Algèbre binaire et Circuits logiques ( )

Dimension: px
Commencer à balayer dès la page:

Download "Algèbre binaire et Circuits logiques (2007-2008)"

Transcription

1 Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani

2 Plan. Algèbre de Boole 2. Circuits logiques 3. Circuits combinatoires 4. Circuits séquentiels Algèbre de Boole Chapitre George Boole (85-864) est un mathématicien autodidacte anglais qui voulait faire un lien entre la logique (étude de la validité du raisonnement) et la représentation smbolique utilisée en mathématique. Algèbre binaire Il a écrit Écriture deu ouvrages et simplification sur le sujet : des fonctions Mathematical logiques Analsis of Logic (847) An Investigation of the Laws of Thought (854) Ces travau n ont pas connu d intérêt particulier auprès de la communauté mathématique et scientifique de son époque, mis à part che les logiciens

3 Algèbre de Boole C est 7 ans plus tard que les travau de Boole gagnent l intérêt de tous, lorsque Claude Shannon fait le lien entre l algèbre de Boole et la conception des circuits. Claude Shannon montre que l algèbre de Boole peut-être utilisée pour optimiser les circuits. Cette nouvelle avenue de recherche va ouvrir la voie à l ère numérique. «En utilisant l algèbre de Boole avec le sstème binaire, on peut concevoir des circuits capables d effectuer des opérations arithmétiques et logiques Boole repose sur des aiomes, des postulats et des théorèmes qu il faut connaître par coeur! Algèbre de Boole Propositions vraie ou fausses et opérateurs sur ces préposition Algèbre de Boole Sstèmes binaires: Vrai=, Fau= C est le cas des sstèmes numériques (circuits logiques) 2

4 L ordinateur est constitué de circuits logiques Élément de base est le transistor, deu états: Bloqué=, Conducteur=. Transistor Porte logique Circuit logique Unité d un sstème informatique Algèbre binaire Définitions: États logiques : et, Vrai et Fau Variable logique : Smbole pouvant prendre comme valeur des états logiques (A, b, c,...) Opérateurs logiques: Or, And, Not,... Fonction logique Fonction logique : Epression de variables et d opérateurs logiques. ( f = not(a) or (b OR c and d) 3

5 Éléments de base Variables d entrd entrée Les variables d entrée sont celles sur lesquelles on peut agir directement. Ce sont des variables logiques indépendantes. Variable de sortie Variable contenant l état de la fonction après l évaluation des opérateurs logiques sur les variables d entrée. Simplification d une d fonction logique Trouver la représentation (l écriture) la plus simple de la fonction réalisée: Algèbre de Boole Algèbre de Boole sur [,] = algèbre binaire Structure d algèbre de boole 2 lois de composition interne (Or, And) application unaire (Not) 2 Lois de Composition Interne : ET, OU Somme (OU, Réunion) s = a b = a or b Produit (ET, intersection) s = a. b = ab = a and b Nb: ab se lit «a OU b» pas «a PLUS b» Application unaire : Not (complémentation, inversion) s = a = not(a) NB: a se lit «a barre» ou «non a» 4

6 Fonctions logiques Fonction logique à n variables f(a,b,c,d,...,n) [,] n [,] - Une fonction logique ne peut prendre que deu valeurs (, ) - Les cas possibles forment un ensemble fini (card = 2 n ) La table de fonction logique = table de vérité Définition : (a, b, c,..., n) = vecteur d entrée Table de vérité Table de vérité: Enumération ligne par ligne des valeurs prises par f en fonction des valeurs de ses paramètres. Or s = a b S est vrai si a OU b est vrai. a b s And s = a. b S est vrai si a ET b sont vrais. a b s Not s = a S est vrai si a est fau a s 5

7 Notes sur les tables de vérité f (a, c, d,.., n) fonction logique à N entrées sera représentée par : une table à2 N lignes a b c f(a,b,c) Propriétés Commutativité ab = ba a.b = b.a Associativité a(bc) = (ab)c a.(b.c) = (a.b).c Distributivité a.(bc) = a.ba.c a(b.c) = (ab).(ac) Idempotence aa = a a.a = a Absorption aa.b = a a.(ab) = a 6

