L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

Dimension: px
Commencer à balayer dès la page:

Download "L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ"

Transcription

1 L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

2 INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et les ressemblances entre individus. Résultats : Visualisation des individus (Notion de distances entre individus) Visualisation des variables (en fonction de leurs corrélations)

3 INTERPRÉTATION DES RÉSULTATS Mesurer la qualité des représentations obtenues : critère global critères individuels «Donner des noms au aes» Epliquer la position des individus Utilisation éventuelle de variables supplémentaires (illustratives) 3

4 I. L ANALYSE EN COMPOSANTES PRINCIPALES LE PROBLÈME. LES DONNÉES p variables quantitatives observées sur n individus. X X X j X p j p j p X (n,p) n i i j i p individu e' i n n j Variable X j p n p INDIVIDU = Élément de R p VARIABLE = Élément de R n 4

5 On cherche à représenter le nuage des individus. A chaque individu noté e i, on peut associer un point dans R p = espace des individus. A chaque variable du tableau X est associé un ae de R p. X 3 i 3 e i Impossible à visualiser dès que p > 3. i X i X 5

6 . PRINCIPE DE L A.C.P. On cherche une représentation des n individus, dans un sous-espace F k de R p de dimension k ( k petit, 3 ; par eemple un plan) Autrement dit, on cherche à définir k nouvelles variables combinaisons linéaires des p variables initiales qui feront perdre le moins d information possible. Ces variables seront appelées «composantes principales», les aes qu elles déterminent : «aes principau» les formes linéaires associées : «facteurs principau» 6

7 X X ae ON VISUALISE ae X i ae 3 F 3 R p aes principau 7

8 «Perdre le moins d information possible» F k devra être «ajusté» le mieu possible au nuage des individus: la somme des carrés des distances des individus à F k doit être minimale. F k est le sous-espace tel que le nuage projeté ait une inertie (dispersion) maimale. et sont basées sur les notions de : distance projection orthogonale 8

9 e i e j β j β i Δ f i f j α i α j Δ La distance entre f i et f j est inférieure ou égale à celle entre e i et e j 9

10 3. LE CHOIX DE LA DISTANCE ENTRE INDIVIDUS y B y A A B Dans le plan: (, ) = ( ) + ( ) d A B y y B A B A A B Dans l espace R p à p dimensions, on généralise cette notion : la distance euclidienne entre deu individus s écrit: e ( p... ) ( p e ) j = j j... j i = i i i p p ( i, j) = ( i j) + ( i j) +... ( i j ) d e e p k ( i, j) = ( k i j ) d e e Le problème des unités? k= 0

11 Pour résoudre ce problème, on choisit de transformer les données en données centrées-réduites. i k L observation est alors remplacée par : UNITÉS D ÉCART TYPE: Eemple : k = k i s où : moyenne de la variable X k s k = écart-type de la variable X k Puissance moyenne de 30 voitures = 9 ch Ecart-type = 4 ch La Renault TXI a une puissance de 40 ch La Renault TXI a une puissance de : écarts-type au-dessus de la moyenne. k = k

12 4. INERTIE TOTALE I g = n d n i = ( e g) i, ou de façon plus générale n g = i i i= ( ) I p d e,g avec n i= p = i L inertie est la somme pondérée des carrés des distances des individus au centre de gravité g L inertie mesure la dispersion totale du nuage de points.

13 L inertie est donc aussi égale à la somme des variances des variables étudiées. En notant V la matrice de variances-covariances : V = s... s p Remarque s s... s p... s p I g I = g = p s i i= ( ) Tr V Dans le cas où les variables sont centrées réduites, la variance de chaque variable vaut. L inertie totale est alors égale à p (nombre de variables). 3

14 Équivalence des deu critères concernant la perte d information e i Projection orthogonale du nuage sur un sous-espace F g f i Soit F un sous-ensemble de R p f i e i la projection orthogonale de sur F i i i i e g = e f + f g i=... n 4

15 On va chercher F tel que : n p e f i= i i i soit minimal ce qui revient d après le théorème de Pythagore à maimiser : n i= pi f i g 5

16 i i i i e g = e f + f g i=... n Donc : pi ei g pi ei fi = pi fi g = = = i n i n Inertie totale minimiser cette quantité (carrés des distances entre points individus et leurs projections) i n maimiser l inertie du nuage projeté 6

