Algèbre binaire et Circuits logiques ( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Algèbre binaire et Circuits logiques (2007-2008)"

Transcription

1 Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani

2 Plan. Algèbre de Boole 2. Circuits logiques 3. Circuits combinatoires 4. Circuits séquentiels Algèbre de Boole Chapitre George Boole (85-864) est un mathématicien autodidacte anglais qui voulait faire un lien entre la logique (étude de la validité du raisonnement) et la représentation smbolique utilisée en mathématique. Algèbre binaire Il a écrit Écriture deu ouvrages et simplification sur le sujet : des fonctions Mathematical logiques Analsis of Logic (847) An Investigation of the Laws of Thought (854) Ces travau n ont pas connu d intérêt particulier auprès de la communauté mathématique et scientifique de son époque, mis à part che les logiciens

3 Algèbre de Boole C est 7 ans plus tard que les travau de Boole gagnent l intérêt de tous, lorsque Claude Shannon fait le lien entre l algèbre de Boole et la conception des circuits. Claude Shannon montre que l algèbre de Boole peut-être utilisée pour optimiser les circuits. Cette nouvelle avenue de recherche va ouvrir la voie à l ère numérique. «En utilisant l algèbre de Boole avec le sstème binaire, on peut concevoir des circuits capables d effectuer des opérations arithmétiques et logiques Boole repose sur des aiomes, des postulats et des théorèmes qu il faut connaître par coeur! Algèbre de Boole Propositions vraie ou fausses et opérateurs sur ces préposition Algèbre de Boole Sstèmes binaires: Vrai=, Fau= C est le cas des sstèmes numériques (circuits logiques) 2

4 L ordinateur est constitué de circuits logiques Élément de base est le transistor, deu états: Bloqué=, Conducteur=. Transistor Porte logique Circuit logique Unité d un sstème informatique Algèbre binaire Définitions: États logiques : et, Vrai et Fau Variable logique : Smbole pouvant prendre comme valeur des états logiques (A, b, c,...) Opérateurs logiques: Or, And, Not,... Fonction logique Fonction logique : Epression de variables et d opérateurs logiques. ( f = not(a) or (b OR c and d) 3

5 Éléments de base Variables d entrd entrée Les variables d entrée sont celles sur lesquelles on peut agir directement. Ce sont des variables logiques indépendantes. Variable de sortie Variable contenant l état de la fonction après l évaluation des opérateurs logiques sur les variables d entrée. Simplification d une d fonction logique Trouver la représentation (l écriture) la plus simple de la fonction réalisée: Algèbre de Boole Algèbre de Boole sur [,] = algèbre binaire Structure d algèbre de boole 2 lois de composition interne (Or, And) application unaire (Not) 2 Lois de Composition Interne : ET, OU Somme (OU, Réunion) s = a b = a or b Produit (ET, intersection) s = a. b = ab = a and b Nb: ab se lit «a OU b» pas «a PLUS b» Application unaire : Not (complémentation, inversion) s = a = not(a) NB: a se lit «a barre» ou «non a» 4

6 Fonctions logiques Fonction logique à n variables f(a,b,c,d,...,n) [,] n [,] - Une fonction logique ne peut prendre que deu valeurs (, ) - Les cas possibles forment un ensemble fini (card = 2 n ) La table de fonction logique = table de vérité Définition : (a, b, c,..., n) = vecteur d entrée Table de vérité Table de vérité: Enumération ligne par ligne des valeurs prises par f en fonction des valeurs de ses paramètres. Or s = a b S est vrai si a OU b est vrai. a b s And s = a. b S est vrai si a ET b sont vrais. a b s Not s = a S est vrai si a est fau a s 5

7 Notes sur les tables de vérité f (a, c, d,.., n) fonction logique à N entrées sera représentée par : une table à2 N lignes a b c f(a,b,c) Propriétés Commutativité ab = ba a.b = b.a Associativité a(bc) = (ab)c a.(b.c) = (a.b).c Distributivité a.(bc) = a.ba.c a(b.c) = (ab).(ac) Idempotence aa = a a.a = a Absorption aa.b = a a.(ab) = a 6

8 Démonstration distributivité? a.(bc) = a.ba.c a b c bc a.(bc) a.b a.c a.ba.c =? Propriétés (2) Élément neutre a = a a. = a Élément absorbant a = a. = Inverse Théorème de DE Morgan ab = a. b aa = a.a = a.b = a b 7

9 Équations logiques On eprime f(a, b, c,...) par une epression en a, b, c.. et des opérateurs logiques. Eemple: f = ab.c.(de) Principe de dualité: Une epression reste vraie si on interverti les par des et les ET par des OU Eemple: si ab= alors a.b= Je suis riche si je suis bien paé et que je ne dépense pas tout mon argent = Je suis pauvre si je ne suis pas bien paé ou que je dépense tout mon argent Les opérateurs NAND, NOR a b s s = a.b a b s s = ab S est vrai si a OU b est fau. NAND (No-AND) S est vrai si ni a, ni b ne sont vrais. NOR (No-OR ou NI) 8

10 L opérateur : XOR a b s s = a b = a.b a.b S est vrai si a OU b est vrai mais pas les deu. XOR (Ou-Eclusif) vaut si a est différent de b Opérateur de différence (disjonction) Propriétés du XOR XOR est associatif s = a b c... n vaut si le nombre de variable à est impaire. s = a b= a b= a b= a XNOR b XNOR = XOR vaut si a= b a = a a = a Propriétés a c= b c a= b a = b = a b 9

11 Écriture des équations logiques Définitions: Apparition d une variable = Lettre Produit de variables sous forme simple ou complémentées = Monôme Somme de monômes = Polnôme = a b.c.(d e) Epression algébrique = a b c (d e) Développement = a b c d. e Polnôme de 4 monômes de et 2 lettres Fonctions logiques et formes canoniques f fonction logique de n variables On appelle «minterme» de n variables, l un des produits de ces variables ou de leurs complémentaires. { a b c d} eemple n = 4 variables,,, m= abcd m= a b c d est un minterme est un autre minterme m= a b c n'est pas un minterme On appelle «materme» de n variables, l une des sommes de ces variables ou de leurs complémentaires. M = a b c d M = a b c d est un materme est un autre materme M = a b c n'est pas un materme

12 Formes canoniques Une fonction est sous forme canonique (ou normale) si chaque terme contient toutes les variables. L écriture sous forme canonique est unique. Eemples : f(,, ) = Minterme Première forme canonique ou forme normale disjonctive f (,, ) = ( ).( ) Materme Deuième forme canonique ou forme normale conjonctive Formes canoniques Si la fonction n est pas sous forme normale i.e. une des variables (au moins) ne figure pas dans un des termes La fonction est sous une forme simplifiée f (,, ) = = ( ) = ( ) = ( ) Première forme canonique Forme simplifiée Forme simplifiée Forme simplifiée

13 Formes canoniques: Choi Première forme canonique = epression des de la fonction Deuième forme canonique = epression des de la fonction Les deu formes canoniques sont équivalentes On choisit celle qui donne le résultat le plus simple peu de => deuième forme / peu de => première forme Simplification des fonctions Objectif : Fabriquer un sstème à moindre coût Méthodes : Algébriques rapide Graphiques fiable Programmables peu consommateur Résultat : on cherche la forme minimale d une fonction nombre minimal de monômes/nombre minimal de lettre par monôme Possibilité de plusieurs formes minimales: formes équivalentes 2

14 Simplification algébrique Applications des principes et propriétés de l algèbre de Boole Identités remarquables : 2 3 a. b a. b = b (ab).(ab)=b a a.b = a a.(ab) = a a a.b = ab a.(a b) = a. b Démonstrations : et 2 trivial 3 : a a. b = a. a a. b a. a a. b = ( a a).( a b) = a b a Simplification algébrique Règles de simplification : (Mintermes adjacents = seule variable qui change) : Deu mintermes adjacents Il reste l intersection commune : Deu matermes adjacents Il reste la réunion commune abc.. abc.. = ab..( c c) = ab. ( a b c).( a b c) = ( a b)( c c) = a b 2: On peut ajouter un terme déjà eistant à une epression logique. pas de coefficient en algèbre de Boole. 3: On ne change pas le résultat en multipliant l'un des termes par ou en ajoutant. Méthode algébrique toujours possible mais démarche intuitive qui dépend de l habileté et de l epérience. 3

15 4 Eercice Remplisse la table de vérité suivante pour prouver le théorème de DeMorgan : Considérons la fonction F définie par la table de vérité suivante : F F = Mintermes ) ( ) ( ) ( ) ( ) ( ) ( F = = = = Eercice 2

16 Eercice 3 On désire concevoir un circuit qui permet de gérer les notes des eamens, on donne: Eamen final (45 %), Eamen Partiel (35 %), TPs (2 %). Un étudiant est admis s il dispose d un pourcentage >= 55 %). Eemple: Final=, Partiel=8, Tps= F=, P=, T= Pourcentage = 65 % R= (étudiant admis). Donner la table de vérité. Donner la fonction logique correspondante. Simplifier le fonction obtenue. Simplification graphique: Karnaugh La méthode de Karnaugh permet de visualiser une fonction et d en tirer naturellement une écriture simplifiée. L élément de base de cette méthode est la table de Karnaugh qui représente toutes les combinaisons d états possibles pour un nombre de variables donné. La table de Karnaugh est un outil graphique qui permet de simplifier de manière méthodique des epressions booléennes. La construction des tables de Karnaugh eploite le codage de l information et la notion d adjacence 5

17 Karnaugh simplification graphique Principe: Mettre en évidence sur un graphique les mintermes (ou matermes) adjacents. Transformer les adjacences logiques en adjacences «géométriques». Trois phases: Transcrire la fonction dans un tableau codé, recherche des adjacents pour simplification équations des groupements effectués Description: Table de vérité vs Tableau de Karnaugh ligne case n variables 2 n cases Diagrammes de Karnaugh Avec n = 2: Entrées A et B 4 cases 6

18 Diagrammes de Karnaugh Avec n = 3: Entrées C, B et A 8 cases Remarque: Une seule variable change d état entre 2 cases adjacentes Diagrammes de Karnaugh Avec n = 4: Entrées D, C, B et A 6 cases 7

19 Diagrammes de Karnaugh Avec n = 5: Entrées,,, t et u 32 cases Simplification graphique Eemple: Depuis une table de vérité a b c f a bc 8

20 Eemple (Karnaugh) Entrées Sortie C B A S TABLE DE VÉRITÉ BA C DIAGRAMME DE KARNAUGH Simplification graphique Eemple 2: Par une première forme canonique (Par les ) a bc f( abc,, ) = abc.. abc.. abc.. 9

21 Simplification graphique Eemple 2: Par une deuième forme canonique (Par les ) a bc f ( a, b, c) = ( a b c).( a b c).( a b c) Simplification graphique Règles de simplification : Les groupements comportent une puissance de deu cases, 2 : Les 2 k cases forment un rectangle, 3 : On élimine variable(s) qui change(nt) d état Groupement de 2 k cases On élimine k variables 2 cases on élimine variable; 4 cases on élimine 2 variables; 8 cases on élimine 3 variables; 4 : Il faut utiliser au moins une fois chaque, le résultat est donné par la réunion logique de chaque groupement, 5 : Epression minimale si : les groupements les plus grands possibles utiliser les un minimum de fois 2

22 Eemple S = AB AB, simplification algébrique S = A (B B) = A Karnaught: Groupement de 2 cases: on élimine variable qui change d état (B) S=A Eemple 2 A B S Premier groupement: On élimine B Deuième groupement: On élimine A S = A B 2

23 Eemple 3 Tous les sont groupés! a bc Equation : Fabc (,, ) = ab. c Eemple 4 Par les a bc Equation : F( a, b, c) = ( a c).( b c) 22

24 23 Eemple 5 Z X S = Z S t Eemple 6 t

25 Eercice Eercice 2 24

26 Circuits logiques Circuit logique = Ensemble de portes logiques reliées entre elles correspondant à une epression algébrique. Porte logique (correspond à un opérateur logique) Porte Or Porte And Porte Not A B Y A B Y A Y Y = A B Y = A. B Y = A Portes dérivées Porte Nor Porte Nand A B Y A B Y Y = A B Y = A. B Porte Xor A B Y Y = A B 25

27 Conception d un circuit logique. Identifier les entrées et les sorties de la fonction. 2. Construire la table de vérité. 3. Identifier la fonction à partir de la table de vérité. 4. Simplifier la fonction. 5. Dessiner le schéma du circuit. Réalisation de circuits logiques Eemple: Circuit logique correspondant à l epression algébrique: (AB).(AC) Eercice Donner le circuit (Eercice 3, simplification algébrique). 26

28 Eercice 2 Pompe Niveau 2 C2 Niveau C Électrovanne Lorsque le niveau d eau est inférieure au niveau (Capteur C), on déclenche la pompe pour remplir le réservoir. Lorsque Niveau d eau > Niveau 2, on commande l électrovanne pour vider le réservoir.. Donner le circuit équivalent (sans simplification) 2. Donner le circuit simplifié. 27

Algèbre de BOOLE. Système binaire:

Algèbre de BOOLE. Système binaire: Algèbre de BOOLE 5V Sstème binaire: Un sstème binaire (signal, circuit, etc ) est un sstème qui ne peut eister que dans deu états autorisés. fermé : v 0 = 0v ouvert: v 0 = 5v R Notations: numérique : et

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Algèbre de Boole - Fonctions Booléennes

Algèbre de Boole - Fonctions Booléennes Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Algèbre de Boole - Fonctions Booléennes jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture

Plus en détail

L'algèbre de Boole (1)

L'algèbre de Boole (1) L'algèbre de Boole (1) (1) Georges BOOLE Né le 2 novembre 1815 à Lincoln, dans le Lincolnshire (Angletere), décédé le 8 décembre 1864 à Ballintemple (Ireland). Mathématicien et logicien qui créa une algèbre

Plus en détail

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale.

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale. GM Sciences et Techniques Industrielles Page sur 5 Automatique et Informatique Industrielle Génie Mécanique Cours Première & - LA VARIABLE BINAIRE L électrotechnique, l électronique et la mécanique étudient

Plus en détail

VI- Des transistors aux portes logiques. Conception de circuits

VI- Des transistors aux portes logiques. Conception de circuits 1 VI- Des transistors aux portes logiques. Conception de circuits Nous savons que l ordinateur traite uniquement des instructions écrites en binaire avec des 0 et des 1. Nous savons aussi qu il est formé

Plus en détail

ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES

ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES 1 PROPRIÉTÉS L algèbre de Boole est définie sur l'ensemble E2 constitué des éléments {0,1}. Il eiste une relation d'ordre 0 < 1, et trois opérations de base. La

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires Systèmes logiques combinatoires Table des matières 1. Variable binaire...2 2. Fonctions logiques de base...2 2.1. Fonction OUI (YES)...2 2.2. Fonction NON (NOT)...2 2.3. Fonction ET (AND)...3 2.4. Fonction

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

LOGIQUE COMBINATOIRE

LOGIQUE COMBINATOIRE MPI/PCI LOGIQUE COMBINATOIRE I. VARIABLE LOGIQUE. Rappel : structure d une chaine fonctionnelle d un système automatisé. Les ordres et les informations peuvent être : Analogique (par exemple une tension

Plus en détail

Plan. Définition. Introduction. Fonctions logiques (ET, OU, NON) Règles de l Alg. Algèbre de Boole. orème de De Morgan

Plan. Définition. Introduction. Fonctions logiques (ET, OU, NON) Règles de l Alg. Algèbre de Boole. orème de De Morgan Plan Définition Introduction onctions logiques (ET, OU, NON) Règles de l lg l lgèbre de oole Théor orème de De Morgan Simplification des fonctions logiques Définition Définit en 847 par Georges oole (85-864),

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

Circuits logiques et électronique numérique

Circuits logiques et électronique numérique Circuits logiques et électronique numérique -Support de cours - COURS ING3 Année 2007-2008 Benoît ecoux Sommaire Introduction générale... 4 Partie I) Fonctions logiques de base et circuits associés...

Plus en détail

MPI Activité.10 : Logique binaire Portes logiques

MPI Activité.10 : Logique binaire Portes logiques MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement

Plus en détail

Algèbre de Boole. Chapitre. 2.1 Notions théoriques

Algèbre de Boole. Chapitre. 2.1 Notions théoriques Chapitre 2 Algèbre de Boole G oerge Boole (1815-1864), mathématicien autodidacte anglais, a développé une algèbre permettant de manipuler les propositions logiques au moyen d équations mathématiques où

Plus en détail

G. Koepfler Numération et Logique Forme normale disjonctive/conjonctive L

G. Koepfler Numération et Logique Forme normale disjonctive/conjonctive L Simplification des FNC La FNC de A est (a b c) (a b c) ( a b c) Il y a 3 termes : pour les termes 1 et 2 : (a b c) (a b c) eq (a c) la formule A est donc équivalente à (a c) ( a b c) Finalement A eq (a

Plus en détail

Logique combinatoire Sciences de l'ingénieur

Logique combinatoire Sciences de l'ingénieur 1 Représentation binaire Un ordinateur est une machine qui manipule des chiffres binaires. Une variable binaire ne peut prendre que deux valeurs : 0 ou 1. Ces valeurs peuvent représenter : un interrupteur

Plus en détail

Chapitre II : Les fonctions logiques

Chapitre II : Les fonctions logiques Chapitre II : Les fonctions logiques I. Introduction Les circuits logiques sont caractérisés par des variables binaires, qui affectent des transitions entre deu états possibles. Ces deu états sont appelés

Plus en détail

CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE

CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE 22 CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE rappel du chap. : -on emploie un système binaire limité à 2 états, -problème: étant donné une relation entrée/sortie binaire, faire le design du hardware qui

Plus en détail

Fiche 2. Les ensembles représentations et réductions Cas des représentations binaires

Fiche 2. Les ensembles représentations et réductions Cas des représentations binaires Fiche 2 Les ensembles représentations et réductions Cas des représentations binaires 1/ Les ensembles C est une notion qui nous est familière. Un groupe d éléments de même nature constitue un ensemble

Plus en détail

Algèbre de Boole. ELE1300 Circuits logiques. Algèbre de Boole ( ) Algèbre de Boole. Une algèbre de Boole est la donnée de : un ensemble E,

Algèbre de Boole. ELE1300 Circuits logiques. Algèbre de Boole ( ) Algèbre de Boole. Une algèbre de Boole est la donnée de : un ensemble E, lgèbre de oole George oole (181-18) est un mathématicien autodidacte anglais qui voulait faire un lien entre la logique (étude de la validité du raisonnement) et la représentation symbolique utilisée en

Plus en détail

Électronique Numérique

Électronique Numérique Électronique Numérique Séance 6 Logique combinatoire Pr. Khalid ASSALAOU Plan Circuits logiques combinatoires de base Conception de circuits logiques combinatoires Propriété universelle du NON-ET et NON-OU

Plus en détail

Cours 2 Microprocesseurs

Cours 2 Microprocesseurs 4//2 Cours 2 Microprocesseurs Jalil Boukhobza LC 26 boukhobza@univ-brest.fr Chemin de données Font l objet de ce cours: Les portes logiques et circuits combinatoires Le traitement de quelques opérations

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

IFT1215 Introduction aux systèmes informatiques

IFT1215 Introduction aux systèmes informatiques Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d

Plus en détail

Objet du cours. Etudier les circuits logiques combinatoires opposés aux circuits logiques séquentiels. x 1

Objet du cours. Etudier les circuits logiques combinatoires opposés aux circuits logiques séquentiels. x 1 Introduction Électronique numérique ou digitale (microprocesseurs, ordinateurs, calculatrices, ) et l électronique analogique (radio, télévision, amplificateurs, ). Interface : les convertisseurs numériques-analogiques

Plus en détail

Processeurs et Architectures Numériques. Introduction et logique combinatoire

Processeurs et Architectures Numériques. Introduction et logique combinatoire Processeurs et Architectures Numériques Introduction et logique combinatoire Objectifs du cours Connaitre les fonctions de base de l électronique numérique Comprendre la logique combinatoire et synchrone

Plus en détail

AUTOMATISME COMBINATOIRE

AUTOMATISME COMBINATOIRE AUTOMATISME COMBINATOIRE - 1 - AUTOMATISME COMBINATOIRE 1 INTRODUCTION... 2 2 VARIABLES LOGIQUES :... 2 3 OPERATIONS LOGIQUES :... 3 4 FONCTIONS OU OPERATEURS LOGIQUES :... 4 5 REGLES DE SIMPLIFICATION...

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Travaux Dirigés de Logique Combinatoire

Travaux Dirigés de Logique Combinatoire Travaux Dirigés de Logique Combinatoire 1 TD n 1 Algébre de BOOLE Propriétés et formes canoniques 1. Méthode algébrique. a) Les 3 opérateurs de base de l algèbre de Boole sont les opérateurs «non», «et»,

Plus en détail

Techniques digitales. V. Pierret. vpierret@iset-liege.be vpierret@scarlet.be

Techniques digitales. V. Pierret. vpierret@iset-liege.be vpierret@scarlet.be Techniques digitales V. Pierret vpierret@iset-liege.be vpierret@scarlet.be PREMIERE PARTIE RAPPELS L ALGEBRE DE BOOLE Les fonctions logiques de base: NON, ET, OU Les fonctions logiques de base La fonction

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Algèbre de BOOLE. Plan. Introduction. Définition. Introduction

Algèbre de BOOLE. Plan. Introduction. Définition. Introduction Plan lgèbre de OOLE Introduction Définition Introduction onctions logiques (ET, OU, NON) Règles de l lgèbre de oole Théorème de De Morgan Simplification des fonctions logiques 2 Définition Définit en 847

Plus en détail

CHAPITRE 3 LES CIRCUITS LOGIQUES.

CHAPITRE 3 LES CIRCUITS LOGIQUES. chapitre 3 : algèbre de oole et circuit logiques HPITRE 3 LES IRUITS LOGIQUES. 1. Les circuits logiques L'ordinateur est un dispositif électronique sophistiqué qui traite l'information mise sous forme

Plus en détail

REPRESENTATION ET SIMPLIFICATION DES FONCTIONS LOGIQUES COMBINATOIRES

REPRESENTATION ET SIMPLIFICATION DES FONCTIONS LOGIQUES COMBINATOIRES Chapitre 3 REPRESENTATION ET SIMPLIFICATION DES FONCTIONS LOGIQUES COMBINATOIRES 1. OBJECTIFS Etudier la représentation algébrique d une fonction logique, Comprendre la simplification algébrique d une

Plus en détail

Architecture des ordinateurs : fiche de TD 1

Architecture des ordinateurs : fiche de TD 1 INFO 202 2009/2010 Architecture des ordinateurs : fiche de TD 1 Logique & arithmétique binaire décembre 2009 1 Représentation des nombres Question 1.1 : Combien de nombres peut-on coder sur 4, 8, 16 et

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique?

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique? Domaine Sciences et Technologies Licence d informatique Automates et circuits 2ième Devoir Surveillé Durée : 2 heures Année 2012-13 Aucun document autorisé Calculatrice interdite Nous vous recommandons

Plus en détail

I/ Mise en situation Système technique : Radiateur électrique soufflant

I/ Mise en situation Système technique : Radiateur électrique soufflant Chapitre II Leçon n 1 LOGIQUE COMBINATOIRE Système combinatoire I/ Mise en situation Système technique : Radiateur électrique soufflant Présentation : La figure ci-contre représente un radiateur électrique

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires Systèmes logiques combinatoires 1. Introduction Système de commande logique 2. Algèbre de Boole 3. Représentation d une fonction logique 4. Simplification algébrique 5. Simplification graphique 6. Réalisation

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

Cours Premier semestre

Cours Premier semestre C.Belleudy, D.Gaffé Université de Nice-Sophia Antipolis DEUG Première année SM,MP,MI UECS EEA Électronique Numérique Cours Premier semestre C. Belleudy, D.Gaffé version 3. 2 Électronique Numérique Chapitre

Plus en détail

Conception de circuits numériques et architecture des ordinateurs

Conception de circuits numériques et architecture des ordinateurs Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot Année universitaire 2014-2015 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Codage des nombres en base 2, logique

Plus en détail

LOGIQUE ET FONCTIONS COMBINATOIRES

LOGIQUE ET FONCTIONS COMBINATOIRES I. Définitions I.1. Variable binaire / Bit LOGIQUE ET FONCTIONS COMBINATOIRES On appelle variable binaire (ou logique), une variable prenant ses valeurs dans l ensemble {0, 1}. Il s'agit d'un bit (Binary

Plus en détail

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16.

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16. 1. Systèmes de numération 11. Système décimal : Base 10 C est le système utilisé dans la vie courante, il est basé sur le nombre 10. Pour représenter les nombres décimaux, on utilise les chiffres de 0

Plus en détail

1 - Les systèmes de Numération

1 - Les systèmes de Numération Les systèmes de Numération 1 - Les systèmes de Numération 1) Calculer l équivalent décimal des nombres 54 8, 587 8, 110 3, 1101 2, AB9 16 2) Calculer l équivalent binaire et octal des nombres décimaux

Plus en détail

Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique.

Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique. Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique. Il permet à l étudiant de comprendre le fonctionnement de circuits logiques

Plus en détail

Algèbre de Boole, circuits logiques p. 1

Algèbre de Boole, circuits logiques p. 1 Algèbre de Boole, circuits logiques Vincent Risch, septembre 2006, révision mai 2014 I.U.T., Aix-Marseille Université Algèbre de Boole, circuits logiques p. 1 Plan Circuits combinatoires dispositifs de

Plus en détail

Type de document : Cours

Type de document : Cours Section : S Option : Sciences de l ingénieur Discipline : Génie Électrique Les opérations arithmétiques sur les nombres binaires Domaine d application : Traitement programmé de l information Type de document

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B, C et D sont des variables booléennes.

Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B, C et D sont des variables booléennes. ELE1300 Automne 2012 - Examen intra 1/13 Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B, C et D sont des variables booléennes. a) En utilisant exclusivement l algèbre booléenne, démontrez

Plus en détail

201-NYC ALGÈBRE LINÉAIRE ET GÉOMÉTRIE VECTORIELLE. Introduction

201-NYC ALGÈBRE LINÉAIRE ET GÉOMÉTRIE VECTORIELLE. Introduction 201-NYC ALGÈBRE LINÉAIRE ET GÉOMÉTRIE VECTORIELLE Introduction Algèbre VS Géométrie Algèbre VS Géométrie Algèbre VS Géométrie Pour forger l intuition Le plan Pour forger l intuition Pour forger l intuition

Plus en détail

Calcul Booléen et Circuits Logiques

Calcul Booléen et Circuits Logiques Chapitre 7 Calcul Booléen et Circuits Logiques 7.1 Traitement Logique et Machine 7.1.1 Exemple Nos raisonnement sont usuellement simples : si ma voiture ne marche pas et il pleut alors je prends le metro

Plus en détail

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations Serge Iovleff 13 septembre 2004 Quelques références Ma Page http ://www.iut-info.univ-lille1.fr/ iovleff Un Cours réalisé par des

Plus en détail

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines eercices corrigés 8 janvier 2012 Eercice 1 Eercice 2 Eercice Eercice 4 Eercice 5 Eercice 6 Eercice 7 Eercice 1 Enoncé Soit la fonction f : + 1 Représenter graphiquement la fonction f. 2 Donner le sens

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Chapitre 3 :Algèbre de Boole

Chapitre 3 :Algèbre de Boole hapitre 3 :lgèbre de oole. Introduction Les machines numériques sont constituées d un ensemble de circuits électroniques. haque circuit fournit une fonction logique bien déterminée ( addition, comparaison,.).

Plus en détail

Université de Metz. Cours de Logique et d APIs D.E.U.G. STPI

Université de Metz. Cours de Logique et d APIs D.E.U.G. STPI Université de Metz Cours de Logique et d APIs D.E.U.G. STPI Année Universitaire 2002/2003 Y. Morère Cette page est laissée blanche intentionnellement Table des matières 1 Représentation des nombres 11

Plus en détail

RA Circuits logiques

RA Circuits logiques 243-206-RA Circuits logiques Logique combinatoire Systèmes de numérotation représentation et arithmétique binaires. Équations logiques et méthodes de simplification Par: Jean-François Fortier 1 Plan Systèmes

Plus en détail

Introduction à l informatique, à Python, et représentation des nombres en machine

Introduction à l informatique, à Python, et représentation des nombres en machine Introduction à l informatique, à Python, et représentation des nombres en machine Table des matières Qu est-ce-que l informatique? Qu est-ce-qu un ordinateur? 2 Principaux composants...............................................

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab Cours d algèbre Maths1 LMD Sciences et Techniques Par M. Mechab 2 Avant Propos Ceci est un avant projet d un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

Circuits Logiques الدارات النطقية

Circuits Logiques الدارات النطقية Module: rchitecture des ordinateurs ère MI S2 Circuits Logiques الدارات النطقية Taha Zerrouki Taha.zerrouki@gmail.com Module: rchitecture des ordinateurs ère MI S2 Circuits Logiques الدارات النطقية Taha

Plus en détail

CTM 6 : Polynômes. Calculer, déterminer, estimer, approximer. Repérer, comparer

CTM 6 : Polynômes. Calculer, déterminer, estimer, approximer. Repérer, comparer CTM 6 : Polynômes I. Compétences à atteindre C1 Calculer, déterminer, estimer, approximer C2 Appliquer, analyser, résoudre des problèmes C4 Repérer, comparer C7 Acquérir les notions propres aux mathématiques

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Fiche descriptive : Statistique descriptive avec Sinequanon

Fiche descriptive : Statistique descriptive avec Sinequanon Fiche descriptive : Statistique descriptive avec Sinequanon Public concerné : Enseignants de tous niveau désirant découvrir des possibilités du logiciel Objectif : Proposer une approche du logiciel pour

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Mathématiques mise à niveau - 521

Mathématiques mise à niveau - 521 Mathématiques mise à niveau - 521 Ces trois modules de mathématiques 521 ont été conçus pour préparer le PR1 de l activité SES option Informatique (EV7). Cette formation est néanmoins ouverte aux agents

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire:

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: Laurent MURA. 1 SOMMAIRE: 1. Introduction 2. Les fonctions logiques élémentaires 3. La forme algébrique 4 Fonctions logiques OU-NON

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

Chapitre 3 : L algèbre de Boole. Exemple : A, B, C trois variables logiques

Chapitre 3 : L algèbre de Boole. Exemple : A, B, C trois variables logiques 1. Définition Pour réaliser un circuit électronique on doit avoir un modèle mathématique. L'algèbre de oole (Georges oole 1815-1864) est une algèbre permettant de traduire les signaux électriques en expressions

Plus en détail

1 Valeur d une expression

1 Valeur d une expression PCSI Informatique: Cours2 1 VALEUR D UNE EXPRESSION Expressions et variables en informatique 1 Valeur d une expression Expression : suite de caractères qui a un sens pour la machine Valeur d une expression

Plus en détail

Logique combinatoire. Tous droits réservés www.depannezvous.com

Logique combinatoire. Tous droits réservés www.depannezvous.com Logique combinatoire Tous droits réservés www.depannezvous.com Combinatoire Lorsque l état de la sortie dépend exclusivement de l état des entrées. On appel cette logique la logique combinatoire. Exemple

Plus en détail

LES AUTOMATISMES ALGEBRE LOGIQUE GJC. Lycée L.RASCOL 10,Rue de la République BP ALBI CEDEX

LES AUTOMATISMES ALGEBRE LOGIQUE GJC. Lycée L.RASCOL 10,Rue de la République BP ALBI CEDEX LES AUTOMATISMES ALGEBRE LOGIQUE GJC Lycée L.RASCOL 10,Rue de la République BP 218. 81012 ALBI CEDEX SOMMAIRE BASES DE NUMERATION CORRESPONDANCE ENTRE LES BASES CHANGEMENT DE BASE Passage d une base «B»

Plus en détail

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT

Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT Les portes logiques Nous avons jusqu ici utilisé des boutons poussoirs et une lampe pour illustrer le fonctionnement des opérateurs logiques. En électronique digitale, les opérations logiques sont effectuées

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

TRIGONOMETRIE - EXERCICES CORRIGES

TRIGONOMETRIE - EXERCICES CORRIGES Cours et eercices de mathématiques TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Eercice n. Compléter les égalités en respectant bien les notations de l énoncé cos ABC = sin ABC = tan ABC

Plus en détail

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide 1 Équations du e degré Résoudre dans R les équations suivantes : 1 3 5 = 0 5 + = 0 3 + 6 = 0 4 6 + 9 = 0 5 ( 3) = ( 1) 6 ( )( + 3) = ( )(4 + 1) Équations avec changements de variable Résoudre dans R les

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

COURS L1 Année Isabelle Sirot

COURS L1 Année Isabelle Sirot Information numérique COURS L1 Année 2007-2008 Isabelle Sirot 2 Plan du document Chapitre 1 : La représentation de l information : codage numérique... 5 1) Les systèmes de numération... 5 2) Conversion

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Liste des résultats d apprentissage et indicateurs de rendement

Liste des résultats d apprentissage et indicateurs de rendement ANNEXE Mathématiques appliquées 3232 Liste des résultats d apprentissage et indicateurs de rendement (incluant les pages de au programme d études) PROGRAMME D ÉTUDES - MATHÉMATIQUES APPLIQUÉES 3232 (2013)

Plus en détail

BASES DU RAISONNEMENT

BASES DU RAISONNEMENT BASES DU RAISONNEMENT P. Pansu 10 septembre 2006 Rappel du programme officiel Logique, différents types de raisonnement. Ensembles, éléments. Fonctions et applications. Produit, puissances. Union, intersection,

Plus en détail

Logique combinatoire. Kachouri Abdennaceur ENIS Département GE. Université Virtuelle de Tunis

Logique combinatoire. Kachouri Abdennaceur ENIS Département GE. Université Virtuelle de Tunis Logique combinatoire Kachouri Abdennaceur ENIS Département GE Université Virtuelle de Tunis 2006 Nouvelle page 1 Introduction Ce module porte sur les circuits logiques combinatoire... Il couvre plus spécifiquement

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

OUVRE PORTAIL DOMOTICC. CI6 : Proposer et valider une solution de l organisation d une partie commande répondant à un cahier des charges donné.

OUVRE PORTAIL DOMOTICC. CI6 : Proposer et valider une solution de l organisation d une partie commande répondant à un cahier des charges donné. OUVRE PORTAIL DOMOTICC CI6 : Proposer et valider une solution de l organisation d une partie commande répondant à un cahier des charges donné. À l issue des TP ce Centre d Intérêt, les compétences acquises

Plus en détail

Recherche et simplification des fonctions logiques combinatoires

Recherche et simplification des fonctions logiques combinatoires Chapitre IV: Recherche et simplification des fonctions logiques combinatoires Introduction: Le fonctionnement d un système logique combinatoire est décrit: - Littéralement: par une ou plusieurs propositions

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Les droites dans un repère

Les droites dans un repère R.Oppé Chapitre Bac Pro Les droites dans un repère Les apprentissages : Comment construire une droite? Comment trouver l équation d une droite? Les outils et leurs modes d emploi : ( à consulter chaque

Plus en détail

Architecture des ordinateurs

Architecture des ordinateurs Architecture des ordinateurs Cours 1 17 septembre 2012 Archi 1/48 Avant de commencer contact : carine.pivoteau@univ-mlv.fr page web du cours : http://http://www-igm.univ-mlv.fr/~pivoteau/archi/ planning,

Plus en détail