8 Démonstration distributivité? a.(bc) = a.ba.c a b c bc a.(bc) a.b a.c a.ba.c =? Propriétés (2) Élément neutre a = a a. = a Élément absorbant a = a. = Inverse Théorème de DE Morgan ab = a. b aa = a.a = a.b = a b 7

9 Équations logiques On eprime f(a, b, c,...) par une epression en a, b, c.. et des opérateurs logiques. Eemple: f = ab.c.(de) Principe de dualité: Une epression reste vraie si on interverti les par des et les ET par des OU Eemple: si ab= alors a.b= Je suis riche si je suis bien paé et que je ne dépense pas tout mon argent = Je suis pauvre si je ne suis pas bien paé ou que je dépense tout mon argent Les opérateurs NAND, NOR a b s s = a.b a b s s = ab S est vrai si a OU b est fau. NAND (No-AND) S est vrai si ni a, ni b ne sont vrais. NOR (No-OR ou NI) 8

10 L opérateur : XOR a b s s = a b = a.b a.b S est vrai si a OU b est vrai mais pas les deu. XOR (Ou-Eclusif) vaut si a est différent de b Opérateur de différence (disjonction) Propriétés du XOR XOR est associatif s = a b c... n vaut si le nombre de variable à est impaire. s = a b= a b= a b= a XNOR b XNOR = XOR vaut si a= b a = a a = a Propriétés a c= b c a= b a = b = a b 9

11 Écriture des équations logiques Définitions: Apparition d une variable = Lettre Produit de variables sous forme simple ou complémentées = Monôme Somme de monômes = Polnôme = a b.c.(d e) Epression algébrique = a b c (d e) Développement = a b c d. e Polnôme de 4 monômes de et 2 lettres Fonctions logiques et formes canoniques f fonction logique de n variables On appelle «minterme» de n variables, l un des produits de ces variables ou de leurs complémentaires. { a b c d} eemple n = 4 variables,,, m= abcd m= a b c d est un minterme est un autre minterme m= a b c n'est pas un minterme On appelle «materme» de n variables, l une des sommes de ces variables ou de leurs complémentaires. M = a b c d M = a b c d est un materme est un autre materme M = a b c n'est pas un materme

12 Formes canoniques Une fonction est sous forme canonique (ou normale) si chaque terme contient toutes les variables. L écriture sous forme canonique est unique. Eemples : f(,, ) = Minterme Première forme canonique ou forme normale disjonctive f (,, ) = ( ).( ) Materme Deuième forme canonique ou forme normale conjonctive Formes canoniques Si la fonction n est pas sous forme normale i.e. une des variables (au moins) ne figure pas dans un des termes La fonction est sous une forme simplifiée f (,, ) = = ( ) = ( ) = ( ) Première forme canonique Forme simplifiée Forme simplifiée Forme simplifiée

13 Formes canoniques: Choi Première forme canonique = epression des de la fonction Deuième forme canonique = epression des de la fonction Les deu formes canoniques sont équivalentes On choisit celle qui donne le résultat le plus simple peu de => deuième forme / peu de => première forme Simplification des fonctions Objectif : Fabriquer un sstème à moindre coût Méthodes : Algébriques rapide Graphiques fiable Programmables peu consommateur Résultat : on cherche la forme minimale d une fonction nombre minimal de monômes/nombre minimal de lettre par monôme Possibilité de plusieurs formes minimales: formes équivalentes 2

14 Simplification algébrique Applications des principes et propriétés de l algèbre de Boole Identités remarquables : 2 3 a. b a. b = b (ab).(ab)=b a a.b = a a.(ab) = a a a.b = ab a.(a b) = a. b Démonstrations : et 2 trivial 3 : a a. b = a. a a. b a. a a. b = ( a a).( a b) = a b a Simplification algébrique Règles de simplification : (Mintermes adjacents = seule variable qui change) : Deu mintermes adjacents Il reste l intersection commune : Deu matermes adjacents Il reste la réunion commune abc.. abc.. = ab..( c c) = ab. ( a b c).( a b c) = ( a b)( c c) = a b 2: On peut ajouter un terme déjà eistant à une epression logique. pas de coefficient en algèbre de Boole. 3: On ne change pas le résultat en multipliant l'un des termes par ou en ajoutant. Méthode algébrique toujours possible mais démarche intuitive qui dépend de l habileté et de l epérience. 3

15 4 Eercice Remplisse la table de vérité suivante pour prouver le théorème de DeMorgan : Considérons la fonction F définie par la table de vérité suivante : F F = Mintermes ) ( ) ( ) ( ) ( ) ( ) ( F = = = = Eercice 2

16 Eercice 3 On désire concevoir un circuit qui permet de gérer les notes des eamens, on donne: Eamen final (45 %), Eamen Partiel (35 %), TPs (2 %). Un étudiant est admis s il dispose d un pourcentage >= 55 %). Eemple: Final=, Partiel=8, Tps= F=, P=, T= Pourcentage = 65 % R= (étudiant admis). Donner la table de vérité. Donner la fonction logique correspondante. Simplifier le fonction obtenue. Simplification graphique: Karnaugh La méthode de Karnaugh permet de visualiser une fonction et d en tirer naturellement une écriture simplifiée. L élément de base de cette méthode est la table de Karnaugh qui représente toutes les combinaisons d états possibles pour un nombre de variables donné. La table de Karnaugh est un outil graphique qui permet de simplifier de manière méthodique des epressions booléennes. La construction des tables de Karnaugh eploite le codage de l information et la notion d adjacence 5

17 Karnaugh simplification graphique Principe: Mettre en évidence sur un graphique les mintermes (ou matermes) adjacents. Transformer les adjacences logiques en adjacences «géométriques». Trois phases: Transcrire la fonction dans un tableau codé, recherche des adjacents pour simplification équations des groupements effectués Description: Table de vérité vs Tableau de Karnaugh ligne case n variables 2 n cases Diagrammes de Karnaugh Avec n = 2: Entrées A et B 4 cases 6

18 Diagrammes de Karnaugh Avec n = 3: Entrées C, B et A 8 cases Remarque: Une seule variable change d état entre 2 cases adjacentes Diagrammes de Karnaugh Avec n = 4: Entrées D, C, B et A 6 cases 7

19 Diagrammes de Karnaugh Avec n = 5: Entrées,,, t et u 32 cases Simplification graphique Eemple: Depuis une table de vérité a b c f a bc 8

20 Eemple (Karnaugh) Entrées Sortie C B A S TABLE DE VÉRITÉ BA C DIAGRAMME DE KARNAUGH Simplification graphique Eemple 2: Par une première forme canonique (Par les ) a bc f( abc,, ) = abc.. abc.. abc.. 9

21 Simplification graphique Eemple 2: Par une deuième forme canonique (Par les ) a bc f ( a, b, c) = ( a b c).( a b c).( a b c) Simplification graphique Règles de simplification : Les groupements comportent une puissance de deu cases, 2 : Les 2 k cases forment un rectangle, 3 : On élimine variable(s) qui change(nt) d état Groupement de 2 k cases On élimine k variables 2 cases on élimine variable; 4 cases on élimine 2 variables; 8 cases on élimine 3 variables; 4 : Il faut utiliser au moins une fois chaque, le résultat est donné par la réunion logique de chaque groupement, 5 : Epression minimale si : les groupements les plus grands possibles utiliser les un minimum de fois 2

22 Eemple S = AB AB, simplification algébrique S = A (B B) = A Karnaught: Groupement de 2 cases: on élimine variable qui change d état (B) S=A Eemple 2 A B S Premier groupement: On élimine B Deuième groupement: On élimine A S = A B 2

23 Eemple 3 Tous les sont groupés! a bc Equation : Fabc (,, ) = ab. c Eemple 4 Par les a bc Equation : F( a, b, c) = ( a c).( b c) 22

24 23 Eemple 5 Z X S = Z S t Eemple 6 t

25 Eercice Eercice 2 24

26 Circuits logiques Circuit logique = Ensemble de portes logiques reliées entre elles correspondant à une epression algébrique. Porte logique (correspond à un opérateur logique) Porte Or Porte And Porte Not A B Y A B Y A Y Y = A B Y = A. B Y = A Portes dérivées Porte Nor Porte Nand A B Y A B Y Y = A B Y = A. B Porte Xor A B Y Y = A B 25

27 Conception d un circuit logique. Identifier les entrées et les sorties de la fonction. 2. Construire la table de vérité. 3. Identifier la fonction à partir de la table de vérité. 4. Simplifier la fonction. 5. Dessiner le schéma du circuit. Réalisation de circuits logiques Eemple: Circuit logique correspondant à l epression algébrique: (AB).(AC) Eercice Donner le circuit (Eercice 3, simplification algébrique). 26

28 Eercice 2 Pompe Niveau 2 C2 Niveau C Électrovanne Lorsque le niveau d eau est inférieure au niveau (Capteur C), on déclenche la pompe pour remplir le réservoir. Lorsque Niveau d eau > Niveau 2, on commande l électrovanne pour vider le réservoir.. Donner le circuit équivalent (sans simplification) 2. Donner le circuit simplifié. 27

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale.