17 II. LA SOLUTION DU PROBLÈME POSÉ La recherche d aes portant le maimum d inertie équivaut à la construction de nouvelles variables (auquelles sont associés ces aes) de variance maimale. En d autres termes, on effectue un changement de repère dans R p de façon à se placer dans un nouveau système de représentation où le premier ae apporte le plus possible de l inertie totale du nuage, le deuième ae le plus possible de l inertie non prise en compte par le premier ae, et ainsi de suite. Cette réorganisation s appuie sur la diagonalisation de la matrice de variances-covariances. 7

18 . SOLUTION Aes principau On appelle aes principau d inertie les aes de direction les vecteurs propres de V normés à. Il y en a p. Le premier ae est celui associé à la plus grande valeur propre. On le note u Le deuième ae est celui associé à la deuième valeur propre. On le note u... 8

19 Composantes principales À chaque ae est associée une variable appelée composante principale. La composante c est le vecteur renfermant les cordonnées des projections des individus sur l ae. La composante c est le vecteur renfermant les cordonnées des projections des individus sur l ae. Pour obtenir ces coordonnées, on écrit que chaque composante principale est une combinaison linéaire des variables initiales. Eemple p c = u + u +... u p 9

20 . PROPRIÉTÉS DES COMPOSANTES PRINCIPALES La variance d une composante principale est égale à l inertie portée par l ae principal qui lui est associé. ère composante c variance : ème composante c variance : 3 ème composante c 3 variance : λ λ λ 3 Les composantes principales sont non corrélées deu à deu. En effet, les aes associés sont orthogonau. 0

21 3. REPRÉSENTATION DES INDIVIDUS j c j c La j ème j composante principale c = fournit les j c coordonnées des n individus sur le j ème n ae principal.... Si on désire une représentation plane des individus, la meilleure sera celle réalisée grâce au deu premières composantes principales.

22 e i c i g c i e j Attention à la qualité de représentation de chaque individu!

23 4. REPRÉSENTATION DES VARIABLES Les «proimités» entre les composantes principales et les variables initiales sont mesurées par les covariances, et surtout les corrélations. ( j i) rc, c j i est le coefficient de corrélation linéaire entre et c (, i ) r c i r ( c, i ) c CERCLE DES CORRÉLATIONS 3

24 5. INTERPRETATION DES «PROXIMITÉS» ENTRE VARIABLES On utilise un produit scalaire entre variables permettant d associer au paramètres courants : écart-type, coefficient de corrélation linéaire des représentations géométriques., n i j i j = k k n k = On suppose les variables centrées. 4

25 ( ) i j i j, = Cov,, n i i i ( i ) = = k n k= i = s Variance de i i i = s i Écart-type de i 5

26 Coefficient de corrélation linéaire i j ( i j) (, Cov X,X ) ( ) i j i j Cos X,X = r X,X i j X X = s s = i j Le cosinus de l angle formé par les variables X i et X j est le coefficient de corrélation linéaire de ces deu variables 6

27 X et X ont une corrélation proche de. X 3 X X et X 3 ont une corrélation proche de 0. X 6 X 5 X X 4 CERCLE DES CORRÉLATIONS 7

28 III. VALIDITÉ DES REPRÉSENTATIONS. CRITÈRE GLOBAL λ i λ + λ +... λ Eemple : p mesure la part d inertie epliquée par l ae i. λ + λ p λ i i= est la part d inertie epliquée par le premier plan principal. Ce critère (souvent eprimé en pourcentage) mesure le degré de reconstitution des carrés des distances. La réduction de dimension est d autant plus forte que les variables de départ sont plus corrélées. 8

29 Combien d aes? Différentes procédures sont complémentaires: Pourcentage d inertie souhaité : a priori Diviser l inertie totale par le nombre de variables initiales inertie moyenne par variable : I.M. Conserver tous les aes apportant une inertie supérieure à cette valeur I.M. (inertie > si variables centrées réduites). Histogramme Conserver les aes associés au valeurs propres situées avant la cassure. 4 3 λ λ λ 3 = 4,5 = 3,8 =,9 λ λ λ 3 λ 4 λ 5 λ 6 λ 7 cassure 9

30 . CRITÈRES INDIVIDUELS Cosinus carrés e i ae θ θ θ f i y ae cos θ= cos θ + cos θ 30

31 Pour chaque individu, la qualité de sa représentation est définie par le carré du cosinus de l angle entre l ae de projection et le vecteur e i. Plus la valeur est proche de, meilleure est la qualité de représentation En général, les qualités de représentation sont données ae par ae. Pour avoir la qualité de représentation dans un plan, on additionne les critères correspondant au aes étudiés. Ce critère n a pas de signification pour les individus proches de l origine. Quand on détecte un individu pour lequel le cosinus carré est faible, on doit tenir compte de sa distance à l origine avant d indiquer qu il est mal représenté 3

32 Contributions Il est très utile aussi de calculer pour chaque ae la contribution apportée par les divers individus à cet ae. Considérons la k ième composante principale, soit la valeur de la composante pour le i ème individu. n ( ) n c k i =λ i= k c k c i k La contribution de l individu e i à la composante n k est définie par n ( c k ) i λ k 3

33 Remarque : Il n est pas souhaitable qu un individu ait une contribution ecessive (car facteur d instabilité) éliminer les individus dont la contribution est trop importante. Problème des enquêtes par sondage 33

34 3. REPRÉSENTATION DES VARIABLES Le cercle des corrélations est la projection du nuage des variables sur le plan des composantes principales. c corrélation = cosinus c Les variables bien représentées sont celles qui sont proches du cercle, celles qui sont proches de l origine sont mal représentées. 34

35 4. INTERPRÉTATION EXTERNE : VARIABLES ET INDIVIDUS SUPPLÉMENTAIRES (ILLUSTRATIFS) 4. Variables Variable quantitative: On calcule le coefficient de corrélation entre la variable supplémentaire et les composantes principales. Ceci permet sa représentation sur le cercle des corrélations. 35

36 Variable qualitative Identification des individus de chaque catégorie de la variable Représentation de chaque catégorie par son centre de gravité. Calcul du rapport de corrélation entre la variable qualitative supplémentaire et chaque composante principale (test de Fischer-Snedecor) ou valeur-test dans SPAD. 36

37 Individus Individu de poids nul ne participant pas à l analyse (fichier test). Appliquer au coordonnées de l individu les epressions définissant les composantes principales. 37

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

Analyse en Composantes. Principales

Analyse en Composantes. Principales AgroParisTech Analyse en Composantes Principales C Duby, S Robin Table des matières Introduction 3 2 Tableau de données 4 3 Choix d une distance 6 4 Choix de l origine 7 5 Moments d inertie 9 5 Inertie

Plus en détail

MÉTHODES DE CLASSIFICATION

MÉTHODES DE CLASSIFICATION MÉTHODES DE CLASSIFICATION Pierre-Louis GONZALEZ MÉTHODES DE CLASSIFICATION Objet Opérer des regroupements en classes homogènes d un ensemble d individus. Données Les données se présentent en général sous

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES 2011 2012 ANALYSE DE DONNEES 2011 2012 LICENCE 3 SCIENCES ECONOMIQUES COURS DE M. THIERRY BLAYAC Analyse de données [Tapez le sous-titre du document] ANALYSE DE DONNEES Page 1 H34VEN Cours pour Licence

Plus en détail

Analyse de Données. Analyse en Composantes Principales (ACP)

Analyse de Données. Analyse en Composantes Principales (ACP) Analyse de Données Analyse en Composantes Principales (ACP) Analyse en composantes principales (ACP) ** Sur toute la fiche, on notera M' la transposée de M. Cadre de travail : On a des données statistiques

Plus en détail

Cours 2-3 Analyse des données multivariées

Cours 2-3 Analyse des données multivariées Cours 2-3 des données s Ismaël Castillo École des Ponts, 13 Novembre 2012 Plan 1 2 3 4 1. On s intéresse à un jeu de données multi-dimensionel, avec n individus observés et p variables d intérêt ( variables

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

Cours 7 ANALYSE EN COMPOSANTES PRINCIPALES (ACP) Master 2 2005/2006

Cours 7 ANALYSE EN COMPOSANTES PRINCIPALES (ACP) Master 2 2005/2006 Cours 7 ANALYSE EN COMPOSANTES PRINCIPALES (ACP) Master 2 2005/2006 . Les données NOMS PUISS CYLI Co uple Ma xi LONG LARG H AUT COFFRE RESE POIDS VITE CONS ALF 47,9 JTD Distinctive 5 90 28 4,7,73,44 280

Plus en détail

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 9 ANALYSE MULTIDIMENSIONNELLE L analyse des données multidimensionnelles regroupe un ensemble de méthodes

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Université de Rennes 2 Statistiques des données M1-GEO Ouvrages recommandés Analyse en composantes principales Ces livres sont à la BU. Pour les acheter, venir au bureau A-240 ou envoyer un mail : nicolas.jegou@uhb.fr

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Plan du cours Analyse en Composantes Principales Introduction Les données Leurs représentations La méthode Modèle Interprétation statistique Espace principal Composantes Principales Représentations Graphiques

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 29/01/2007 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 29/01/2007 Stéphane Tufféry - Data Mining - http://data.mining.free.fr 1 Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE Plan du cours Qu est-ce que le data mining? À quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data

Plus en détail

Analyse multidimensionnelle de données longitudinales

Analyse multidimensionnelle de données longitudinales Analyse multidimensionnelle de données longitudinales Ndèye Niang Conservatoire National des Arts et Métiers Plan Introduction Terminologie-Notations Méthodes directes Coefficient d association vectorielle

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1 Clustering Christine Decaestecker, ULB Marco Saerens, UCL LINF75 Clustering 1 Classification non-supervisée (automatique) Méthodes de regroupement ("Clustering") Objectif : Sur base - soit d'un tableau

Plus en détail

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie Annette Paugam Diagonalisation des auto-adjoints Applications aux formes quadratiques : Directions principales Applications en Géométrie, en Statistique et en Mécanique Les paragraphes, 2, 3 donnent un

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Méthodes de projection

Méthodes de projection Chapitre 11 Méthodes de projection Contenu 11.1 Analyse en composantes principales........ 138 11.1.1 L Analyse en Composantes Principales........ 139 11.1.2 La (grande) famille des ACP............. 151

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Analyses statistiques multivariées. Béatrice de Tilière

Analyses statistiques multivariées. Béatrice de Tilière Analyses statistiques multivariées Béatrice de Tilière 23 novembre 2009 ii Table des matières 1 La Statistique 1 1.1 Généralités.................................. 1 1.2 Un peu de vocabulaire............................

Plus en détail

L'analyse des données à l usage des non mathématiciens

L'analyse des données à l usage des non mathématiciens Montpellier L'analyse des données à l usage des non mathématiciens 2 ème Partie: L'analyse en composantes principales AGRO.M - INRA - Formation Permanente Janvier 2006 André Bouchier Analyses multivariés.

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Introduction. Préambule. Le contexte

Introduction. Préambule. Le contexte Préambule... INTRODUCTION... BREF HISTORIQUE DE L ACP... 4 DOMAINE D'APPLICATION... 5 INTERPRETATIONS GEOMETRIQUES... 6 a - Pour les n individus... 6 b - Pour les p variables... 7 c - Notion d éléments

Plus en détail

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple Analyse simultanée de variables quantitatives et qualitatives à l aide de l analyse factorielle multiple Jérôme Pagès Laboratoire de mathématiques appliquées Agrocampus France Analyse Factorielle Multiple

Plus en détail

ANALYSE FACTORIELLE DE DONNÉES MIXTES : PRINCIPE ET

ANALYSE FACTORIELLE DE DONNÉES MIXTES : PRINCIPE ET ANALYSE FACTORIELLE DE DONNÉES MIXTES : PRINCIPE ET EXEMPLE D APPLICATION Jérôme Pagès Laboratoire de mathématiques appliquées Agrocampus, 35042 Rennes cedex email : pages@agrorennes.educagri.fr Résumé

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Analyse de données et classification bayésienne

Analyse de données et classification bayésienne Parcours OMIS - 3A - École Centrale Marseille Module Informatique Décisionelle Analyse de données et classification bayésienne Stéphane DERRODE stephane.derrode@centrale-marseille.fr Version.1 - Novembre

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

CH1 : Introduction à l Analyse Des Données (ADD) B- Les données et leurs caractéristiques C- Grandeurs associées aux données

CH1 : Introduction à l Analyse Des Données (ADD) B- Les données et leurs caractéristiques C- Grandeurs associées aux données CH1 : Introduction à l Analyse Des Données (ADD) A- Introduction A- Introduction B- Les données et leurs caractéristiques C- Grandeurs associées aux données A-1 Les méthodes Lors de toute étude statistique,

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Série statistique double à l aide d un exemple

Série statistique double à l aide d un exemple Série statistique double à l aide d un exemple Série statistique double: exemple... 2 Série statistique double: questions posées... 3 Calcul de la covariance sur la base de l'exemple... 4 Calcul du coefficient

Plus en détail

Régression linéaire simple

Régression linéaire simple Résumé Ce chapitre introduit la notion de modèle linéaire par la version la plus élémentaire : epliquer Y par une fonction affine de X. Après avoir epliciter les hypothèses nécessaires et les termes du

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech

Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech Méthodes de placement multidimensionnelles Fabrice Rossi Télécom ParisTech Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 2 / 27 F. Rossi Plan Introduction

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h I.U.T de Caen STID 2ème année Département STID Année Universitaire 2002-2003 Responsable de cours : Alain LUCAS Seule la calculatrice type collège est autorisée. Seul le cours est autorisé. On rappelera

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Bases mathématiques pour l économie et la gestion

Bases mathématiques pour l économie et la gestion Bases mathématiques pour l économie et la gestion Bases mathématiques Pour l économie et la gestion - Table des matières PREMIERE PARTIE : QUELQUES OUTILS Chapitre : Traitement de systèmes d'équations..

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Statistique Descriptive Multidimensionnelle. (pour les nuls)

Statistique Descriptive Multidimensionnelle. (pour les nuls) Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Multidimensionnelle (pour les nuls) (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Synthèse d'image avancée

Synthèse d'image avancée Plan Snthèse d'image avancée Cours 2: Transformations, perspective et caméras Motivation Rappels d algèbre linéaire Transformations Caméra sténopé, projection Sources: Xavier Granier, Nicolas Holzschuch

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

L3 Géographie UE Méthodologie. Statistiques COURS 1. Salle 125. Intervenants : Nadège. UMR Centre de Recherches de Climatologie (CRC)

L3 Géographie UE Méthodologie. Statistiques COURS 1. Salle 125. Intervenants : Nadège. UMR Centre de Recherches de Climatologie (CRC) L3 Géographie UE Méthodologie Statistiques COURS 1 Salle 125 Intervenants : Nadège Martiny & Julien Crétat UFR Sciences Humaines (Département de Géographie) UMR Centre de Recherches de Climatologie (CRC)

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Paramètres de position

Paramètres de position Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs.

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs. S e produit scalaire Eercices Diverses epressions du produit scalaire et calcul de grandeurs. Eercice. est un triangle et I est le milieu de []. Données : I 6, I I et I. alculer : ) (introduire le point

Plus en détail

Mécanisme d essuie glace Bosch

Mécanisme d essuie glace Bosch 1- Montrer que V ( 3/ 0) 0,5 m/ s 30 mm On mesure sur le document réponses : O mes = 30 mm L échelle est de 1/ 2 donc O reelle = 30 1.4 = 42mm 2π V ( 3/ 0) = O Ω (3/ 0) = 0.042 114 = 0.5 m/ s 60 V ( 3/

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail

Session 1 durée 3 heures

Session 1 durée 3 heures Université de Nantes Mai 27 Master MIM Examen d'analyse de données Session durée 3 heures Les documents sont interdits. Les calculatrices sont autorisées. Exercice : - Etude d un tableau à l aide d une

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 004 CA/PLP CONCOURS EXTERNE Section : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L'usage des calculatrices de poche est autorisé (conformément au directives

Plus en détail

Installation de la librairie VISP et création du projet

Installation de la librairie VISP et création du projet ESIR3-IN Travaux Pratiques VO 2012-2013 PREAMBULE Copier les données des TPs 1. créez un répertoire VO dans votre homedir cd ~/ mkdir VO cd VO 2. copier le dossier contenant toutes les données pour les

Plus en détail

Annexe B : Les vecteurs. Scalaires et vecteurs

Annexe B : Les vecteurs. Scalaires et vecteurs Annee B : Les vecteurs Certains étudiants éprouvent de la difficulté en première session à l'école lorsqu'ils suivent le cours ING-10 "Statique et dnamique". Les vecteurs sont utilisés abondamment dans

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

( ) + 4 800 sur l intervalle [0 ; 410]. Sa représentation

( ) + 4 800 sur l intervalle [0 ; 410]. Sa représentation Baccalauréat Professionnel Commerce services vente représentation 1. France, juin 006 1. France, juin 005 4 3. France, juin 005 6 4. France, juin 005 9 5. France, juin 004 11 6. France, juin 004 13 7.

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Analyse en Composantes Principales (ACP)

Analyse en Composantes Principales (ACP) 1 Analyse en Composantes Principales (ACP) Analyse en Composantes Principales (ACP) Résumé Méthode factorielle de réduction de dimension pour l exploration statistique de données quantitatives complexes

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

THEORIE FINANCIERE Préparation à l'examen

THEORIE FINANCIERE Préparation à l'examen THEORIE FINANCIERE Préparation à l'examen N.B. : Il faut toujours justifier sa réponse. 1. Qu'est-ce que l'axiomatique de Von Neumann et Morgenstern? La représentation des préférences des investisseurs

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail