Introduction à l analyse numérique : exemple du cloud computing

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à l analyse numérique : exemple du cloud computing"

Transcription

1 Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui!

2 Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Des EDO aux EDP 2 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? L analyse numérique à la rescousse 3 Application au cloud computing

3 Equations aux dérivées partielles et modélisation Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Des EDO aux EDP 2 L analyse numérique pour résoudre ces EDP 3 Application au cloud computing

4 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Le ressort k raideur du ressort, m masse du poids. d 2 x dt 2 (t) + k m x(t) = g

5 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Système proies-prédateurs d x dt (t) = a x(t) b x(t)y(t), d y dt (t) = c x(t)y(t) d y(t). avec a, b, c, d > 0.

6 Introduction à l analyse numérique : exemple du cloud computing Equations aux dérivées partielles et modélisation Des EDO aux EDP Une équation différentielle à plusieurs variables Certaines grandeurs varient en temps et en espace comme par-exemple : la température dans une barre chauffée en un point. T 2T (x, t) K (x, t) = 0 (équation de la chaleur 1D). t x 2 la densité et la vitesse d un fluide incompressible (liquide). ρ + div(q) = 0, t u + u. u = p ν 2 u, t div(u) = 0. (équations de Navier-Stokes).

7 Equations aux dérivées partielles et modélisation Des EDO aux EDP Qu est-ce que le cloud computing Définition Wikipedia Le cloud computing est l accès via le réseau, à la demande et en libre-service, à des ressources informatiques virtualisées et mutualisées. "Accéder à des ressources dont on n a pas à gérer l infrastructure sous-jacente". Exemples : De petites utilisations à de grosses demandes (plusieurs échelles) Accès à une interface logicielle : téléchargement de musique. Accès à un espace mémoire : stockage de mails. Accès à un gros espace de calcul pour des entreprises sur des machines du cloud.

8 Equations aux dérivées partielles et modélisation Des EDO aux EDP Qu est-ce que le cloud computing Concrètement : Tout service se traduit en un nombre de requêtes par seconde. Exemple : Un calcul lancé sur une machine équivaut à n requêtes par seconde. Les clients louent des applications. On évalue leur besoin (en requêtes/s) et on leur accorde un nombre initial de machines. A certains temps, on éteint ou allume des machines suivant le besoin instantané. Problème : On aimerait le faire automatiquement et dynamiquement sous critères.

9 Equations aux dérivées partielles et modélisation Des EDO aux EDP Définitions et notations φ o : Capacité du système. x ]0, 1[ : Taux de complétion d une tâche. ρ(x, t) : Densité de requêtes complétées au niveau x au temps t. m(t) = 1 0 de travail. ρ(x, t)dx : Charge φ i (t) : Taux de requêtes entrantes. client 3 client 1 Cloud resources client 2 (φ (2) 0 ) client 4 (φ (4) 0 )

10 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, v(t) = φ o max(1, m(t)).

11 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, t m = φ i (t) ρ(1, t)v(t). v(t) = φ o max(1, m(t)).

12 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, t m = φ i (t) ρ(1, t)v(t). v(t) = φ o max(1, m(t)). ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t).

13 Equations aux dérivées partielles et modélisation Des EDO aux EDP Loi du temps de réponse d(x, t 0, x 0 ) : Temps que met une requête pour passer du niveau de complétion x 0 à x à l instant t 0. Le temps de complétion d une requête au temps t est : D(t) = d(1, t, 0). Donnée cruciale pour évaluer combien de temps le client va attendre. Service time equation t d + v(t) x d = 1, x ]0, 1[, t > 0 d(0, t, 0) = 0

14 Equations aux dérivées partielles et modélisation Des EDO aux EDP Loi du temps de réponse d(x, t 0, x 0 ) : Temps que met une requête pour passer du niveau de complétion x 0 à x à l instant t 0. Le temps de complétion d une requête au temps t est : D(t) = d(1, t, 0). Donnée cruciale pour évaluer combien de temps le client va attendre. u = t d Service time equation t u + v(t) x u = 0, x ]0, 1[, t > 0 u(0, t) = t D(t) = t u(1, t)

15 L analyse numérique pour résoudre ces EDP Table des matières 1 Equations aux dérivées partielles et modélisation 2 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? L analyse numérique à la rescousse 3 Application au cloud computing

16 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Ces équations résolues explicitement Explicite = Dont on on connait l expression. Avoir l expression pour avoir des représentations graphiques. x (t) + f (t)x(t) = g(t). ax (t) + bx (t) + cx(t) = 0. t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0

17 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Des cas qui restent rares Theorem (de Cauchy) Soit f : I Ω R R n R de classe C 1 (I Ω) et localement lipschitzienne en espace par rapport à la seconde variable, alors pour toute donnée initiale (t 0, x 0 ), il existe une unique solution maximale au problème de Cauchy : { x (t) = f (t, x(t)),. x(t 0 ) = x 0.

18 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Des cas qui restent rares. Pour la plupart des EDP, on recherche des théorèmes d existence et unicité sans espoir d avoir une solution explicite. Existence et unicité n est pas garantie non plus : Pas de démonstration d existence de solutions régulières pour Navier-Stokes (pb à 1 million de dollar). Comment représenter les solutions graphiquement si on n a pas leurs expressions?

19 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Discrétiser en temps et espace Idée générale Faute d avoir la solution, on en calcule une approximation et on la représente. Se ramener à un ensemble fini de points où évaluer la solution. Transformer les équations en un système fini qui se résout "à la main". Plus le nombre de points est grand plus on est précis.

20 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Discrétiser en temps et espace Idée générale Faute d avoir la solution, on en calcule une approximation et on la représente. (t, x) R + [0, 1] (t n = n t, x j = j x), n, j N. ρ(t, x) ρ(t n, x j ) = ρ n j L( t, x )(ρ) = 0 ρ n+1 = f (ρ 0, ρ 1,..., ρ n ) ρ non explicite ρ n+1 calculé.

21 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Rappel des équations Le modèle sans les conditions aux bords t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) v(t) = φ o max(1, m(t)) t u + v(t) x u = 0, x ]0, 1[, t > 0 D(t) = t u(1, t)

22 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Exemple du schéma pour le cloud Implicit finite volume scheme from Jaisson [?] v n = ρ n+1 j φ o max(1, m n ) = ρ n j t x (ρn+1 j ρ n+1 j 1 )v n m n+1 = m n + t(φ n+1 i ρ n+1 N v n ) u n+1 j = uj n t x (un+1 j u n+1 j 1 )v n D n+1 = t n+1 u n+1 N

23 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Les conditions initiales et bords Les conditions ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t). u(0, t) = t Sur le schéma ρ 0 j = ρ 0 (x j ) m 0 ρ n+1 0 v n = φ n+1 i. u n+1 0 = t n+1

24 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse D autres méthodes de discrétisation Différences finies. Volumes finis. Eléments finis. Méthode de Boltzmann sur réseau....

25 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Critères de légitimité d un schéma Comment juger si l approximation est bonne? Consistance : Condition pour que la solution exacte vérifie le schéma de la manière la plus précise qui soit. Stabilité : La solution n explose pas, reste controlée ( ρ n+1 ρ n ). Ces critères permettent de dire des choses sur la convergence de l approximation vers la solution exacte.

26 Application au cloud computing Table des matières 1 Equations aux dérivées partielles et modélisation 2 L analyse numérique pour résoudre ces EDP 3 Application au cloud computing

27 Application au cloud computing Premiers résultats du schéma φi (t) (requests/mn) Requests input rates t (hours) unsaturated saturated 150 saturated 200 D(t) (mn) Response times t (hours) unsaturated saturated 150 saturated 200 Figure: Basic model validation.

28 Application au cloud computing Le problème posé et traduction mathématique On a : des clients avec chacun un ensemble de ressources disponibles (fonction de leur achat). On veut pour chaque client : satisfaire un temps maximal de réponse. satisfaire un temps minimal pour économiser des machines non nécessaires. permettre l utilisation d un surplus de machines si nécessaire.

29 Application au cloud computing Le problème posé et traduction mathématique On a : des clients avec chacun un système de capacité φ o. On veut pour chaque client : T min < D(t) < T max EN TOUT TEMPS. Capacité pour chaque client réhaussée à φ o (1 + φ ɛ0 ), φ ɛ0 ]0, 1[. client 3 client 1 Cloud resources client 2 (φ (2) 0 ) client 4 (φ (4) 0 )

30 Application au cloud computing Outil : l optimisation PHASE D ETEINTE ET ALLUMAGE DES MACHINES Problème d optimisation Trouver la capacité φ n o au temps t n qui réalise : J n (φ o) = (n+1) t n t Min φ o ]0;φo]J n(φ o) (D(t, φ o) T min ) 2 + (D(t, φ o) T max ) 2 dt

31 Application au cloud computing Résultat sur un client φi (t) (requests/mn) Requests input rate t (hours) input D(t) (mn) Response times t (hours) fixed elastic Tmin Tmax Figure: Capacity optimization influence.

32 Application au cloud computing Que faire pour plusieurs clients Cloud resources Cloud resources client 1 extra Free VM client 2 extra Free VM client 2 client 2 extra client 1 extra client 1 client 2 client 1

33 Application au cloud computing Résultats sur plusieurs clients φi (t) (requests/mn) Requests input rate t (hours) client 0 client 1 φo(t) (requests/mn) Capacity evolution t (hours) client 0 client 1 D(t) (mn) Response times client 0 client 1 Tmin Tmax t (hours)

34 Application au cloud computing Arrêter des requêtes trop longues 1 But : Laisser tomber les requêtes trop longues. 2 Notations : τ = τ(t) le ratio de requêtes abandonnées. τ = 0 quand D(t) T th et est une constante positive sinon. T th le seuil. Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 v(t) = φ o max(1, m(t))

35 Application au cloud computing Arrêter des requêtes trop longues Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) τ(t)m(t) v(t) = φ o max(1, m(t))

36 Application au cloud computing Arrêter des requêtes trop longues Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) τ(t)m(t) v(t) = φ o max(1, m(t)) ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t)

37 Application au cloud computing Influence de la suppression de requêtes φi (t) (requests/mn) φo(t) (requests/mn) Requests input rate t (hours) Capacity evolution t (hours) Response times input τ = 0 τ = 1 τ = 10 τ = 100 τ = 1000 D(t) (mn) t (hours) Tmin Tmax Tth

38 Application au cloud computing Response times D(t) (mn) 0.1 τ = 0 τ = 1 τ = 10 τ = 100 τ = 1000 Tmin Tmax Tth Figure: Influence of requests cessation, T th = 3T max, detail

39 Application au cloud computing Dimensionnement du client Comment attribuer un nombre initial de machines au client? Achat = Prévision d input. Lancer le code sur cette prévision. Retenir la capacité maximale utilisée.

40 Conclusion A retenir EDP : Outil pour modéliser une infinité de problèmes physiques. En général, impossible d en expliciter la solution. Outil de simulation, approximation de ces solutions : analyse numérique. Etapes : modélisation, approximation numérique, représentation graphique. MERCI DE VOTRE ATTENTION!

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

Systèmes différentiels. 1 Généralités, existence et unicité des solutions

Systèmes différentiels. 1 Généralités, existence et unicité des solutions Systèmes différentiels Cours de YV, L3 Maths, Dauphine, 2012-2013 Plan du cours. Le cours a pour but de répondre aux questions suivantes : - quand une équation différentielle a-t-elle une unique solution

Plus en détail

Gestion de tâches dans un centre d appels multicanal

Gestion de tâches dans un centre d appels multicanal Gestion de tâches dans un centre d appels multicanal Thèse de Benjamin Legros, Encadrée par Oualid Jouini, Directeur de thèse: Yves Dalery Etude en collaboration avec Ger Koole Participation de l entreprise

Plus en détail

Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS.

Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS. Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS. Problème : (Thème : Primitives, équations différentielles linéaires du 1 er ordre à coefficients

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

UE CMP Concepts et Méthodes de la Physique

UE CMP Concepts et Méthodes de la Physique UE CMP Concepts et Méthodes de la Physique Cours 2 EVOLUTION TEMPORELLE (1) 0 Organisation de l UE 0 - Une expérience pendant le cours 1 Introduction : la notion de système 2 Evolution temporelle linéaire

Plus en détail

Cours d Algorithmique et structures de données 1

Cours d Algorithmique et structures de données 1 Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

Rappel sur les bases de données

Rappel sur les bases de données Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant

Plus en détail

Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle.

Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle. Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle. B. Dadoun L. Feuilloley S. Zhang Équipe encadrante : F. De Vuyst, F. Salvarani, D. Bouche, P. Jaisson

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

Mini-projet guidé 09 Octobre 17 Décembre 2015

Mini-projet guidé 09 Octobre 17 Décembre 2015 Projet d Investigation et d Intégration 215-216 1/5 4 OPTIMISTION DU FONCTIONNEMENT D UN SCENSEUR Mini-projet guidé 9 Octobre 17 Décembre 215 Introduction : Le projet «Optimisation du fonctionnement d

Plus en détail

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Classe de 5 ème Domaine d application : Habitat et ouvrages Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Nous proposons deux séquences ayant pour problématiques: 1) Quel est le secteur économique

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

TP Synthèse d images: Simulation physique -Animation detissus- CPE

TP Synthèse d images: Simulation physique -Animation detissus- CPE TP Synthèse d images: Simulation physique -Animation detissus- CPE durée-4h 2011-2012 FIGURE 1 Resultats possibles de la simulation de tissus. 1 Butdu TP Le but de ce TP est d implémenter le calcul et

Plus en détail

Contrôle en Cours de Formation Diplôme préparé Baccalauréat Professionnel : Séquence 1 - Semestre 1. Session.

Contrôle en Cours de Formation Diplôme préparé Baccalauréat Professionnel : Séquence 1 - Semestre 1. Session. Contrôle en Cours de Formation Diplôme préparé Baccalauréat Professionnel : Séquence 1 - Semestre 1 LP Nelson Mandela 8 rue Julien Pranville BP 168 91154 Etampes Cedex Session. Nom :.. Prénom :.. Note

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES. Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat

CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES. Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat En quelques mots Objectif : Contrôle des calculs par la Méthode

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date Guide de SolidWorks Flow Simulation pour l enseignant Présentateur Date 1 Qu'est-ce que SolidWorks Flow Simulation? SolidWorks Flow Simulation est un logiciel d'analyse des écoulements de fluide et du

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Chapitre III. M.Reghioui - 2011 1

Chapitre III. M.Reghioui - 2011 1 Chapitre III Gestion des stocks M.Reghioui - 2011 1 Contenu du chapitre Introduction Stocks et paramètres Politiques d approvisionnement Conclusion M.Reghioui - 2011 2 1. Introduction M.Reghioui - 2011

Plus en détail

Découvrez la nouvelle version de HelpDesk! HelpDesk 3.4. www.artologik.com. De nouvelles fonctions, plus de contrôle, mais toujours aussi simple!

Découvrez la nouvelle version de HelpDesk! HelpDesk 3.4. www.artologik.com. De nouvelles fonctions, plus de contrôle, mais toujours aussi simple! Une gestion effective et puissante des tickets en interne comme en externe! HelpDesk 3.4 www.artologik.com Découvrez la nouvelle version de HelpDesk! De nouvelles fonctions, plus de contrôle, mais toujours

Plus en détail

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE INAUGURATION DE L INSTITUT HENRI FAYOL 17/05/2013 DE L OPTIMISATION MATHEMATIQUE

Plus en détail

Objet : Plan de mesures et mode enregistrement sur 786X-786XHD NA7860-05-02

Objet : Plan de mesures et mode enregistrement sur 786X-786XHD NA7860-05-02 Objet : Plan de mesures et mode enregistrement sur 786X-786XHD NA7860-05-02 Le plan de mesures numérique Avant d accéder à la fonction plan de mesures, il faut paramétrer le mesureur de champ sur un site

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Équations de Navier-Stokes dans des domaines quelconques

Équations de Navier-Stokes dans des domaines quelconques Équations de Navier-Stokes dans des domaines quelconques Sylvie Monniaux Univ. Paul Cézanne Aix-Marseille 3, France Séminaire EDP, Rennes 2008 Sylvie Monniaux (Univ. P. Cézanne) NS dans Ω qcq Rennes, mars

Plus en détail

T.P. COMPRESSEUR. T.P. Machines Thermiques : Compresseur / Page : 1/8

T.P. COMPRESSEUR. T.P. Machines Thermiques : Compresseur / Page : 1/8 T.P. COMPRESSEUR T.P. Machines Thermiques : Compresseur / Page : /8 But du T.P. : Tester les performances d un compresseur à piston bi-étagé à refroidissement intermédiaire. Introduction : Les compresseurs

Plus en détail

2 / ENONCER ET DECRIRE LES FONCTIONS DE SERVICE A REALISER

2 / ENONCER ET DECRIRE LES FONCTIONS DE SERVICE A REALISER A / ENONCER LE BESOIN B / ENONCER ET DECRIRE LES FONCTIONS A SATISFAIRE C / LE RESPECT DES FONCTIONS DE SERVICE et LES CONTRAINTES ECONOMIQUES D / LE CAHIER DES CHARGES ET L ORGANISATION DU TRAVAIL et

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

GIND5439 Systèmes Intelligents. Septembre 2004

GIND5439 Systèmes Intelligents. Septembre 2004 GIND5439 Systèmes Intelligents Septembre 2004 Contenu du cours Introduction aux systèmes experts Intelligence artificielle Représentation des connaissances Acquisition de connaissances Systèmes à base

Plus en détail

Calcul garanti des contraintes pour la planification sécurisée de trajectoire

Calcul garanti des contraintes pour la planification sécurisée de trajectoire Calcul garanti des contraintes pour la planification sécurisée de trajectoire Application à la génération de trajectoire articulaire pour un patient paraplégique sous Stimulation Électrique Fonctionnelle

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Mathématiques 3e Compétences du Répertoire des connaissances et des comportements des usagers de l espace routier Connaître les risques liés aux conditions météo (freinage,

Plus en détail

EASYDENTAM, votre gestion de laboratoire dentaire simplifiée...

EASYDENTAM, votre gestion de laboratoire dentaire simplifiée... EASYDENTAM, votre gestion de laboratoire dentaire simplifiée... PRÉSENTATION Développé par Dentasoft, avec l'étroite collaboration de prothésistes confirmés, EASYDENTAM est un logiciel de gestion informatique

Plus en détail

Sujet 2 : Programmation linéaire: applications et propriétés

Sujet 2 : Programmation linéaire: applications et propriétés Sujet 2 : Programmation linéaire: applications et propriétés MHT 423 : Modèles et méthodes d optimisation Andrew J. Miller Dernière mise à jour: March 10, 2010 Dans ce sujet... 1 Application : problème

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Calculabilité Cours 2 : Machines de Turing

Calculabilité Cours 2 : Machines de Turing Calculabilité Cours 2 : Machines de Turing Introduction Un autre type de modèle de calcul Les fonctions récursives et les fonctions λ représentables définissent des modèles de calculs dans k N Nk N Nous

Plus en détail

choisir H 1 quand H 0 est vraie - fausse alarme

choisir H 1 quand H 0 est vraie - fausse alarme étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts

Plus en détail

PLAN MULTIMEDIA DANS LES ECOLES UN ESPACE DE STOCKAGE NUMERIQUE (NAS) DANS VOTRE ECOLE. Sommaire

PLAN MULTIMEDIA DANS LES ECOLES UN ESPACE DE STOCKAGE NUMERIQUE (NAS) DANS VOTRE ECOLE. Sommaire PLAN MULTIMEDIA DANS LES ECOLES UN ESPACE DE STOCKAGE NUMERIQUE (NAS) DANS VOTRE ECOLE Sommaire Un espace de stockage numérique (NAS) Qu est-ce que c est? A quoi ça sert? Comment je l utilise? Comment

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

Optimisation de trajectoire pour une mission Ariane 5

Optimisation de trajectoire pour une mission Ariane 5 Optimisation de trajectoire pour une mission Ariane 5 Ludovic Goudenège (sur la base d un projet de Pierre Martinon) ENSTA - Module IN103 Septembre 2012 Plan 1 Quelques données et chiffres 2 Dynamique

Plus en détail

Devoir à la maison en algorithmique (2 nde )

Devoir à la maison en algorithmique (2 nde ) Devoir à la maison en algorithmique (2 nde ) Introduction Quel constat : Les devoirs à la maison permettent de soutenir les apprentissages des élèves et prennent en compte la diversité des aptitudes des

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Débuter avec EXPRESS. Alain Plantec. 1 Schema 2

Débuter avec EXPRESS. Alain Plantec. 1 Schema 2 Débuter avec EXPRESS Alain Plantec Table des matières 1 Schema 2 2 Entité 2 2.1 Attributs simples................................................ 2 2.2 Attributs collection...............................................

Plus en détail

LES DIFFERENTS TYPES DE MESURE

LES DIFFERENTS TYPES DE MESURE LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Plan de formation ADP Workforce Now pour les praticiens en ressources humaines

Plan de formation ADP Workforce Now pour les praticiens en ressources humaines Plan de formation ADP Workforce Now pour les praticiens en ressources humaines Voici le plan de formation recommandé, basé selon votre rôle. Vous pouvez suivre tout ou une partie de la formation cidessous.

Plus en détail

Guillaume PHILIPPON. Mise en place d un cloud privé et publique

Guillaume PHILIPPON. Mise en place d un cloud privé et publique Guillaume PHILIPPON Mise en place d un cloud privé et publique Sommaire Genèse du projet Présentation de StratusLab Infrastructures hebergées au LAL Expériences La sécurité dans un cloud publique Conclusions

Plus en détail

Forum radar hydrométéorologique 2011

Forum radar hydrométéorologique 2011 Forum radar hydrométéorologique 2011 Système d aide à la décision pour la gestion des réseaux d assainissement 24 novembre 2011 Contexte : le ruissellement urbain Les fonctions du système d assainissement

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Chapitre 4. Enrichir un Univers

Chapitre 4. Enrichir un Univers Chapitre 4 Enrichir un Univers Déroulement du cours 1 : Le rôle du Designer d Univers 2 : Créer un Univers avec l Assistant 3 : Créer un Univers étape par étape 4 : Enrichir un Univers 5 : Création d objets

Plus en détail

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges.

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. 16 au 19 décembre 2014 Table des matières 1 Introduction 2 2 Identités remarquables 3 3 Résoudre x 2 + 2bx = c 6 4 L équation x 2 + x = 3 4

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Cloud Computing, archivage électronique et valeur probante

Cloud Computing, archivage électronique et valeur probante 1 Cloud Computing, archivage électronique et valeur probante Jean-Marc Rietsch, Président de FedISA Mission / Objectifs / Actions Mission: «Garant de l état de l art dans le domaine du management des données

Plus en détail

L informatique en BCPST

L informatique en BCPST L informatique en BCPST Présentation générale Sylvain Pelletier Septembre 2014 Sylvain Pelletier L informatique en BCPST Septembre 2014 1 / 20 Informatique, algorithmique, programmation Utiliser la rapidité

Plus en détail

Sujet 1: Introduction des logiciels pour l optimisation

Sujet 1: Introduction des logiciels pour l optimisation Sujet 1: Introduction des logiciels pour l optimisation MSE3113: Outils et logiciels pour l optimisation Andrew J. Miller Dernière mise au jour: October 26, 2011 Tous les fichiers peuvent être téléchargé

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

s o l u t i o n s * * *

s o l u t i o n s * * * Sommaire Qui sommes nous? Notre métier Notre positionnement Une solution complète Notre champ d intervention Notre process Cas clients Nos références Contacts Qui sommes nous? Un éditeur de logiciels spécialisé

Plus en détail

Introduction aux Systèmes Dynamiques

Introduction aux Systèmes Dynamiques Introduction aux Systèmes Dynamiques Introduction Deux grands chapitres : Les équations différentielles ordinaires dans IR Les systèmes d équations différentielles dans IR² Applications : Dynamique des

Plus en détail

Recherche Opérationnelle

Recherche Opérationnelle Chapitre 2 : Programmation linéaire (Introduction) Vendredi 06 Novembre 2015 Sommaire 1 Historique 2 3 4 5 Plan 1 Historique 2 3 4 5 La programmation linéaire est un cadre mathématique général permettant

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail