spatiales entre les pixels. 2 La qualité d une image ne dépend pas des relations entre le signal d origine et le signal dégradé. 3 La qualité d une image dépend exclusivement de l amplitude du signal d erreur. 4 Tous les pixels de l image ont la même importance visuelle. C. Charrier NR-IQA 7 / 34

13 Évaluation de la qualité des images Les SSN Travaux antérieurs Limites sommation de Minkowski (hypothèse 2) Signal test1 Signal test Signal test2 Signal erreur Signal erreur Erreur de Minkowski C. Charrier NR-IQA 8 / 34

14 Évaluation de la qualité des images Les SSN Travaux antérieurs Principe des SSN Caractéristiques du SVH ont été façonnées par leur grande facilié d adaptation au monde environnant (nombre et type de photorécepteur de la rétine induit par le processus de sélection naturelle) Images originales évoluent dans un sous-espace d un vaste espace vectoriel regroupant toutes les images possibles, Toute déviation d un modéle SSN est interprété comme une dégradation de l image originale associée. C. Charrier NR-IQA 9 / 34

15 Introduction Évaluation de la qualité des images Les SSN Travaux antérieurs Les statistiques de scènes naturelles NON OUI C. Charrier NR-IQA 10 / 34

16 Introduction Évaluation de la qualité des images Les SSN Travaux antérieurs Les statistiques de scènes naturelles NON OUI Images du monde réel C. Charrier NR-IQA 10 / 34

17 Évaluation de la qualité des images Les SSN Travaux antérieurs Intérêt pratique Compression [Kretzmer, 1952] Restauration d images Indexation, classification Statistiques du premier ordre Très variable d une image à l autre Peu informative sur la structure des images C. Charrier NR-IQA 11 / 34

18 Évaluation de la qualité des images Les SSN Travaux antérieurs Statistiques du second ordre Corrélaltion Spectre de puissance Invariances à l échelle Spectre de puissance : loi en 1/f a, a 2 Anisotropie ; lien aux catégories perceptives C. Charrier NR-IQA 12 / 34

19 Évaluation de la qualité des images Les SSN Travaux antérieurs Statistiques globales C. Charrier NR-IQA 13 / 34

20 Évaluation de la qualité des images Les SSN Travaux antérieurs Statistiques locales spectres prototyptiques C. Charrier NR-IQA 14 / 34

21 Évaluation de la qualité des images Les SSN Travaux antérieurs BLIINDS v1.0 Modélisation de quatre facteurs de vision par des critères statistiques dans le domaine de la DCT Modélisation de la distribution de ce vecteur à quatre attributs pour prédire la qualité Validation de l utilisation des SSN dans le domaine de la DCT Motivation : définition d une métrique agnostique 1 Dériver un modèle généralisé des SSN utilisant les coefficients DCT locaux 2 Transformer ensuite les paramètres du modèle en caractéristiques permettant de prédire la qualité des images. C. Charrier NR-IQA 15 / 34

22 Sommaire Introduction Schéma Les attributs 1 Introduction C. Charrier NR-IQA 16 / 34

23 Schéma Les attributs G-BLIINDS2 : Un modèle SSN généralisé Image Décomposition DCT locale Modèle gaussien généralisé Extraction de caractéristiques Souséchantillonnage filtrage passe-bas Modèle probabiliste Décomposition sur 3 niveaux Score de qualité C. Charrier NR-IQA 17 / 34

24 Schéma Les attributs G-BLIINDS2 : Un modèle SSN généralisé Image Décomposition DCT locale Modèle gaussien généralisé Extraction de caractéristiques Souséchantillonnage filtrage passe-bas Modèle probabiliste P X (x) = C α,ν exp( νq(x)) α où C α,ν,α,ν : constantes de normalisation, d échelle et de forme Score de qualité C. Charrier NR-IQA 17 / 34

25 Schéma Les attributs G-BLIINDS2 : Un modèle SSN généralisé α, ζ, ρ, ξ Image Décomposition DCT locale Modèle gaussien généralisé Extraction de caractéristiques Souséchantillonnage filtrage passe-bas Modèle probabiliste P X (x) = C α,ν exp( νq(x)) α où C α,ν,α,ν : constantes de normalisation, d échelle et de forme Score de qualité C. Charrier NR-IQA 17 / 34

26 Schéma Les attributs Paramètre de variation fréquentielle α Critère de gaussianité des blocs DCT 5 5 C. Charrier NR-IQA 18 / 34

27 Schéma Les attributs Paramètre de variation fréquentielle ζ ζ = σ X / µ X centre de la distribution des amplitudes des coefficients DCT dispersion des amplitudes des coefficients DCT Processus de normalisation, interprétable par analogie avec le comportement physiologique des neurones C. Charrier NR-IQA 19 / 34

28 Schéma Les attributs Le ratio d énergie des sous-bandes ρ Le ratio d énergie ρ des sous-bandes est alors défini comme suit avec R n = σ2 n 1 Le ratio d énergie des sous-bandes ξ ρ = R 2 + R 3 2 n 1 j<n σ2 j σn 2+ 1 n 1 j<n σ2 j, n [2, 3] Calcul des paramètres de variation fréquentielle ζ 1, ζ 2, ζ 3 sur les trois orientations ξ = var(ζ 1, ζ 2, ζ 3 ) C. Charrier NR-IQA 20 / 34

29 Introduction Schéma Les attributs Cartes des distorsions obtenues paramètre α paramètre ρ paramètre ζ paramètre ξ C. Charrier NR-IQA 21 / 34

30 Sommaire Introduction Apparatus Comparaisons 1 Introduction C. Charrier NR-IQA 22 / 34

31 Apparatus Comparaisons Apparatus Bases d apprentissage LIVE : 15 images originales avec leurs versions dégradées Bases de test 1 LIVE (sauf la base d apprentissage) 2 TID2008 Modélisation de la distribution de (X i, DMOS i ) X i = [x 1,, x n], n = 12 Vérité terrain DMOS i Protocole de comparison SROCC comme mesure de performance 1 méthode sans référence 5 méthodes avec référence : MS-SSIM, VIF, NQM, VSNR, PSNR. C. Charrier NR-IQA 23 / 34

32 Apparatus Comparaisons Panel d images de référence de la base LIVE C. Charrier NR-IQA 24 / 34

33 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test LIVE Métriques sans référence Dégradation G-BLIINDS2 BIQI 1 MS-SSIM VIF NQM VSNR PSNR JP2K JPEG Bruit blanc Flou gaussien Fast Fading Base entière A. K. Moorthy and A. C. Bovik, A Two-step Framework for Constructing Blind Image Quality Indices". IEEE Signal Processing Letters, pp , vol. 17, no. 5, May C. Charrier NR-IQA 25 / 34

34 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test LIVE Métriques sans référence Dégradation G-BLIINDS2 BIQI 1 MS-SSIM VIF NQM VSNR PSNR JP2K JPEG Bruit blanc Flou gaussien Fast Fading Base entière A. K. Moorthy and A. C. Bovik, A Two-step Framework for Constructing Blind Image Quality Indices". IEEE Signal Processing Letters, pp , vol. 17, no. 5, May C. Charrier NR-IQA 25 / 34

35 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test LIVE Métriques sans référence Métriques avec référence Dégradation G-BLIINDS2 BIQI 1 MS-SSIM VIF NQM VSNR PSNR JP2K JPEG Bruit blanc Flou gaussien Fast Fading Base entière A. K. Moorthy and A. C. Bovik, A Two-step Framework for Constructing Blind Image Quality Indices". IEEE Signal Processing Letters, pp , vol. 17, no. 5, May C. Charrier NR-IQA 25 / 34

36 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test LIVE Métriques sans référence Métriques avec référence Dégradation G-BLIINDS2 BIQI 1 MS-SSIM VIF NQM VSNR PSNR JP2K JPEG Bruit blanc Flou gaussien Fast Fading Base entière A. K. Moorthy and A. C. Bovik, A Two-step Framework for Constructing Blind Image Quality Indices". IEEE Signal Processing Letters, pp , vol. 17, no. 5, May C. Charrier NR-IQA 25 / 34

37 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test TID2008 Dégradation G-BLIINDS2 BIQI MS-SSIM VIF NQM VSNR PSNR Bruit gaussien Bruit couleur Bruit corrélé Bruit masqué Bruit haute freq Bruit impulsionnel Bruit quantification Flou gaussien Débruitage JPEG JPEG Transmission JPEG Transmission JPEG Bruit non eccentré Distorsions de bloc Décalage d intensité Chgt. contraste Base entière C. Charrier NR-IQA 26 / 34

38 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test TID2008 Dégradation G-BLIINDS2 BIQI MS-SSIM VIF NQM VSNR PSNR Bruit gaussien Bruit couleur Bruit corrélé Bruit masqué Bruit haute freq Bruit impulsionnel Bruit quantification Flou gaussien Débruitage JPEG JPEG Transmission JPEG Transmission JPEG Bruit non eccentré Distorsions de bloc Décalage d intensité Chgt. contraste Base entière C. Charrier NR-IQA 26 / 34

39 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test TID2008 Dégradation G-BLIINDS2 BIQI MS-SSIM VIF NQM VSNR PSNR Bruit gaussien Bruit couleur Bruit corrélé Bruit masqué Bruit haute freq Bruit impulsionnel Bruit quantification Flou gaussien Débruitage JPEG JPEG Transmission JPEG Transmission JPEG Bruit non eccentré Distorsions de bloc Décalage d intensité Chgt. contraste Base entière C. Charrier NR-IQA 26 / 34

40 Apparatus Comparaisons Mesure de corrélation de Spearman sur la base de test TID2008 Dégradation G-BLIINDS2 BIQI MS-SSIM VIF NQM VSNR PSNR Bruit gaussien Bruit couleur Bruit corrélé Bruit masqué Bruit haute freq Bruit impulsionnel Bruit quantification Flou gaussien Débruitage JPEG JPEG Transmission JPEG Transmission JPEG Bruit non eccentré Distorsions de bloc Décalage d intensité Chgt. contraste Base entière C. Charrier NR-IQA 26 / 34

41 Sommaire 1 Introduction C. Charrier NR-IQA 27 / 34

42 Qualité des données biométriques des empreintes Objectif : disposer d une méthode fiable de mesure de la qualité des empreintes. Image à noter C 1 C 2. C n score de qualité C. Charrier NR-IQA 28 / 34

43 Qualité des données biométriques des empreintes Objectif : disposer d une méthode fiable de mesure de la qualité des empreintes. Image à noter C 1 C 2. C n score de qualité Sélection des attributs C. Charrier NR-IQA 28 / 34

44 Qualité des données biométriques des empreintes Objectif : disposer d une méthode fiable de mesure de la qualité des empreintes. Image à noter C 1 C 2. C n Sélection des attributs score de qualité Indice de qualité Q = 1 A n i=1 α ic i C. Charrier NR-IQA 28 / 34

45 Sélection de 11 attributs G-BLIINDS2 Dix critères Quatre descripteurs SIFT Six descripteurs locaux sur des blocs de taille (statistiques d ordre 1, 2 et 5). Calcul des coefficients de pondération α i Q = 1 n α i C i A Optimisation par algorithme génétique i=1 génotype : vecteur à 11 individus {C i } 1 i 11 fonction d erreur : corrélation de Pearson avec les scores bozorth3 C. Charrier NR-IQA 29 / 34

46 Apparatus Introduction Utilisation de la base d empreinte FVC2002 DB3 (100 utilisateurs, 8 échantillons par utilisateur) Génération de distorsions par échantillon, soit images C. Charrier NR-IQA 30 / 34

47 Validation de l approche Comparaison avec NIST Fingerprint Image Quality (NFIQ). C. Charrier NR-IQA 31 / 34

48 Sommaire 1 Introduction C. Charrier NR-IQA 32 / 34

49 Utilisation des SSN dans le domaine de la DCT Extraction des caractéristiques d un modèle gaussien généralisé Calcul de la note finale par modèle probabiliste généralisé Questions ouvertes Extension au cas du maillage 3D Extension au domaine de la protection des images couleur (dimension colorimétrique), multispectrales, etc. C. Charrier NR-IQA 33 / 34

50 C. Charrier NR-IQA 34 / 34

Approche par marquage pour l évaluation de la qualité d image dans les applications multimédias

Approche par marquage pour l évaluation de la qualité d image dans les applications multimédias UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Approche par marquage pour l évaluation de la qualité d image dans les applications multimédias MÉMOIRE (INF6021) pour l obtention

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Développement de techniques de marquage d authentification pour la protection de données multimédias

Développement de techniques de marquage d authentification pour la protection de données multimédias Université du Québec en Outaouais Département d informatique et d ingénierie Développement de techniques de marquage d authentification pour la protection de données multimédias MÉMOIRE pour obtention

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Codage hiérarchique et multirésolution (JPEG 2000) Codage Vidéo. Représentation de la couleur. Codage canal et codes correcteurs d erreur

Codage hiérarchique et multirésolution (JPEG 2000) Codage Vidéo. Représentation de la couleur. Codage canal et codes correcteurs d erreur Codage hiérarchique et multirésolution (JPEG 000) Codage Vidéo Représentation de la couleur Codage canal et codes correcteurs d erreur Format vectoriel (SVG - Scalable Vector Graphics) Organisation de

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Optimisation de la compression fractale D images basée sur les réseaux de neurones Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A aoued@hotmail.com

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

PROJET. Département Image et Automatique. O. Déforges H. Guéguen

PROJET. Département Image et Automatique. O. Déforges H. Guéguen PROJET Département Image et Automatique O. Déforges H. Guéguen 1 Organisation du Département Image Automatique (O. Déforges H. Guéguen) (E5) Image (O. Déforges) (E6) Automatique des Systèmes Hybrides (H.

Plus en détail

L Algorithme de Kohonen appliqué a l'evaluation de la Sécurité d un Système d'energie Electrique. Gonzalo Joya. Dpto. Tecnología Electrónica

L Algorithme de Kohonen appliqué a l'evaluation de la Sécurité d un Système d'energie Electrique. Gonzalo Joya. Dpto. Tecnología Electrónica L Algorithme de Kohonen appliqué a l'evaluation de la Sécurité d un Système d'energie Electrique Gonzalo Joya ETSI Telecomucicación 29017 Málaga joya@dte.uma.es París, le 21 fevrier 2003 Plan 1. Estimation

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité

Plus en détail

Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur. Introduction. Plan du cours. Plan du cours

Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur. Introduction. Plan du cours. Plan du cours Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur Introduction Utilisation d un ordinateur pour interpréter le monde extérieur au travers d images. Elise Arnaud elise.arnaud@imag.fr

Plus en détail

TECHNOLOGIE DE L OPTIQUE GUIDEE

TECHNOLOGIE DE L OPTIQUE GUIDEE REPUBLIQUE DU CAMEROUN Paix - Travail Patrie --------------------- UNIVERSITE DE YAOUNDE I ---------------------- ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE ---------------------- REPUBLIC OF CAMEROUN Peace

Plus en détail

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006 EMETTEUR ULB Architectures & circuits David MARCHALAND STMicroelectronics 26/10/2006 Ecole ULB GDRO ESISAR - Valence 23-27/10/2006 Introduction Emergence des applications de type LR-WPAN : Dispositif communicant

Plus en détail

ETUDE PROBABILISTE DE L ENVIRONNEMENT ELECTROMAGNETIQUE GENERE DANS UN VEHICULE AUTOMOBILE

ETUDE PROBABILISTE DE L ENVIRONNEMENT ELECTROMAGNETIQUE GENERE DANS UN VEHICULE AUTOMOBILE ETUDE PROBABILISTE DE L ENVIRONNEMENT ELECTROMAGNETIQUE GENERE DANS UN VEHICULE AUTOMOBILE Fatou DIOUF * - Sébastien LALLECHERE* - Françoise PALADIAN * - Marco KLINGLER***- Michel FOGLI ** (*) LASMEA,

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Livrable 2.1 Rapport d analyse et de restructuration de code monothread des modules P, T, Q et F de l encodage MPEG-4 AVC

Livrable 2.1 Rapport d analyse et de restructuration de code monothread des modules P, T, Q et F de l encodage MPEG-4 AVC Groupe des Ecoles des Télécommunications Institut National des Télécommunications Département ARTEMIS Advanced Research & TEchniques for Multidimensional Imaging Systems Livrable 2.1 Rapport d analyse

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Introduction au tatouage d images couleur

Introduction au tatouage d images couleur Introduction au tatouage d images couleur A. Parisis 1 P. Carré 1 A. Trémeau 1 Laboratoire SIC - FRE-CNRS 2731 Université de Poitiers Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Alexis Joly alexis.joly@inria.fr INRIA - IMEDIA Alexis Joly cours monitoring p. 1 Plan de l'exposé

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Interception des signaux issus de communications MIMO

Interception des signaux issus de communications MIMO Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Bandes Critiques et Masquage

Bandes Critiques et Masquage Bandes Critiques et Masquage A. Almeida Licence Pro Acoustique et Vibrations Octobre 2012 Au Menu Au programme 1 Observations du masquage 5 Application du masquage 2 Conséquences du Masquage 3 Interprétation

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

Vérification audiovisuelle de l identité

Vérification audiovisuelle de l identité Vérification audiovisuelle de l identité Rémi Landais, Hervé Bredin, Leila Zouari, et Gérard Chollet École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, Laboratoire

Plus en détail

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3)

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3) Organisation de la présentation Reconnaissance automatique des langues RMITS 28 http://www.irit.fr/~jerome.farinas/rmits28/ Jérôme Farinas jerome.farinas@irit.fr Équipe SAMOVA (Structuration, Analyse et

Plus en détail

Chapitre 2 : communications numériques.

Chapitre 2 : communications numériques. Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés

Plus en détail

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO Détection des points d intérêt et Segmentation des images RGB-D Présentée par : Bilal Tawbe Semaine de la recherche de l UQO 25 Mars 2015 1. Introduction Les méthodes de détection de points d intérêt ont

Plus en détail

N. Paparoditis, Laboratoire MATIS

N. Paparoditis, Laboratoire MATIS N. Paparoditis, Laboratoire MATIS Contexte: Diffusion de données et services locaux STEREOPOLIS II Un véhicule de numérisation mobile terrestre Lasers Caméras Système de navigation/positionnement STEREOPOLIS

Plus en détail

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test 11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif

Plus en détail

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des

Plus en détail

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012 Extraction et analyse des mesures haut-débit pour l identification de biomarqueurs : problèmes méthodologiques liés à la dimension et solutions envisagées EA 2415 Epidémiologie, Biostatistique et Santé

Plus en détail

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

Un schéma de compression avec pertes efficace pour les images médicales volumiques

Un schéma de compression avec pertes efficace pour les images médicales volumiques Un schéma de compression avec pertes efficace pour les images médicales volumiques Yann GAUDEAU 1 Jean-Marie MOUREAUX 1 CRAN CNRS (UMR 7039) Nancy-University, Faculté des Sciences et Techniques, BP 239,

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Hiver 2013 IMN 259. Introduction à l analyse d images. Par Pierre-Marc Jodoin

Hiver 2013 IMN 259. Introduction à l analyse d images. Par Pierre-Marc Jodoin Hiver 2013 Analyse d images IMN 259 Introduction à l analyse d images Par Pierre-Marc Jodoin Où se situe l analyse d images? Traitement d images Imagerie Image Analyse d images/ Vision par ordinateur Infographie

Plus en détail

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges? Compétences générales Avoir des piles neuves, ou récentes dans sa machine à calculer. Etre capable de retrouver instantanément une info dans sa machine. Prendre une bouteille d eau. Prendre CNI + convocation.

Plus en détail

Transformée de Fourier discrète.

Transformée de Fourier discrète. Université Bordeaux Transformée de Fourier discrète. Préliminaire : Téléchargement de Wavelab Wavelab est une toolbox matlab, c est à dire un ensemble de programmes matlab élaborés par une équipe de l

Plus en détail

Ministère de l Enseignement Supérieur et de la Recherche Scientifique

Ministère de l Enseignement Supérieur et de la Recherche Scientifique Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de Formation en Informatique (I.N.I) Oued Smar Alger Direction de la Post Graduation et de la Recherche Thème : Inférence

Plus en détail

Bases de données multimédia IV Description locale des images

Bases de données multimédia IV Description locale des images Bases de données multimédia IV Description locale des images ENSIMAG 2014-2015 Matthijs Douze & Karteek Alahari Schéma type d un système de description locale Image requête Ensemble de points/régions d

Plus en détail

Chaine de transmission

Chaine de transmission Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Codage MPEG-4 de dessins animés

Codage MPEG-4 de dessins animés Codage MPEG-4 de dessins animés Jean-Claude Moissinac Cyril Concolato Jean-Claude Dufourd Ecole Nationale Supérieure des Télécommunications 46 rue Barrault 75013 Paris cyril.concolato@enst.fr, dufourd@enst.fr,

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Fabriano. sécurité, tatouage, stéganographie et législation autour des documents multimedia

Fabriano. sécurité, tatouage, stéganographie et législation autour des documents multimedia Fabriano sécurité, tatouage, stéganographie et législation autour des documents multimedia Une histoire avec des voleurs, des gendarmes et des juristes. Domaine Sécurité et cadre juridique des techniques

Plus en détail

Chapitre 22 Optimisation pour diffusion à l'écran, pour le web

Chapitre 22 Optimisation pour diffusion à l'écran, pour le web 1 1 9 9 7 7 Optimisation pour diffusion à l'écran, pour le web Diffusion pour le web........................ 31 Les paramètres avant l exportation................. 31 Optimisation pour le web......................

Plus en détail

TRAITEMENT AUTOMATIQUE DES LANGUES. Licence d'informatique 2ème Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie

TRAITEMENT AUTOMATIQUE DES LANGUES. Licence d'informatique 2ème Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie TRAITEMENT AUTOMATIQUE DES LANGUES Licence d'informatique 2ème Année Semestre 1 Département d'informatique Université de Caen Basse-Normandie https://dias.users.greyc.fr/?op=paginas/tal.html Plan Définition

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

Object Removal by Exemplar-Based Inpainting

Object Removal by Exemplar-Based Inpainting Object Removal by Exemplar-Based Inpainting Kévin Polisano A partir d un article de A. Criminisi, P. Pérez & H. K. Toyama 14/02/2013 Kévin Polisano Object Removal by Exemplar-Based Inpainting 14/02/2013

Plus en détail

Technique de compression des images médicales 4D

Technique de compression des images médicales 4D Technique de compression des images médicales 4D Leila Belhadef 1 et Zoulikha Mekkakia 1 1 Département d Informatique, USTO-MB, BP 1505 El Mnaouer, Oran, Algérie l.belhadef@gmail.com, mekkakia@univ-usto.dz

Plus en détail

5. Apprentissage pour le filtrage collaboratif

5. Apprentissage pour le filtrage collaboratif 686 PARTIE 5 : Au-delà de l apprentissage supervisé 5. Apprentissage pour le filtrage collaboratif Il semble que le nombre de choix qui nous sont ouverts augmente constamment. Films, livres, recettes,

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

Sensitivity of SAR data to the soil surface parameters

Sensitivity of SAR data to the soil surface parameters Sensitivity of SAR data to the soil surface parameters Nicolas Baghdadi Irstea, Maison de la télédétection, UMR TETIS, Montpellier, France Sensibilité du signal radar en bande X: TerraSAR-X Fort potentiel

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François

Plus en détail

Quantification en tomographie d émission

Quantification en tomographie d émission Quantification en tomographie d émission Irène Buvat Imagerie et Modélisation en Neurobiologie et Cancérologie UMR 8165 CNRS - Paris 7 - Paris 11 buvat@imnc.in2p3.fr http://www.guillemet.org/irene Séminaire

Plus en détail

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO 20 mars 2014

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014 Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO 20 mars 2014 La phonétique acoustique La phonétique acoustique étudie les propriétés physiques du signal

Plus en détail

Présentation SSDM : Semantically Similar Data Miner

Présentation SSDM : Semantically Similar Data Miner Présentation SSDM : Semantically Similar Data Miner Guillaume Calas Henri-François Chadeisson EPITA SCIA 2009 16 Juillet 2008 calas g - chadei h SSDM : Semantically

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Projet ANR SAMOGWAS. Specific Advanced MOdels for Genome-wide Association Studies. Journée de lancement officielle. Nantes - vendredi 11 octobre 2013

Projet ANR SAMOGWAS. Specific Advanced MOdels for Genome-wide Association Studies. Journée de lancement officielle. Nantes - vendredi 11 octobre 2013 Projet ANR SAMOGWAS Specific Advanced MOdels for Genome-wide Association Studies Journée de lancement officielle Nantes - vendredi 11 octobre 2013 1 Les partenaires LINA Nantes GIGA-R Liège INSERM Nantes

Plus en détail

L UNIVERSITÉ DE PAU ET DES PAYS DE L ADOUR

L UNIVERSITÉ DE PAU ET DES PAYS DE L ADOUR Numéro de bibliothèque THÈSE PRÉSENTÉE À L UNIVERSITÉ DE PAU ET DES PAYS DE L ADOUR ÉCOLE DOCTORALE DES SCIENCES EXACTES ET DE LEURS APPLICATIONS PAR Théodore TOTOZAFINY POUR OBTENIR LE GRADE DE DOCTEUR

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables

Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables 31 décembre 2013 Georges-Marie Saulnier, William Castaings, Anne Johannet, Gérard Dreyfus Tâche 03 Approche hybride De la correction des erreurs à la sélection de variables Sommaire 1. INTRODUCTION...

Plus en détail

Item 169 : Évaluation thérapeutique et niveau de preuve

Item 169 : Évaluation thérapeutique et niveau de preuve Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes

Plus en détail

Intégration régionale et croissance:

Intégration régionale et croissance: Introduction Intégration régionale et croissance: Le cas de l Afrique Centrale DAGBA Xavier et BARICAKO Joseph 11 octobre 2013 Par DAGBA Xavier et BARICAKO Joseph AEC 2013 1 / 16 Plan Introduction Contexte

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Couleur : de la perception au traitement

Couleur : de la perception au traitement Couleur : de la perception au traitement Title background : Rotating snakes illusion, by Akiyoshi KITAOKA Antoine Manzanera ENSTA-ParisTech / U2IS Introduction à la Couleur Couleur : perception, formalismes,

Plus en détail

Fouille de Données Médicales

Fouille de Données Médicales Journée Romande d Hygiène Hospitalière Fouille de Données Médicales Michèle Sebag Laboratoire de Recherche en Informatique, Université Paris-Sud http://www.lri.fr/ sebag/ Genève, 21 novembre 2002 MIT Technology

Plus en détail

Travailler avec les télécommunications

Travailler avec les télécommunications Travailler avec les télécommunications Minimiser l attrition dans le secteur des télécommunications Table des matières : 1 Analyse de l attrition à l aide du data mining 2 Analyse de l attrition de la

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

TP SIN Traitement d image

TP SIN Traitement d image TP SIN Traitement d image Pré requis (l élève doit savoir): - Utiliser un ordinateur Objectif terminale : L élève doit être capable de reconnaître un format d image et d expliquer les différents types

Plus en détail

Chapitre I La fonction transmission

Chapitre I La fonction transmission Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés

Plus en détail

Calcul des indicateurs de sonie : revue des algorithmes et implémentation

Calcul des indicateurs de sonie : revue des algorithmes et implémentation Calcul des indicateurs de sonie : revue des algorithmes et implémentation Stéphane Molla 1, Isabelle Boullet 2, Sabine Meunier 2, Guy Rabau 2, Benoît Gauduin 1, Patrick Boussard 1 1 GENESIS S.A., Domaine

Plus en détail

Une pénalité de groupe pour des données multivoie de grande dimension

Une pénalité de groupe pour des données multivoie de grande dimension Une pénalité de groupe pour des données multivoie de grande dimension Laurent Le Brusquet 1, Arthur Tenenhaus 1,2, Gisela Lechuga 1, Vincent Perlbarg 2, Louis Puybasset 3 & Damien Galanaud 4. 1 Laboratoire

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Analyse d images. Edmond.Boyer@imag.fr. Edmond Boyer UFRIMA 1

Analyse d images. Edmond.Boyer@imag.fr. Edmond Boyer UFRIMA 1 Analyse d images Edmond.Boyer@imag.fr Edmond Boyer UFRIMA 1 1 Généralités Analyse d images (Image Analysis) : utiliser un ordinateur pour interpréter le monde extérieur au travers d images. Images Objets

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Codage vidéo par block matching adaptatif

Codage vidéo par block matching adaptatif Traitement et analyse d'images(39) Codage vidéo par block matching adaptatif Abdelhamid Djeffal Département d informatique Université Mohamed Khider BISKRA, ALGERIE Abdelhamid_Djeffal@yahoo.fr Zine Eddine

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Les codes Pseudo-Aléatoires et leurs applications

Les codes Pseudo-Aléatoires et leurs applications Les codes Pseudo-Aléatoires et leurs applications A) Les codes Pseudo-Aléaoires B) Les Applications : I. Etalement de spectre, II. Cryptage et chiffrement III. Brouillage numérique A) Les codes Pseudo-aléatoires

Plus en détail

DEVANT L UNIVERSITE DE RENNES 1

DEVANT L UNIVERSITE DE RENNES 1 N o d ordre: 3063 THÈSE présentée DEVANT L UNIVERSITE DE RENNES 1 pour obtenir le grade de : DOCTEUR DE L UNIVERSITE DE RENNES 1 Mention Informatique par Nathalie CAMMAS Équipe d accueil : France Télécom

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Internet est-il l avenir des enquêtes Génération?

Internet est-il l avenir des enquêtes Génération? Établissement public sous double tutelle des ministères de l'éducation nationale, de l'enseignement supérieur et de la Recherche du Travail, de l Emploi, de la Formation professionnelle et du Dialogue

Plus en détail

TP5 - Morphologie mathématique

TP5 - Morphologie mathématique TP5 - Morphologie mathématique Vincent Barra - Christophe Tilmant 5 novembre 2007 1 Partie théorique 1.1 Introduction La morphologie mathématique [1] est un outil mathématique permettant au départ d explorer

Plus en détail