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale. GM Sciences et Techniques Industrielles Page sur 5 Automatique et Informatique Industrielle Génie Mécanique Cours Première & - LA VARIABLE BINAIRE L électrotechnique, l électronique et la mécanique étudient

Plus en détail

L'algèbre de Boole (1)

L'algèbre de Boole (1) L'algèbre de Boole (1) (1) Georges BOOLE Né le 2 novembre 1815 à Lincoln, dans le Lincolnshire (Angletere), décédé le 8 décembre 1864 à Ballintemple (Ireland). Mathématicien et logicien qui créa une algèbre

Plus en détail

IFT1215 Introduction aux systèmes informatiques

IFT1215 Introduction aux systèmes informatiques Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

AUTOMATISME COMBINATOIRE

AUTOMATISME COMBINATOIRE AUTOMATISME COMBINATOIRE - 1 - AUTOMATISME COMBINATOIRE 1 INTRODUCTION... 2 2 VARIABLES LOGIQUES :... 2 3 OPERATIONS LOGIQUES :... 3 4 FONCTIONS OU OPERATEURS LOGIQUES :... 4 5 REGLES DE SIMPLIFICATION...

Plus en détail

Cours Premier semestre

Cours Premier semestre C.Belleudy, D.Gaffé Université de Nice-Sophia Antipolis DEUG Première année SM,MP,MI UECS EEA Électronique Numérique Cours Premier semestre C. Belleudy, D.Gaffé version 3. 2 Électronique Numérique Chapitre

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

Université de Metz. Cours de Logique et d APIs D.E.U.G. STPI

Université de Metz. Cours de Logique et d APIs D.E.U.G. STPI Université de Metz Cours de Logique et d APIs D.E.U.G. STPI Année Universitaire 2002/2003 Y. Morère Cette page est laissée blanche intentionnellement Table des matières 1 Représentation des nombres 11

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

MPI Activité.10 : Logique binaire Portes logiques

MPI Activité.10 : Logique binaire Portes logiques MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement

Plus en détail

FONCTIONS BOOLEENNES ET SYNTHESE DE CIRCUITS COMBINATOIRES 1. ALGEBRE DE BOOLE ET FONCTIONS BOOLEENNES

FONCTIONS BOOLEENNES ET SYNTHESE DE CIRCUITS COMBINATOIRES 1. ALGEBRE DE BOOLE ET FONCTIONS BOOLEENNES - I.1 - CHAPITRE I : FONCTIONS BOOLEENNES ET SYNTHESE DE CIRCUITS COMBINATOIRES 1. ALGEBRE DE BOOLE ET FONCTIONS BOOLEENNES Après une brève présentation de l'algèbre de Boole ( 1.1.), les fonctions booléennes

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

Conception de circuits numériques et architecture des ordinateurs

Conception de circuits numériques et architecture des ordinateurs Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot Année universitaire 2014-2015 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Codage des nombres en base 2, logique

Plus en détail

Logique combinatoire. Kachouri Abdennaceur ENIS Département GE. Université Virtuelle de Tunis

Logique combinatoire. Kachouri Abdennaceur ENIS Département GE. Université Virtuelle de Tunis Logique combinatoire Kachouri Abdennaceur ENIS Département GE Université Virtuelle de Tunis 2006 Nouvelle page 1 Introduction Ce module porte sur les circuits logiques combinatoire... Il couvre plus spécifiquement

Plus en détail

Olympiades Suisses de Mathématiques. Inéquations. Thomas Huber. Actualisé: 25 juin 2014. Table des matières

Olympiades Suisses de Mathématiques. Inéquations. Thomas Huber. Actualisé: 25 juin 2014. Table des matières Olympiades Suisses de Mathématiques Inéquations Thomas Huber Actualisé: 5 juin 04 Table des matières Transformations algébriques. Il n eiste pas de carrés négatifs Nous allons commencer ce script par la

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab Cours d algèbre Maths1 LMD Sciences et Techniques Par M. Mechab 2 Avant Propos Ceci est un avant projet d un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Organisation de l enseignement. ALM : Architectures logicielles et Matérielles. Objectifs. Bibliographie et communication

Organisation de l enseignement. ALM : Architectures logicielles et Matérielles. Objectifs. Bibliographie et communication ALM : Architectures logicielles et Matérielles Pascal.Sicard@imag.fr Bureau 313 Bâtiment D ENSIMAG Organisation de l enseignement d ALM 1 * 1h3 heures de cours + 8* 3 Travaux dirigés de 2h 2 séances de

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

AP1.2: Traitement de l information Binaire et logique combinatoire. Binaire et logique combinatoire

AP1.2: Traitement de l information Binaire et logique combinatoire. Binaire et logique combinatoire STI2D Option SIN Première AP1.2: Traitement de l information Binaire et logique combinatoire Binaire et logique combinatoire Centre d intérêt : découverte du numérique et de la logique binaire Durée prévue

Plus en détail

Concevoir son microprocesseur

Concevoir son microprocesseur Concevoir son microprocesseur structure des systèmes logiques Jean-Christophe Buisson Collection Technosup Ellipses Avant-propos Ce livre s adresse aux étudiants en informatique de licence et maîtrise,

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) : Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16.

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16. 1. Systèmes de numération 11. Système décimal : Base 10 C est le système utilisé dans la vie courante, il est basé sur le nombre 10. Pour représenter les nombres décimaux, on utilise les chiffres de 0

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

CH.6 Propriétés des langages non contextuels

CH.6 Propriétés des langages non contextuels CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

Systèmes logiques SYSTEMES LOGIQUES EPFL DI / LSP

Systèmes logiques SYSTEMES LOGIQUES EPFL DI / LSP ystèmes logiques YTEME LOGIUE EPFL I / LP Walter Hammer -- Oct. 2 Table des matières ) Généralités Formes de l information onvertisseurs L informatique Représentation numérique Les codes usuels Opérations

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

BCI - TPSP - Processeurs et Architectures Numériques

BCI - TPSP - Processeurs et Architectures Numériques BCI - TPSP - Processeurs et Architectures Numériques Jean-Luc Danger Guillaume Duc Tarik Graba Philippe Matherat Yves Mathieu Lirida Naviner Alexis Polti Jean Provost c 2002-2011 groupe SEN, Télécom ParisTech

Plus en détail

Les fonctions logiques

Les fonctions logiques 1 Les fonctions logiques Le fonctionnement des ordinateurs tout comme d autres appareils électroniques repose sur l emploi des circuits électroniques de logique binaire ou électronique numérique. Dans

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Cours de mathématiques BTS SIO première année. Nicolas FRANCOIS nicolas.francois@free.fr

Cours de mathématiques BTS SIO première année. Nicolas FRANCOIS nicolas.francois@free.fr Cours de mathématiques BTS SIO première année Nicolas FRANCOIS nicolas.francois@free.fr 24 mars 2012 2 I Numération 1 I Introduction : que signifie 1789?................................... 2 II Les numérations

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT Les portes logiques Nous avons jusqu ici utilisé des boutons poussoirs et une lampe pour illustrer le fonctionnement des opérateurs logiques. En électronique digitale, les opérations logiques sont effectuées

Plus en détail

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1.

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1. Cours de Numération A). Introduction : I ). Généralités : Le système binaire (Base 2) a été conçu au 17 ème siècle par le mathématicien LEIBNITZ. Il présente l'avantage de ne comporter que deux symboles

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Bases des systèmes Numériques

Bases des systèmes Numériques ases des Systèmes Numériques. Oumnad ases des systèmes Numériques. Oumnad ases des Systèmes Numériques. Oumnad Chapitre I -- Systèmes de Numération... 3 I. -- Système décimal... 3 I. -- Système Octal...

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

CIRCUITS LOGIQUES NOTIONS FONDAMENTALES

CIRCUITS LOGIQUES NOTIONS FONDAMENTALES CIRCUITS LOGIUES NOTIONS FONDAMENTALES Différence entre système analogique et logique Analogique : les signaux sont décrits par des fonctions mathématiques continues Logique : Chaque paramètre ne peut

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

RESUME DE COURS ET CAHIER D'EXERCICES

RESUME DE COURS ET CAHIER D'EXERCICES ARCITECTURE INFO-UP REUME DE COUR ET CAIER D'EXERCICE EPITA F. GABON Architecture EPITA INFO-UP F. Gabon COUR LIVRE D ARCITECTURE 3 REUME D'ELECTRONIUE LOGIUE 4 YTEME DE NUMERATION 6 ALGEBRE DE BOOLE 6

Plus en détail

Cours INFO 2 COMBINATOIRE ET SEQUENTIELLE

Cours INFO 2 COMBINATOIRE ET SEQUENTIELLE Cours INFO 2 COMBINATOIRE ET SEQUENTIELLE Table des matières Cours INFO 2 COMBINATOIRE ET SEQUENTIELLE... 1 1. Bases décimales, binaires et hexadécimales... 2 2. Systèmes et langages Logiques.... 5 Système

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Architectures Logicielles et Matérielles Travaux Dirigés Circuits

Architectures Logicielles et Matérielles Travaux Dirigés Circuits UNIVERSITE Joseph FOURIER, Grenoble U.F.R. d Informatique et Maths. Appliquées Architectures Logicielles et Matérielles Travaux Dirigés Circuits Rappel : dessins des portes logiques. Déroulement envisagé

Plus en détail

Cours d électronique numérique

Cours d électronique numérique Cours d électronique numérique Camille Diou, Maître de Conférences Laboratoire Interfaces Capteurs et Microélectronique Université Paul Verlaine Metz Format A5 Version du 24 février 2009 Notes sur cet

Plus en détail

Architecture matérielle des systèmes informatiques

Architecture matérielle des systèmes informatiques Architecture matérielle des systèmes informatiques IDEC, Renens. Version novembre 2003. Avertissement : ce support de cours n est pas destiné à l autoformation et doit impérativement être complété par

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

SYSTEMES DE NUMERATION

SYSTEMES DE NUMERATION Page 1/6 I- SYSTEMES SYSTEMES DE NUMERATION I-1- DECIMAL (base l0) C'est le système le plus utilisé. On peut représenter un nombre décimal sous la forme :... (1997) 10 = 1 10 3 + 9 10 2 + 9 10 1 + 7 10

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Mathématiques autour de la cryptographie.

Mathématiques autour de la cryptographie. Mathématiques autour de la cryptographie. Index Codage par division Codage série Code cyclique Code dual Code linéaire Corps de Galois Elément primitif m séquence Matrice génératrice Matrice de contrôle

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Table des matières. Remerciements

Table des matières. Remerciements Table des matières Remerciements xviii 1 Du transistor à la porte logique 1 1.1 Rappels : dipôles électriques et loi d Ohm........ 1 1.2 Circuits série, circuits parallèles............. 2 1.3 Le transistor

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

Développer, factoriser pour résoudre

Développer, factoriser pour résoudre Développer, factoriser pour résoudre Avec le vocabulaire Associer à chaque epression un terme A B A différence produit A+ B A B inverse quotient A B A opposé somme Écrire la somme de et du carré de + Écrire

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Algorithmique. Évaluation d expressions. Luc Brun. luc.brun@greyc.ensicaen.fr. Évaluation d expressions p.1/38

Algorithmique. Évaluation d expressions. Luc Brun. luc.brun@greyc.ensicaen.fr. Évaluation d expressions p.1/38 Algorithmique Évaluation d expressions Luc Brun luc.brun@greyc.ensicaen.fr Évaluation d expressions p.1/38 Plan Les différents types d expressions Expression complètement parenthésée (ECP), Expression

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

PRÉPARATION AUX COURS DE MATHÉMATIQUES 10

PRÉPARATION AUX COURS DE MATHÉMATIQUES 10 PRÉPARATION AUX COURS DE MATHÉMATIQUES 10 Programme d études 2002 Direction de l éducation française DONNÉES DE CATALOGAGE AVANT PUBLICATION (ALBERTA LEARNING) Alberta. Alberta Learning. Direction de l

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Quinzième cours Détermination des valeurs actuelle et accumulée d une annuité de début de période pour laquelle la période de paiement est plus courte que la période de capitalisation

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail