Organisation des Ordinateurs

Dimension: px
Commencer à balayer dès la page:

Download "Organisation des Ordinateurs"

Transcription

1 Organisation des Ordinateurs Bernard Boigelot URL : 1

2 Chapitre 1 Les circuits digitaux 2

3 Les ordinateurs Définition: Un ordinateur est une machine capable de résoudre des problèmes et de traiter des données en effectuant des opérations préétablies. But du cours: Etudier le fonctionnement interne des ordinateurs. 3

4 L information (I) Question: Quand peut-on dire qu un objet A possède de l information? A B 42??? Réponse: Lorsque A connaît une donnée (p.ex., la valeur d une variable) et cette donnée peut être communiquée à un autre objet B qui ne la connaît pas. 4

5 L information (II) Remarque: Communiquer une donnée de A à B s effectue via des signaux transmis via un canal de communication. Définition: L information est une donnée pouvant être transmise par un signal (ou par une combinaison de signaux). Exemple: Compact Disc. 5

6 Les signaux continus Les signaux véhiculant de l information peuvent prendre plusieurs formes. Définition: Un signal continu est un signal qui peut prendre un nombre infini de valeurs dans un intervalle donné. min max Inconvénient: L information n est pas transmise fiablement, car la valeur de chaque signal est entachée d imprécisions. 6

7 Le bruit L ensemble des imprécisions affectant un signal peut être regroupé en un signal de bruit. Lorsque A transmet un signal à B, on a donc: signal reçu par B = signal émis par A + signal de bruit Remarques: Le bruit ne peut jamais être entièrement éliminé d un signal continu. Le bruit limite la quantité de données pouvant être transmises par un signal 7

8 Les signaux discrets Définition: Un signal discret est un signal possédant un nombre fini de valeurs nominales. Avantage: La transmission fiable de données est possible malgré la présence de bruit. En effet, si l amplitude du signal de bruit est suffisamment petite, les valeurs transmises peuvent toujours être correctement identifiées à leur réception. Dans les ordinateurs, l information est transmise, traitée et mémorisée au moyen de signaux discrets. 8

9 Exemple de signaux discrets Tonalités de signalisation d un téléphone à touches: 1209 Hz 1336 Hz 1477 Hz 687 Hz Hz Hz 941 Hz # 9

10 La quantité d information (I) Question: Comment peut-on quantifier la quantité d information transportée par un signal discret? Desiderata: Plus la probabilité de recevoir une valeur est faible, plus la quantité d information est élevée. inf > inf Lorsque l on combine des signaux indépendants, l information doit s additionner. inf = 3 inf 10

11 La quantité d information (II) Définition: La quantité d information transmise par une valeur discrète reconnaissable de façon fiable est égale à log 2 1 p, où p dénote la probabilité que cette valeur soit reçue. Cette quantité d information s exprime en bits (binary digits). Par conséquent, la quantité d information contenue dans un signal pouvant prendre N valeurs équiprobables (reconnaissables de façon fiable) vaut log 2 N. Un bit représente donc la quantité d information permettant de distinguer fiablement deux valeurs équiprobables. 11

12 Exemples On transmet une lettre de l alphabet au moyen d un signal de tension: A = 0 V, B = 0,04 V, C = 0,08 V,..., Y = 0,96 V, Z = 1 V. Situation 1: Les 26 valeurs peuvent être fiablement reconnues. Si les probabilités de recevoir un E et un Z sont (resp.) égales à 0,18 et 0,0007, la quantité d information transmise par les signaux correspondants vaut (resp.) et log 2 1 0,18 log 2 1 0,0007 2,47 bits 10,48 bits. 12

13 Si les 26 lettres ont la même probabilité d être reçues, la quantité d information contenue dans un signal vaut log ,7 bits. Situation 2: On ne peut distinguer que les tensions supérieures ou inférieures à 0,5 V. Si les 2 valeurs sont équiprobables, la quantité d information véhiculée par un signal vaut log 2 2 = 1 bit. 13

14 L abstraction digitale Dans les circuits d un ordinateur, l information est représentée par une grandeur physique discrète: la tension électrique (le plus souvent), mais parfois aussi le courant, la fréquence, l intensité lumineuse,.... Pour décrire les circuits de l ordinateur, il est plus commode de faire référence aux valeurs représentées par les signaux plutôt qu aux grandeurs physiques utilisées. La correspondance entre un signal discret et la valeur représentée par celui-ci porte le nom d abstraction digitale. L abstraction digitale va nous permettre de décrire des circuits élémentaires et de les combiner de manière à obtenir des circuits complexes, en faisant abstraction des aspects électriques et électroniques du problème. 14

15 L algèbre booléenne Pour des raisons de simplicité et d immunité maximale au bruit, les signaux discrets utilisés dans les ordinateurs sont binaires. Rappel: La quantité d information contenue dans un signal binaire équiprobable vaut log 2 2 = 1 bit. L algèbre booléenne est la théorie des opérations impliquant des variables binaires. Par convention, les deux valeurs que peut prendre une variable booléenne sont appelées vrai et faux. Ces deux valeurs peuvent aussi être dénotées par des nombres: vrai = 1, faux = 0. 15

16 Les tables de vérité Définition: Une fonction booléenne d arité n est une fonction de n variables booléennes d entrée vers une variable booléenne de sortie (n 0). Pour définir une fonction booléenne, il suffit de donner sa valeur de sortie pour toutes les combinaisons possibles de valeurs de ses arguments. La table associant ces valeurs de sortie aux combinaisons de valeurs d entrée est appelée table de vérité. La table de vérité d une fonction d arité n possède 2 n lignes. 16

17 Exemple Table de vérité de la fonction f à trois arguments qui est vraie si et seulement si exactement deux de ses arguments sont vrais: x 1 x 2 x 3 f(x 1, x 2, x 3 )

18 Les fonctions booléennes de base Question: Combien y a-t-il de fonctions booléennes distinctes d arité n? Réponse: La table de vérité d une fonction d arité n possède 2 n lignes, et Chaque ligne d une table de vérité peut prendre la valeur 0 ou la valeur 1. Il y a 2 2n tables de vérité distinctes. Il existe donc 2 22 = 16 fonctions booléennes d arité 2. Certaines de ces fonctions présentent un intérêt particulier. 18

19 La fonction AND Cette fonction possède la table de vérité suivante: x 1 x 2 AND(x 1, x 2 ) Elle se dénote par l opérateur binaire : AND(x 1, x 2 ) = x 1 x 2 La valeur x 1 x 2 est vraie si et seulement si x 1 et x 2 sont vrais. 19

20 La fonction OR Cette fonction possède la table de vérité suivante: x 1 x 2 OR(x 1, x 2 ) Elle se dénote par l opérateur binaire + : OR(x 1, x 2 ) = x 1 + x 2 La valeur x 1 + x 2 est vraie si et seulement si x 1 ou x 2 sont vrais. 20

21 La fonction XOR Cette fonction (aussi appelée ou exclusif) possède la table de vérité suivante: x 1 x 2 XOR(x 1, x 2 ) Elle se dénote par l opérateur binaire : XOR(x 1, x 2 ) = x 1 x 2 La valeur x 1 x 2 est vraie si et seulement si x 1 ou bien x 2 est vrai. 21

22 La fonction NAND Cette fonction possède la table de vérité suivante: x 1 x 2 NAND(x 1, x 2 ) Remarque: Pour les mêmes valeurs d arguments, cette fonction renvoie toujours une valeur opposée à celle de la fonction AND. On a donc NAND(x 1, x 2 ) = NOT (AND(x 1, x 2 )), où NOT est une fonction unaire renvoyant une valeur différente de celle de son argument. 22

23 La fonction NOT La table de vérité de cette fonction est par conséquent la suivante: x 1 NOT (x 1 ) Elle se dénote par une barre horizontale au dessus de son argument, ou bien par l opérateur unaire : NOT (x 1 ) = x 1 = x 1. On a donc NAND(x 1, x 2 ) = x 1 x 2. 23

24 La fonction NOR Cette fonction possède la table de vérité suivante: x 1 x 2 NOR(x 1, x 2 ) Remarque: Pour les mêmes valeurs d arguments, cette fonction renvoie toujours une valeur opposée à celle de la fonction OR. On a donc NOR(x 1, x 2 ) = x 1 + x 2. 24

25 Les expressions booléennes Les opérateurs, +, et permettent de construire des expressions. Par convention, l opérateur a une priorité plus élevée que + et : x 1 + x 2 x 3 est équivalent à x 1 + (x 2 x 3 ). De même, x 1 x 2 x 3 est équivalent à x 1 (x 2 x 3 ). Nous allons étudier quelques propriétés des expressions booléennes. 25

26 La commutativité Les opérateurs, + et sont commutatifs: x 1 x 2 = x 2 x 1, x 1 + x 2 = x 2 + x 1, x 1 x 2 = x 2 x 1. L associativité Les opérateurs, + et sont associatifs: x 1 (x 2 x 3 ) = (x 1 x 2 ) x 3, x 1 + (x 2 + x 3 ) = (x 1 + x 2 ) + x 3, x 1 (x 2 x 3 ) = (x 1 x 2 ) x 3. Remarque: L associativité permet d éliminer les parenthèses des expressions précédentes. 26

27 La distributivité L opérateur est distributif sur les opérateurs + et : x 1 (x 2 + x 3 ) = (x 1 x 2 ) + (x 1 x 3 ), x 1 (x 2 x 3 ) = (x 1 x 2 ) (x 1 x 3 ). L opérateur + est distributif sur l opérateur : x 1 + (x 2 x 3 ) = (x 1 + x 2 ) (x 1 + x 3 ). Remarque: Cette dernière propriété n est pas valide en arithmétique! 27

28 Les règles de DeMorgan Ces règles permettent d exprimer chacun des opérateurs + et en fonction de l autre et du complément : x 1 + x x n = x 1 x 2 x n, x 1 x 2 x n = x 1 + x x n. Il est aussi possible d exprimer l opérateur en fonction des autres opérateurs: x 1 x 2 = x 1 x 2 + x 1 x 2. 28

29 Les règles d absorption Ces règles permettent de simplifier certaines expressions: x 1 + (x 1 x 2 ) = x 1 x 1 (x 1 + x 2 ) = x 1 x 1 + (x 1 x 2 ) = x 1 + x 2 x 1 (x 1 + x 2 ) = x 1 x 2 x 1 (x 1 x 2 ) = x 1 x 2 x 1 (x 1 x 2 ) = x 1 x 2 Autres règles x = 1 x 1 0 = 0 x 1 0 = x 1 x = x 1 x 1 1 = x 1 x 1 1 = x 1 x 1 + x 1 = x 1 x 1 x 1 = x 1 x 1 x 1 = 0 x 1 + x 1 = 1 x 1 x 1 = 0 x 1 x 1 = 1 29

30 Exercice On souhaite construire une expression booléenne dénotant la fonction possédant la table de vérité x 1 x 2 x 3 f(x 1, x 2, x 3 ) Cette fonction n est vraie que pour trois valeurs de ses arguments: (0, 1, 1), (1, 0, 1), (1, 1, 0). 30

31 Pour chaque valeur des arguments, on peut écrire une expression qui est vraie pour cette valeur, et fausse pour toutes les autres: f (0,1,1) (x 1, x 2, x 3 ) = x 1 x 2 x 3 f (1,0,1) (x 1, x 2, x 3 ) = x 1 x 2 x 3 f (1,1,0) (x 1, x 2, x 3 ) = x 1 x 2 x 3. La fonction f est vraie si au moins une des trois fonctions précédentes est vraie pour les mêmes valeurs des arguments: f(x 1, x 2, x 3 ) = f (0,1,1) (x 1, x 2, x 3 ) + f (1,0,1) (x 1, x 2, x 3 ) + f (1,1,0) (x 1, x 2, x 3 ) = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3. En appliquant les règles de l algèbre booléenne: f(x 1, x 2, x 3 ) = (x 1 x 2 + x 1 x 2 ) x 3 + x 1 x 2 x 3 = (x 1 x 2 ) x 3 + x 1 x 2 x 3. 31

32 Les niveaux de tension Les circuits de l ordinateur manipulent les valeurs booléennes en associant un niveau de tension nominal à chacune d elles. Il est important de pouvoir distinguer fiablement les deux valeurs, même en présence de bruit. On choisit donc deux niveaux de tension les plus éloignés possible l un de l autre: La tension nulle pour la valeur 0; La tension d alimentation pour la valeur 1. Il est cependant impossible de construire des circuits qui produisent exactement ces tensions. On définit donc des intervalles de validité plutôt que des niveaux de tension ponctuels. Les circuits sont construits de façon à ne générer que des signaux valides. 32

33 Les marges d erreur Bien que les signaux soient valides à la sortie des composants qui les génèrent, ils sont corrompus par une certaine quantité de bruit avant d arriver à l entrée d autres composants. On tient compte de ce bruit en dotant chaque intervalle de validité d une marge d erreur qui lui est adjacente. Les signaux situés dans les marges d erreur peuvent être fiablement décodés en valeurs booléennes. 33

34 Exemple 5 V Intervalle de validité (valeur 1) Marge d erreur (1) 4 V 3, 5 V Plage interdite Marge d erreur (0) 1, 5 V 1 V Intervalle de validité (valeur 0) 0 V 34

35 La discipline statique Un circuit ne peut être connecté à d autres circuits que s il satisfait aux règles suivantes: Si on fournit des signaux valides constants aux entrées du circuit, alors ce dernier finira par générer des signaux de sortie valides après un certain délai de propagation. Un signal d entrée est considéré valide si sa tension se situe dans un des deux intervalles de validité ou dans la marge d erreur correspondante (mais pas dans la plage interdite). Un signal de sortie est considéré valide si sa tension appartient à un des deux intervalles de validité (mais pas à une marge d erreur ni à la plage interdite). L ensemble de ces règles constitue une discipline statique. Celle-ci garantit l absence de signaux invalides en dehors des périodes de propagation et de transition des valeurs. 35

36 Les familles logiques Il existe plusieurs types de circuits capables de traiter des signaux digitaux. Une famille logique est une norme définissant des niveaux de tension (intervalles de validité, marges d erreur); des circuits de base; un ensemble de contraintes à respecter (sur la forme des connexions permises, les temps de propagation,... ); un procédé de fabrication des composants;... Les principales familles actuellement utilisées sont CMOS et TTL. 36

37 Les portes logiques Les portes logiques sont des circuits digitaux élémentaires réalisant les fonctions booléennes de base. Les symboles conventionnels attribués aux portes sont les suivants: x 1 x 2 x 1 x 2 x 1 x 2 x 1 x 2 x 1 x 1 x 1 x 2 x 1 + x 2 x 1 x 2 x 1 + x 2 x 1 x 2 x 1 x 2 x 1 x 1 Remarques: Ces symboles peuvent aussi décrire des portes possédant plus de deux entrées; Bien sûr, les portes respectent la discipline statique! 37

38 L interconnexion des portes L interconnexion de plusieurs portes logiques permet de construire des circuits plus complexes. Les règles d interconnexion sont les suivantes: On ne peut pas connecter entre elles les sorties de plusieurs portes, ou différentes entrées d un même circuit; Il est permis de connecter la sortie d une porte aux entrées d autres portes. Exemple: Porte AND à trois entrées construite à partir de deux portes à deux entrées: x 1 x 2 x 3 x 1 x 2 x 3 38

39 Les circuits combinatoires Un chemin est un parcours d un circuit, à partir d un de ses points, effectué en suivant les connexions et en franchissant les portes d une entrée vers la sortie. Un cycle est un chemin dont le point d origine et le point de destination sont identiques, et qui franchit au moins une porte. Définition: Un circuit combinatoire est un circuit digital dont aucun chemin n est un cycle. Propriété: Les valeurs booléennes générées aux sorties d un circuit combinatoire dépendent uniquement des valeurs fournies aux entrées de celui-ci. En d autres termes, un circuit combinatoire à n entrées et m sorties peut être défini par m fonctions booléennes d arité n. 39

40 Remarque: Sous l hypothèse où toutes les portes possèdent le même délai de propagation, le délai de propagation maximal d un circuit combinatoire correspond au chemin le plus long d une entrée vers une sortie. 40

41 Exemple 1 Circuit combinatoire réalisant la fonction d arité 3 vraie si et seulement si deux de ses entrées sont vraies: x 1 x 2 x 3 x 1 x 2 x 3 (x 1 x 2 ) x 3 f x 1 x 2 x 3 x 1 x 2 x 3 Temps de propagation maximal: 3τ, où τ est le temps de propagation maximal d une porte. 41

42 Exemple 2 Circuit à deux entrées contrôlant un affichage à sept segments. Le chiffre affiché totalise le nombre d entrées vraies. Un segment est allumé lorsque la sortie correspondante est vraie: x 1 x 2 a 1 b a c f g b d e d c e f g Temps de propagation maximal: 2τ. 42

43 L instabilité Il est facile de construire des circuits qui ne sont pas combinatoires: Ce circuit possède une particularité: Il est impossible d affecter une valeur booléenne fixe à sa seule connexion! Ce circuit est instable. Définition: Un circuit est stable s il est possible d affecter une valeur booléenne persistante à chacune de ses connexions. 43

44 Les circuits instables sont à proscrire! En pratique, de tels circuits génèrent des signaux invalides, ou des oscillations. 44

45 Les circuits non combinatoires stables Tous les circuits non combinatoires ne sont pas instables: x 1 x 2 L attribution des valeurs x 1 = 0 et x 2 = 1 est persistante, et donc le circuit est stable. Le choix des valeurs x 1 = 1 et x 2 = 0 est également persistant. Remarque: La stabilité d un circuit ne garantit pas l absence de signaux invalides ou d oscillations dans une réalisation pratique de ce circuit! 45

46 Les verrous Le circuit précédent possède deux points de stabilité, et peut donc se trouver dans deux états distincts. Il est donc capable de mémoriser un bit d information. Ce circuit ne permet cependant pas de choisir la valeur booléenne mémorisée. Pour pallier cet inconvénient, on lui ajoute des entrées permettant de contrôler la valeur circulant dans le cycle: s q r Le circuit obtenu porte le nom de verrou. 46

47 Le fonctionnement d un verrou Si s = 0 et r = 0: Le circuit est équivalent à deux inverseurs en boucle, et mémorise donc un bit d information. La valeur mémorisée peut être vue comme celle présente à la sortie q. Si s = 1 et r = 0: La valeur mémorisée devient égale à 1 (set). Si s = 0 et r = 1: La valeur mémorisée devient égale à 0 (reset). Le verrou est donc capable de retenir laquelle des entrées s ou r a été activée en dernier lieu. Si s = 1 et r = 1: La valeur de mémorisée devient égale à 0, mais peut ensuite basculer vers n importe quelle valeur lorsque s et r reprennent la valeur 0. Une telle condition de course est à éviter! 47

48 Le signal d horloge L utilisation des verrous pose plusieurs problèmes: Le verrou charge une nouvelle valeur dès le moment où une de ses entrées prend la valeur 1. Ce moment peut dépendre des délais de propagation d autres portes. Il faut garantir l absence de conditions de course. On souhaite que les données mémorisées par un circuit ne soient modifiées qu à des instants ponctuels, bien déterminés. La solution consiste à fournir au circuit un signal d horloge. Ce signal est généré par un composant spécial, et est constitué d une alternance périodique de valeurs 0 et 1. φ : 48

49 Les valeurs mémorisées par ce circuit ne sont alors modifiées qu aux instants où l horloge effectue une transition de la valeur 0 à la valeur 1 (c est-à-dire lors de ses flancs montants). Note: Une autre convention consiste à considérer les transitions de la valeur 1 à la valeur 0 (flancs descendants). 49

50 Le flip-flop Le composant de mémorisation élémentaire présent dans les circuits basés sur une horloge est le flip-flop. Symbole: d d q q φ Fonctionnement: Un flip-flop est capable de retenir un bit. La valeur retenue est disponible à la sortie q; Lors d un flanc montant de l horloge, le flip-flop charge la valeur présente à l entrée d. (On dit que le flip-flop est déclenché par le flanc.) 50

51 Les délais d un flip-flop Le fonctionnement d un flip-flop n est pas instantané: La valeur mémorisée n est disponible à la sortie qu un certain temps après avoir été chargée. Ce délai est le délai de propagation τ p du flip-flop; Pour qu une valeur d entrée puisse être chargée, il faut qu elle reste constante un certain laps temps avant le coup d horloge. Ce délai est le délai de stabilisation τ s du flip-flop. Exemple: τ s τ p τ s τ p τ s τ p d q φ 51

52 Les registres En général, un circuit mémorise plus d un bit d information. Un registre est un composant obtenu en regroupant plusieurs flip-flops partageant la même horloge. Circuit équivalent: Symbole: d 1 d 2 d d q q q 1 q 2 d 1 d 2. d n n d q n q 1 q 2. q n... φ d n d q q n φ 52

53 Les circuits séquentiels Dans un circuit digital, on peut séparer les composants mémorisant les données de ceux dédiés à leur traitement. Un circuit séquentiel est un circuit possédant la forme générale suivante: Sorties o 1, o 2,... Circuit Entrées i 1, i 2,... combinatoire n n n d q n φ Les valeurs retenues par le registre déterminent l état du circuit. La capacité du registre étant de n bits, le circuit peut potentiellement se trouver dans 2 n états. 53

54 Fonctionnement d un circuit séquentiel Soient T la période de l horloge; τ c le temps de propagation du circuit combinatoire; τ p le temps de propagation du registre; τ s le temps de stabilisation du registre. Si T > τ c + τ p + τ s, le circuit change d état à chaque coup d horloge. Lors d un changement d état, le nouvel état s t+1 est déterminé par le circuit combinatoire à partir de l état précédent s t, et la valeur i t des entrées du circuit. On a donc s t+1 = f(s t, i t ), où f est une fonction de transition réalisée par le circuit combinatoire. 54

55 La discipline dynamique Pour que le changement d état s effectue correctement, les entrées du circuit doivent rester stables pendant une durée au moins égale à τ c + τ s avant chaque coup d horloge. Un circuit séquentiel respectant cette condition obéit à la règle de discipline dynamique. Un circuit séquentiel peut également posséder des sorties. Leur valeur o t est déterminée par le circuit combinatoire à partir de l état courant s t, et la valeur i t des entrées du circuit. On a donc o t = f (s t, i t ), où f est une fonction de sortie réalisée par le circuit combinatoire. Remarque: La stabilité des sorties n est garantie que pendant un certain intervalle précédant chaque coup d horloge. 55

56 Illustration Entrées i Etat s Sorties o Horloge φ 56

57 Exemple Circuit séquentiel d un compteur pilotant un affichage à sept segments: f e a g d b c 1 a b c d e d 1 q 1 d 2 q 2 f g i φ 57

58 Fonction de transition: Etat courant Entrée Etat suivant q 1 q 2 i q 1 q Fonction de sortie: Etat Sorties q 1 q 2 a b c d e f g

59 Chapitre 2 La représentation des données 59

60 La représentation des nombres entiers positifs Problème: On souhaite représenter des nombres naturels à l aide de n bits. Solution: Il suffit d encoder les nombres en base 2: On attribue à chaque bit une position de 0 à n 1. Par convention, on procède de droite à gauche; On affecte au bit de position k le poids 2 k. Le nombre représenté par la suite de bits b n 1 b n 2... b 1 b 0 est donc égal à n 1 i=0 b i 2 i. Ce procédé porte le nom de représentation binaire non signée des nombres. 60

61 Exemple: la représentation binaire non signée dénote le nombre 181: Position : Poids : On a en effet 7 i=0 b i 2 i = = = 181. Note: Les bits situés aux positions 0 et n 1 sont respectivement appelés bit de poids faible et bit de poids fort. 61

62 Calcul de la représentation d un nombre La représentation d un nombre v peut se calculer grâce aux deux propriétés suivantes: Le bit de poids faible est égal à 0 si v est pair, et à 1 si v est impair; En retirant le bit de poids faible d une représentation de v, on obtient une représentation de v/2. On a donc l algorithme suivant: 1. Si v est pair, écrire 0. Sinon, écrire 1; 2. Remplacer v par v/2 ; 3. Répéter les deux opérations précédentes tant que v 0. 62

63 Remarques: Cet algorithme génère les bits de la représentation de v en commençant par le bit de poids faible (c est-à-dire de la droite vers la gauche); La suite de bits obtenue constitue la représentation la plus courte du nombre v. Des représentations plus longues s obtiennent en préfixant le résultat d un nombre quelconque de zéros. Exemple: Représentation du nombre 109: v = 109 impair 1 v = 54 pair 0 v = 27 impair 1 v = 13 impair 1 v = 6 pair 0 v = 3 impair 1 v = 1 impair 1 v = 0. La représentation obtenue est donc Il est permis d ajouter un nombre arbitraire de zéros en tête de cette représentation. 63

64 Les valeurs représentables A l aide de n bits, il n est pas possible de représenter plus de 2 n valeurs distinctes. L algorithme de calcul de la représentation d un nombre v s arrête après avoir produit n bits ou moins si et seulement si v < 2 n. Les nombres possédant une représentation binaire non signée sur n bits sont donc les éléments de l intervalle [0,..., 2 n 1]. 64

65 L arithmétique binaire non signée Les opérations d addition et de multiplication de nombres entiers non signés peuvent s effectuer selon les règles du calcul écrit. Les tables d addition binaire sont les suivantes (les reports sont dénotés par un rectangle): L opération d addition s effectue bit par bit, en commençant par le bit de poids faible. 65

66 Exemple: Calcul de la somme = 579:

67 La multiplication de nombres binaires non signés Le calcul d un produit s effectue selon des règles analogues à celles du calcul décimal: 1. Des produits partiels sont successivement calculés pour chaque bit du multiplicateur, et convenablement alignés; 2. Ces produits partiels sont ensuite additionnés. La table de multiplication binaire est la suivante:

68 Exemple: Calcul du produit = 408:

69 La représentation hexadécimale La représentation binaire utilisée par les ordinateurs est mal adaptée aux opérations manuelles. Dans certains cas, il est cependant indispensable de pouvoir raisonner sur la représentation interne des données. On utilise alors la représentation hexadécimale (c est-à-dire en base 16), qui présente deux avantages: Elle est concise; Les conversions de l hexadécimal vers le binaire et vice-versa sont immédiates. Un chiffre hexadécimal peut prendre 16 valeurs: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Un tel chiffre représente donc exactement 4 bits d information. Pour convertir un nombre hexadécimal en binaire, il suffit de remplacer chaque chiffre par la séquence de 4 bits qui lui correspond. La conversion réciproque est similaire. 69

70 Table de conversion: Hexadécimal Binaire Hexadécimal Binaire A B C D E F 1111 Note: Lorsque le contexte ne permet pas de déterminer la base choisie pour représenter les nombres, on ajoute le suffixe h ou le préfixe 0x aux représentations hexadécimales, et le suffixe b ou le préfixe 0b aux représentations binaires. Exemple: On a 0xCAFE007 = b =

71 La représentation des nombres entiers signés Il existe plusieurs procédés permettant de représenter des nombres entiers positifs et négatifs: La représentation par valeur signée; La représentation par complément à un; La représentation par complément à deux. Ces trois méthodes possèdent des points communs: Le signe d un nombre est représenté par le bit de poids fort (ici appelé bit de signe). Celui-ci est égal à 0 pour les nombres positifs; 1 pour les nombres négatifs. La représentation d un nombre positif est toujours identique à sa représentation binaire non signée de même taille. 71

72 La représentation par valeur signée Principe: A la suite du bit de signe, on place la représentation binaire non signée de la valeur absolue du nombre représenté. Exemple: La représentation sur 8 bits du nombre 42 est égale à En effet Ce nombre est négatif, donc le bit de signe est égal à 1; La représentation binaire non signée sur 7 bits de 42 = 42 est Selon ce procédé, le nombre v représenté par le groupe de bits b n 1 b n 2... b 1 b 0 est égal à v = (1 2b n 1 ) n 2 i=0 b i 2 i. 72

73 Les valeurs représentables A l aide de n bits, la représentation par valeur signée permet d encoder tous les éléments de l intervalle [0,..., 2 n 1 1] (bit de signe égal à 0), et tous les éléments de l intervalle [ 2 n 1 + 1,..., 0] (bit de signe égal à 1). L ensemble des valeurs représentables est donc l intervalle [ 2 n 1 + 1,..., 2 n 1 1]. Remarques: Le nombre 0 possède deux représentations distinctes; Ce procédé rend difficile le calcul des opérations arithmétiques. 73

74 La représentation par complément à un Principe: La représentation d un nombre est similaire à sa représentation par valeur signée, mais les bits qui suivent le bit de signe sont complémentés (0 est remplacé par 1, et vice-versa). Exemple: La représentation sur 8 bits du nombre 42 est égale à En effet Ce nombre est négatif, donc le bit de signe est égal à 1; La représentation binaire non signée sur 7 bits de 42 = 42 est , dont le complément est L ensemble des nombres représentables à l aide de n bits est identique à celui obtenu pour la représentation par valeur signée, soit l intervalle [ 2 n 1 + 1,..., 2 n 1 1]. 74

75 Selon ce procédé, le nombre v représenté par le groupe de bits b n 1 b n 2... b 1 b 0 est égal à En effet, (1 2 n 1 )b n 1 + n 2 i=0 b i 2 i. Si v > 0, on a b n 1 = 0 et v = n 2 i=0 b i 2 i ; Si v < 0, on a b n 1 = 1. La suite de bits b n 2 b 1 b 0 forme la représentation binaire non signée du nombre On a donc bien 2 n 1 1 n 2 i=0 v = v = 1 2 n 1 + b i 2 i. n 2 i=0 b i 2 i. 75

76 L arithmétique des nombres représentés par complément à un Les algorithmes de calcul arithmétique sur les nombres non signés peuvent facilement être adaptés à la représentation par complément à un. L addition de deux nombres signés représentés à l aide de n bits s effectue de la façon suivante: 1. On additionne les deux nombres comme s il s agissait de représentations non signées; 2. Si l opération conduit à un report à la position n, on supprime ce report et on ajoute 1 à la somme calculée. 76

77 Exemples: Calcul de la somme 12 + ( 34) = 22: Calcul de la somme 12 + ( 34) = 46:

78 La représentation par complément à deux Principes: La représentation d un nombre v sur n bits est égale 1. au bit de signe 0 suivi de la représentation entière non signée de v sur n 1 bits si v 0; 2. à la représentation par complément à un de v + 1 sur n bits si v < 0. On dit alors que les n bits ainsi obtenus forment le complément à deux des n bits encodant le nombre positif v. Exemples: La représentation sur 8 bits du nombre 42 est égale à ; La représentation sur n bits du nombre 1 est composée de n bits égaux à 1. 78

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Cours 2 Microprocesseurs

Cours 2 Microprocesseurs 4//2 Cours 2 Microprocesseurs Jalil Boukhobza LC 26 boukhobza@univ-brest.fr Chemin de données Font l objet de ce cours: Les portes logiques et circuits combinatoires Le traitement de quelques opérations

Plus en détail

Représentation de l information en binaire

Représentation de l information en binaire Représentation de l information en binaire Les ordinateurs sont capables d effectuer de nombreuses opérations sur de nombreux types de contenus (images, vidéos, textes, sons,...). Cependant, quel que soit

Plus en détail

Cours 6 : Principes de la représentation des nombres en

Cours 6 : Principes de la représentation des nombres en Cours 6 : Principes de la représentation des nombres en mémoire 2013/2014 Introduction Représentation des données en mémoire naturels signés Nous décrivons les principes de la représentation des nombres

Plus en détail

Analyse et programmation 1

Analyse et programmation 1 Analyse et programmation Aperçu du fonctionnement de l ordinateur Fonctionnement de l ordinateur Codage de l information Bus d échange d information CPU Exécution d un programme par la CPU Gestion des

Plus en détail

Chap. I : Architecture de base d un ordinateur

Chap. I : Architecture de base d un ordinateur UMR 7030 - Université Paris 13 - Institut Galilée Cours Architecture et Système Dans cette partie, nous décrivons rapidement l architecture de base d un ordinateur et les principes de son fonctionnement.

Plus en détail

Logiciel de Base. I. Représentation des nombres

Logiciel de Base. I. Représentation des nombres Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) mugwaneza@univmed.fr I. Représentation des nombres Codage et représentation de l'information Information externe formats

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Cours Informatique 1. Monsieur SADOUNI Salheddine

Cours Informatique 1. Monsieur SADOUNI Salheddine Cours Informatique 1 Chapitre 2 les Systèmes Informatique Monsieur SADOUNI Salheddine Un Système Informatique lesystème Informatique est composé de deux parties : -le Matériel : constitué de l unité centrale

Plus en détail

Problème : débordement de la représentation ou dépassement

Problème : débordement de la représentation ou dépassement Arithmétique entière des ordinateurs (représentation) Écriture décimale : écriture positionnelle. Ex : 128 = 1 10 2 + 2 10 1 + 8 10 0 Circuit en logique binaire Écriture binaire (base 2) Ex : (101) 2 =

Plus en détail

Chapitre 2 : Architecture d un ordinateur

Chapitre 2 : Architecture d un ordinateur I. Introduction : Chapitre 2 : Architecture d un ordinateur Activité 1 : Q : Comment on peut effectuer un traitement automatique? R : On doit utiliser une machine automatique c est l ordinateur. Q : Quelles

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

QUELQUES CONCEPTS INTRODUCTIFS

QUELQUES CONCEPTS INTRODUCTIFS ESIEE Unité d'informatique IN101 Albin Morelle (et Denis Bureau) QUELQUES CONCEPTS INTRODUCTIFS 1- ARCHITECTURE ET FONCTIONNEMENT D UN ORDINATEUR Processeur Mémoire centrale Clavier Unité d échange BUS

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Chap I : Introduction à l Architecture des Ordinateurs

Chap I : Introduction à l Architecture des Ordinateurs Chap I : Introduction à l Architecture des Ordinateurs 1.1 Définitions Informatique = Information + Traitement Automatique Computer Science= Science de l ordinateur Un système informatique est une machine

Plus en détail

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Cours Info - 12 Représentation des nombres en machine D.Malka MPSI 2014-2015 D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Sommaire Sommaire 1 Bases de numération par position 2 Représentation des entiers

Plus en détail

Processeurs et Architectures Numériques. Introduction et logique combinatoire

Processeurs et Architectures Numériques. Introduction et logique combinatoire Processeurs et Architectures Numériques Introduction et logique combinatoire Objectifs du cours Connaitre les fonctions de base de l électronique numérique Comprendre la logique combinatoire et synchrone

Plus en détail

IV- Comment fonctionne un ordinateur?

IV- Comment fonctionne un ordinateur? 1 IV- Comment fonctionne un ordinateur? L ordinateur est une alliance du hardware (le matériel) et du software (les logiciels). Jusqu à présent, nous avons surtout vu l aspect «matériel», avec les interactions

Plus en détail

Techniques digitales. V. Pierret. vpierret@iset-liege.be vpierret@scarlet.be

Techniques digitales. V. Pierret. vpierret@iset-liege.be vpierret@scarlet.be Techniques digitales V. Pierret vpierret@iset-liege.be vpierret@scarlet.be PREMIERE PARTIE RAPPELS L ALGEBRE DE BOOLE Les fonctions logiques de base: NON, ET, OU Les fonctions logiques de base La fonction

Plus en détail

Les Mémoires. Electronique des Composants & Systèmes. Université Constantine 2 Abdelhamid Mehri Faculté des NTIC Département MI. Dr. Kitouni I.

Les Mémoires. Electronique des Composants & Systèmes. Université Constantine 2 Abdelhamid Mehri Faculté des NTIC Département MI. Dr. Kitouni I. Université Constantine 2 Abdelhamid Mehri Faculté des NTIC Département MI Electronique des Composants & Systèmes Les Mémoires Cours de L1 - TRONC COMMUN DOMAINE MATHEMATIQUES INFORMATIQUE 2015-2016 Dr.

Plus en détail

Introduction à l arithmétique des ordinateurs

Introduction à l arithmétique des ordinateurs Introduction à l arithmétique des ordinateurs Peut-on vraiment calculer avec un ordinateur? F. Langrognet F. Langrognet Introduction à l arithmétique des ordinateurs Fev 2015 1 / 193 PLAN 1 Calculer avec

Plus en détail

Informatique? Numérique? L informatique est la science du traitement de l information.

Informatique? Numérique? L informatique est la science du traitement de l information. Informatique? Numérique? L informatique est la science du traitement de l information. L information est traitée par un ordinateur sous forme numérique : ce sont des valeurs discrètes. Cela signifie que,

Plus en détail

Chap. I : Architecture de base d un ordinateur

Chap. I : Architecture de base d un ordinateur UMR 7030 - Université Paris 13 - Institut Galilée Cours Architecture et Système Dans cette partie, nous décrivons rapidement l architecture de base d un ordinateur et les principes de son fonctionnement.

Plus en détail

Composantes principales des ordinateurs

Composantes principales des ordinateurs Composantes principales des ordinateurs GIF-1001: Ordinateurs: Structure et Applications Jean-François Lalonde, Hiver 2015 Stallings ch. 3, Englander ch. 7, 10.1 Architecture von Neumann Mémoire (données

Plus en détail

LE BIOS : QU EST-CE QUE C EST?

LE BIOS : QU EST-CE QUE C EST? LE BIOS : QU EST-CE QUE C EST? Mewtow 29 octobre 2015 Table des matières 1 Introduction 5 2 Rappels sur le mode réel des processeurs x86 7 2.1 Mémoire en mode réel............................... 7 2.1.1

Plus en détail

Leçon 1 : Les principaux composants d un ordinateur

Leçon 1 : Les principaux composants d un ordinateur Chapitre 2 Architecture d un ordinateur Leçon 1 : Les principaux composants d un ordinateur Les objectifs : o Identifier les principaux composants d un micro-ordinateur. o Connaître les caractéristiques

Plus en détail

Architecture des ordinateurs. Mémoires (II) Licence Informatique - Université de Provence. Jean-Marc Talbot

Architecture des ordinateurs. Mémoires (II) Licence Informatique - Université de Provence. Jean-Marc Talbot Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Mémoires jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture des ordinateurs 120

Plus en détail

Architectures Logicielles et Matérielles Travaux Dirigés Circuits

Architectures Logicielles et Matérielles Travaux Dirigés Circuits UNIVERSITE Joseph FOURIER, Grenoble U.F.R. d Informatique et Maths. Appliquées Architectures Logicielles et Matérielles Travaux Dirigés Circuits Rappel : dessins des portes logiques. Déroulement envisagé

Plus en détail

Algèbre de Boole - Fonctions Booléennes

Algèbre de Boole - Fonctions Booléennes Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Algèbre de Boole - Fonctions Booléennes jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture

Plus en détail

GPA770 Microélectronique appliquée Exercices série A

GPA770 Microélectronique appliquée Exercices série A GPA770 Microélectronique appliquée Exercices série A 1. Effectuez les calculs suivants sur des nombres binaires en complément à avec une représentation de 8 bits. Est-ce qu il y a débordement en complément

Plus en détail

IUT de Colmar - Département RT 1ière année. Numération

IUT de Colmar - Département RT 1ière année. Numération IUT de Colmar - Département RT 1ière année. Numération 1 Laurent MURA. SOMMAIRE 1. Les différents systèmes 2. Les différentes conversions 3. Quelques systèmes de codage 4. L arithmétique binaire 2 IUT

Plus en détail

2012/2013 Le codage en informatique

2012/2013 Le codage en informatique 2012/2013 Le codage en informatique Stéphane Fossé/ Marc Gyr Lycée Felix Faure Beauvais 2012/2013 INTRODUCTION Les appareils numériques que nous utilisons tous les jours ont tous un point commun : 2 chiffres

Plus en détail

Construction d un site WEB

Construction d un site WEB Construction d un site WEB 1 Logique binaire 1: Les systèmes de numération Un ordinateur est un appareil électronique. Deux tensions sont majoritairement présentes dans ses circuits électroniques : 0V

Plus en détail

Partie 1. Professeur : Haouati Abdelali. CPGE Lycée Omar Ibn Lkhattab - Meknès www.haouati.com haouaticpge@gmail.com

Partie 1. Professeur : Haouati Abdelali. CPGE Lycée Omar Ibn Lkhattab - Meknès www.haouati.com haouaticpge@gmail.com Partie 1 Professeur : Haouati Abdelali CPGE Lycée Omar Ibn Lkhattab - Meknès www.haouati.com haouaticpge@gmail.com Partie I : Généralités et algorithmique de base 1. Environnement matériel et logiciel

Plus en détail

INITIATION INFORMATIQUE I (Système de numération) (1 GIM)

INITIATION INFORMATIQUE I (Système de numération) (1 GIM) UNIVERSITE SIDI MOHAMMED BEN ABDELLAH Ecole Supérieure de Technologie de Fès Filière Génie Industriel et Maintenance Mr KHATORY INITIATION INFORMATIQUE I (Système de numération) (1 GIM) TABLE DES MATIÈRES

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Informatique Générale

Informatique Générale Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) guillaume.hutzler@ibisc.univ-evry.fr Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

TD 3 : Représentation des réels et des caractères

TD 3 : Représentation des réels et des caractères ASR1 bis DUT Informatique 1A IUT A de Lille USTL 2007 2008 Architecture des ordinateurs Exercice 1 TD 3 : Représentation des réels et des caractères Représentation d une partie fractionnaire 1. Coder sur

Plus en détail

Informatique Générale

Informatique Générale Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) guillaume.hutzler@ibisc.univ-evry.fr Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html

Plus en détail

Chapitre 10 Arithmétique réelle

Chapitre 10 Arithmétique réelle Chapitre 10 Arithmétique réelle Jean Privat Université du Québec à Montréal INF2170 Organisation des ordinateurs et assembleur Automne 2013 Jean Privat (UQAM) 10 Arithmétique réelle INF2170 Automne 2013

Plus en détail

Tableaux (introduction) et types de base

Tableaux (introduction) et types de base Tableaux (introduction) et types de base A. Motivation..................................................... 4 B. Les tableaux.................................................... 5 C. Construction des tableaux.......................................

Plus en détail

SYSTEMES DE NUMERATION

SYSTEMES DE NUMERATION FICHE DU MODULE 1 SYSTEMES DE NUMERATION OBJECTIF GENERAL: La compétence visée par ce module est d amener l apprenant à se familiariser avec les systèmes de numération et les codes utilisés par les appareils

Plus en détail

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs.

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs. 2 nde MPI Le Binaire 1 / 8 I) Le codage 1) Présentation du L informatique utilise des courants électriques, des aimantations, des rayons lumineux... Chacun de ces phénomènes met en jeu deux états possibles

Plus en détail

Conception de circuits numériques et architecture des ordinateurs

Conception de circuits numériques et architecture des ordinateurs Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot Année universitaire 2014-2015 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Codage des nombres en base 2, logique

Plus en détail

CPU ou UCT. Le processeur est une unité d exécution, plus précisément appelée unité centrale de traitement (désignée en franç.

CPU ou UCT. Le processeur est une unité d exécution, plus précisément appelée unité centrale de traitement (désignée en franç. CPU ou UCT Processor (data processing) Le processeur est une unité d exécution, plus précisément appelée unité centrale de traitement (désignée en franç.par UCT, en ang. CPU (Central Processing Unit) CPU+mémoire

Plus en détail

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/ données pr ogramme 11111101 11001101 01000101 b us disque ma gnétique processeur écran Structures de données et algorithmes Ordinateurs Gilles Falquet, printemps-été 2002 Machines composées de (depuis

Plus en détail

Les mémoires. Eric Cariou. Département Informatique Université de Pau et des Pays de l'adour. Eric.Cariou@univ-pau.fr

Les mémoires. Eric Cariou. Département Informatique Université de Pau et des Pays de l'adour. Eric.Cariou@univ-pau.fr Les mémoires Eric Cariou Département Informatique Université de Pau et des Pays de l'adour Eric.Cariou@univ-pau.fr 1 Mémoire Mémoire Dispositif capable d'enregistrer, de conserver et de restituer des informations

Plus en détail

VI- Des transistors aux portes logiques. Conception de circuits

VI- Des transistors aux portes logiques. Conception de circuits 1 VI- Des transistors aux portes logiques. Conception de circuits Nous savons que l ordinateur traite uniquement des instructions écrites en binaire avec des 0 et des 1. Nous savons aussi qu il est formé

Plus en détail

Introduction à l informatique. INF0326 - Outils bureautiques, logiciels et Internet

Introduction à l informatique. INF0326 - Outils bureautiques, logiciels et Internet Introduction à l informatique INF0326 - Outils bureautiques, logiciels et Internet Informatique L'informatique est la science qui regroupe l ensemble des théories et techniques permettant de traiter de

Plus en détail

Présentation du binaire

Présentation du binaire Présentation du binaire Vers la fin des années 30, Claude Shannon démontra qu'à l'aide de "contacteurs" (interrupteurs) fermés pour "vrai" et ouverts pour "faux" on pouvait effectuer des opérations logiques

Plus en détail

Codage d information. Codage d information : -Définition-

Codage d information. Codage d information : -Définition- Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Architecture matérielle des systèmes informatiques

Architecture matérielle des systèmes informatiques Architecture matérielle des systèmes informatiques IDEC, Renens. Version novembre 2003. Avertissement : ce support de cours n est pas destiné à l autoformation et doit impérativement être complété par

Plus en détail

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons Chapitre II DÉFINITION DES SYSTÈMES LOGIQUES 2.1 LES NOMBRES DANS LES SYSTÈMES LOGIQUES Les humains comptent en DÉCIMAL 2.1.1 DÉCIMAL: o Base 10 o 10 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 o M C D U o

Plus en détail

De l ordinateur au processus : rôle d un système

De l ordinateur au processus : rôle d un système De l ordinateur au processus : rôle d un système Introduction aux systèmes d exploitation Gaël Thomas Présentation du cours Contexte du cours : Introduire notre objet d étude : les systèmes d exploitation

Plus en détail

Algorithme. Table des matières

Algorithme. Table des matières 1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Introduction à l Informatique

Introduction à l Informatique Introduction à l Informatique. Généralités : Etymologiquement, le mot informatique veut dire «traitement d information». Ceci signifie que l ordinateur n est capable de fonctionner que s il y a apport

Plus en détail

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16.

Numération. Le tableau récapitulatif ci-dessous donne l équivalence de quelques nombres pour les bases 10, 2 et 16. 1. Systèmes de numération 11. Système décimal : Base 10 C est le système utilisé dans la vie courante, il est basé sur le nombre 10. Pour représenter les nombres décimaux, on utilise les chiffres de 0

Plus en détail

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les informations traitées par l ordinateur (nombres, instructions,

Plus en détail

Stockage : capacité, performances

Stockage : capacité, performances Stockage : capacité, performances Intervenant :Thomas Robert C234-4 thomas.robert@telecom-paristech.fr Transparents : Thomas Robert Institut Mines-Télécom Lectures possibles Chapitre 7.2 de : http://ceit.aut.ac.ir/~amirkhani/

Plus en détail

U90 Ladder. Fonctions spéciales. Lionel Lecointe - Support technique Tel : 01.60.92.41.74 mail : lionel.lecointe@pl-systems.fr

U90 Ladder. Fonctions spéciales. Lionel Lecointe - Support technique Tel : 01.60.92.41.74 mail : lionel.lecointe@pl-systems.fr U90 Ladder Fonctions spéciales Lionel Lecointe - Support technique Tel : 01.60.92.41.74 mail : lionel.lecointe@pl-systems.fr 1 Plan du document Introductions fonctions spéciales Page 3 A*B/C Page 4 Communication

Plus en détail

ASSEMBLAGE ET ÉDITION DES LIENS

ASSEMBLAGE ET ÉDITION DES LIENS ASSEMBLAGE ET ÉDITION DES LIENS Mewtow 11 novembre 2015 Table des matières 1 Introduction 5 2 La chaine d assemblage 7 2.1 Résolution des symboles.............................. 7 2.2 Relocation.....................................

Plus en détail

André BERNARD Technologie Classe de sixième

André BERNARD Technologie Classe de sixième On appelle «mémoire» tout composant électronique capable de stocker temporairement des données. On distingue ainsi deux grandes catégories de mémoires : 1) la mémoire centrale (appelée également mémoire

Plus en détail

Unité 2: Représentation interne des informations. Unité 2: Représentation interne des informations

Unité 2: Représentation interne des informations. Unité 2: Représentation interne des informations Objectifs: À la fin de cette unité, - vous saurez comment les caractères et les nombres entiers positifs et négatifs sont représentés dans la mémoire d'un ordinateur. - vous saurez comment on effectue

Plus en détail

Adressage de réseaux

Adressage de réseaux Page 1 sur 28 Adressage de réseaux 5.1 Adresses IP et masques de sous-réseau 5.1.1 Rôle de l adresse IP Un hôte a besoin d une adresse IP pour participer aux activités sur Internet. L adresse IP est une

Plus en détail

Introduction au codage de l information:

Introduction au codage de l information: Introduction au codage de l information: Quelques éléments d architecture de l ordinateur Comparaison de la carte perforée au DVD Pourquoi est-il nécessaire de coder l information? Numérisation Formats

Plus en détail

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par

Plus en détail

Rappels sur l Architecture de base d un ordinateur

Rappels sur l Architecture de base d un ordinateur Chapitre 1 Rappels sur l Architecture de base d un ordinateur I. Introduction Dans cette partie, nous décrivons rapidement l architecture de base d un ordinateur et les principes de son fonctionnement.

Plus en détail

Architecture des calculateurs

Architecture des calculateurs Chapitre 1 Architecture des calculateurs 1.1 Introduction Ce paragraphe n a pas la prétention de présenter un cours d informatique. D une manière générale, seuls les caractéristiques architecturales qui

Plus en détail

Eléments de syntaxe du langage Java

Eléments de syntaxe du langage Java c jan. 2014, v3.0 Java Eléments de syntaxe du langage Java Sébastien Jean Le but de ce document est de présenter es éléments de syntaxe du langage Java : les types primitifs, les opérateurs arithmétiques

Plus en détail

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr Codage des nombres Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Eric.Cariou@univ-pau.fr 1 Représentation de l'information Un ordinateur manipule des données Besoin de coder

Plus en détail

Programmation C. Apprendre à développer des programmes simples dans le langage C

Programmation C. Apprendre à développer des programmes simples dans le langage C Programmation C Apprendre à développer des programmes simples dans le langage C Notes de cours sont disponibles sur http://astro.u-strasbg.fr/scyon/stusm (attention les majuscules sont importantes) Modalités

Plus en détail

Systèmes de Numération & Codage

Systèmes de Numération & Codage Systèmes de Numération & Codage Objectif : L électronicien est amené à manipuler des valeurs exprimées dans différentes bases (notamment avec les systèmes informatiques). Il est essentiel de posséder quelques

Plus en détail

IFT1215 Introduction aux systèmes informatiques

IFT1215 Introduction aux systèmes informatiques Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d

Plus en détail

Examen d Architecture des Ordinateurs Majeure 1 Polytechnique Lundi 10 Décembre 2001

Examen d Architecture des Ordinateurs Majeure 1 Polytechnique Lundi 10 Décembre 2001 Examen d Architecture des Ordinateurs Majeure 1 Polytechnique Lundi 10 Décembre 2001 L examen dure 3 heures. Le sujet comporte 7 pages dont 3 pages de rappels sur le LC-2 et la microprogrammation. Tous

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

VIII- Circuits séquentiels. Mémoires

VIII- Circuits séquentiels. Mémoires 1 VIII- Circuits séquentiels. Mémoires Maintenant le temps va intervenir. Nous avions déjà indiqué que la traversée d une porte ne se faisait pas instantanément et qu il fallait en tenir compte, notamment

Plus en détail

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond

Plus en détail

Première approche. Définition. Définition de l informatique donnée par l Académie Française en 1966 :

Première approche. Définition. Définition de l informatique donnée par l Académie Française en 1966 : Première approche Définition Définition de l informatique donnée par l Académie Française en 1966 : L informatique est la science du traitement rationnel, notamment par machines automatiques, de l information

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Chap. V : Les interruptions

Chap. V : Les interruptions UMR 7030 - Université Paris 13 - Institut Galilée Cours Architecture et Système Nous étudions dans ce chapitre les interruptions matérielles (ou externes), c est-à-dire déclenchées par le matériel (hardware)

Plus en détail

Introduction à l informatique, à Python, et représentation des nombres en machine

Introduction à l informatique, à Python, et représentation des nombres en machine Introduction à l informatique, à Python, et représentation des nombres en machine Table des matières Qu est-ce-que l informatique? Qu est-ce-qu un ordinateur? 2 Principaux composants...............................................

Plus en détail

Les différents codes utilisés en électronique

Les différents codes utilisés en électronique Section : Technicien Supérieur Electronique Discipline : Génie Electronique Les différents codes utilisés en électronique Domaine d application : Traitement des signaux numériques Type de document : Cours

Plus en détail

Exercices corrigés (architecture ordinateurs et circuits logiques)

Exercices corrigés (architecture ordinateurs et circuits logiques) 1 Exercices corrigés (architecture ordinateurs et circuits logiques) A- Questions de culture générale (non corrigées ici) 1) Comment fonctionne le «tactile» d une tablette tactile? 2) Qu est-ce qu un ripper

Plus en détail

ELP 304 : Électronique Numérique. Cours 1 Introduction

ELP 304 : Électronique Numérique. Cours 1 Introduction ELP 304 : Électronique Numérique Cours 1 Introduction Catherine Douillard Dépt Électronique Les systèmes numériques : généralités (I) En électronique numérique, le codage des informations utilise deux

Plus en détail

Le codage de l'information

Le codage de l'information Le codage de l'information Compétences associées A2 : Analyser et interpréter une information numérique Objectifs Etre capable: - de définir le rang ou le poids d'un chiffre d'un système de numération,

Plus en détail

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7 Computix Matériel : grilles carrées comportant un nombre impair de cases. Quelques-unes sont données en annexe ; mais on peut aussi les construire soi-même, ou les faire construire par les élèves. Elles

Plus en détail

1 Le vocabulaire de l informatique

1 Le vocabulaire de l informatique 1 Le vocabulaire de l informatique I Les systèmes informatiques Les ordinateurs sont omniprésents dans notre environnement quotidien. Conçus pour traiter de manière générale des informations, ils ne se

Plus en détail

Institut National d Informatique 20/12/2000 EMD1 de Structure Machine Durée : 2 heures Documents non autorisés

Institut National d Informatique 20/12/2000 EMD1 de Structure Machine Durée : 2 heures Documents non autorisés Institut National d Informatique 20/12/2000 EMD1 de Structure Machine Durée : 2 heures Documents non autorisés Exercice 1 : ( 5points ) On dispose d'une machine ou les valeurs numériques réelles sont représentées

Plus en détail

Conception de circuits numériques et architecture des ordinateurs

Conception de circuits numériques et architecture des ordinateurs Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot et Sébastien Viardot Année universitaire 2011-2012 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Codage des

Plus en détail

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels I) Codage des entiers naturels I) Codage des entiers naturels Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ cliquer

Plus en détail

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental

Plus en détail

Informatique appliquée au calcul scientifique. Alexis Herault

Informatique appliquée au calcul scientifique. Alexis Herault Informatique appliquée au calcul scientifique Alexis Herault Table des matières Codage de l information et algorithmique 3 I Représentation des nombres en informatique 3 1 Représentation des entiers dans

Plus en détail

On distingue deux grandes catégories de mémoires : mémoire centrale (appelée également mémoire interne)

On distingue deux grandes catégories de mémoires : mémoire centrale (appelée également mémoire interne) Mémoire - espace destiné a recevoir, conserver et restituer des informations à traiter - tout composant électronique capable de stocker temporairement des données On distingue deux grandes catégories de

Plus en détail

EXERCICES D'ARCHITECTURE DES ORDINATEURS

EXERCICES D'ARCHITECTURE DES ORDINATEURS EXERCICES D'ARCHITECTURE DES ORDINATEURS CHAPITRES 1&2 1. CONVERSION DANS D AUTRES BASES Écrire 10110110 2 en décimal. Écrire 3456 en binaire, puis en hexadécimal. Convertir 1011 1100 0000 1000 1100 en

Plus en détail