Introduction à l analyse numérique : exemple du cloud computing

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à l analyse numérique : exemple du cloud computing"

Transcription

1 Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui!

2 Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Des EDO aux EDP 2 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? L analyse numérique à la rescousse 3 Application au cloud computing

3 Equations aux dérivées partielles et modélisation Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Des EDO aux EDP 2 L analyse numérique pour résoudre ces EDP 3 Application au cloud computing

4 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Le ressort k raideur du ressort, m masse du poids. d 2 x dt 2 (t) + k m x(t) = g

5 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Système proies-prédateurs d x dt (t) = a x(t) b x(t)y(t), d y dt (t) = c x(t)y(t) d y(t). avec a, b, c, d > 0.

6 Introduction à l analyse numérique : exemple du cloud computing Equations aux dérivées partielles et modélisation Des EDO aux EDP Une équation différentielle à plusieurs variables Certaines grandeurs varient en temps et en espace comme par-exemple : la température dans une barre chauffée en un point. T 2T (x, t) K (x, t) = 0 (équation de la chaleur 1D). t x 2 la densité et la vitesse d un fluide incompressible (liquide). ρ + div(q) = 0, t u + u. u = p ν 2 u, t div(u) = 0. (équations de Navier-Stokes).

7 Equations aux dérivées partielles et modélisation Des EDO aux EDP Qu est-ce que le cloud computing Définition Wikipedia Le cloud computing est l accès via le réseau, à la demande et en libre-service, à des ressources informatiques virtualisées et mutualisées. "Accéder à des ressources dont on n a pas à gérer l infrastructure sous-jacente". Exemples : De petites utilisations à de grosses demandes (plusieurs échelles) Accès à une interface logicielle : téléchargement de musique. Accès à un espace mémoire : stockage de mails. Accès à un gros espace de calcul pour des entreprises sur des machines du cloud.

8 Equations aux dérivées partielles et modélisation Des EDO aux EDP Qu est-ce que le cloud computing Concrètement : Tout service se traduit en un nombre de requêtes par seconde. Exemple : Un calcul lancé sur une machine équivaut à n requêtes par seconde. Les clients louent des applications. On évalue leur besoin (en requêtes/s) et on leur accorde un nombre initial de machines. A certains temps, on éteint ou allume des machines suivant le besoin instantané. Problème : On aimerait le faire automatiquement et dynamiquement sous critères.

9 Equations aux dérivées partielles et modélisation Des EDO aux EDP Définitions et notations φ o : Capacité du système. x ]0, 1[ : Taux de complétion d une tâche. ρ(x, t) : Densité de requêtes complétées au niveau x au temps t. m(t) = 1 0 de travail. ρ(x, t)dx : Charge φ i (t) : Taux de requêtes entrantes. client 3 client 1 Cloud resources client 2 (φ (2) 0 ) client 4 (φ (4) 0 )

10 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, v(t) = φ o max(1, m(t)).

11 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, t m = φ i (t) ρ(1, t)v(t). v(t) = φ o max(1, m(t)).

12 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, t m = φ i (t) ρ(1, t)v(t). v(t) = φ o max(1, m(t)). ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t).

13 Equations aux dérivées partielles et modélisation Des EDO aux EDP Loi du temps de réponse d(x, t 0, x 0 ) : Temps que met une requête pour passer du niveau de complétion x 0 à x à l instant t 0. Le temps de complétion d une requête au temps t est : D(t) = d(1, t, 0). Donnée cruciale pour évaluer combien de temps le client va attendre. Service time equation t d + v(t) x d = 1, x ]0, 1[, t > 0 d(0, t, 0) = 0

14 Equations aux dérivées partielles et modélisation Des EDO aux EDP Loi du temps de réponse d(x, t 0, x 0 ) : Temps que met une requête pour passer du niveau de complétion x 0 à x à l instant t 0. Le temps de complétion d une requête au temps t est : D(t) = d(1, t, 0). Donnée cruciale pour évaluer combien de temps le client va attendre. u = t d Service time equation t u + v(t) x u = 0, x ]0, 1[, t > 0 u(0, t) = t D(t) = t u(1, t)

15 L analyse numérique pour résoudre ces EDP Table des matières 1 Equations aux dérivées partielles et modélisation 2 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? L analyse numérique à la rescousse 3 Application au cloud computing

16 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Ces équations résolues explicitement Explicite = Dont on on connait l expression. Avoir l expression pour avoir des représentations graphiques. x (t) + f (t)x(t) = g(t). ax (t) + bx (t) + cx(t) = 0. t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0

17 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Des cas qui restent rares Theorem (de Cauchy) Soit f : I Ω R R n R de classe C 1 (I Ω) et localement lipschitzienne en espace par rapport à la seconde variable, alors pour toute donnée initiale (t 0, x 0 ), il existe une unique solution maximale au problème de Cauchy : { x (t) = f (t, x(t)),. x(t 0 ) = x 0.

18 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Des cas qui restent rares. Pour la plupart des EDP, on recherche des théorèmes d existence et unicité sans espoir d avoir une solution explicite. Existence et unicité n est pas garantie non plus : Pas de démonstration d existence de solutions régulières pour Navier-Stokes (pb à 1 million de dollar). Comment représenter les solutions graphiquement si on n a pas leurs expressions?

19 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Discrétiser en temps et espace Idée générale Faute d avoir la solution, on en calcule une approximation et on la représente. Se ramener à un ensemble fini de points où évaluer la solution. Transformer les équations en un système fini qui se résout "à la main". Plus le nombre de points est grand plus on est précis.

20 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Discrétiser en temps et espace Idée générale Faute d avoir la solution, on en calcule une approximation et on la représente. (t, x) R + [0, 1] (t n = n t, x j = j x), n, j N. ρ(t, x) ρ(t n, x j ) = ρ n j L( t, x )(ρ) = 0 ρ n+1 = f (ρ 0, ρ 1,..., ρ n ) ρ non explicite ρ n+1 calculé.

21 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Rappel des équations Le modèle sans les conditions aux bords t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) v(t) = φ o max(1, m(t)) t u + v(t) x u = 0, x ]0, 1[, t > 0 D(t) = t u(1, t)

22 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Exemple du schéma pour le cloud Implicit finite volume scheme from Jaisson [?] v n = ρ n+1 j φ o max(1, m n ) = ρ n j t x (ρn+1 j ρ n+1 j 1 )v n m n+1 = m n + t(φ n+1 i ρ n+1 N v n ) u n+1 j = uj n t x (un+1 j u n+1 j 1 )v n D n+1 = t n+1 u n+1 N

23 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Les conditions initiales et bords Les conditions ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t). u(0, t) = t Sur le schéma ρ 0 j = ρ 0 (x j ) m 0 ρ n+1 0 v n = φ n+1 i. u n+1 0 = t n+1

24 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse D autres méthodes de discrétisation Différences finies. Volumes finis. Eléments finis. Méthode de Boltzmann sur réseau....

25 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Critères de légitimité d un schéma Comment juger si l approximation est bonne? Consistance : Condition pour que la solution exacte vérifie le schéma de la manière la plus précise qui soit. Stabilité : La solution n explose pas, reste controlée ( ρ n+1 ρ n ). Ces critères permettent de dire des choses sur la convergence de l approximation vers la solution exacte.

26 Application au cloud computing Table des matières 1 Equations aux dérivées partielles et modélisation 2 L analyse numérique pour résoudre ces EDP 3 Application au cloud computing

27 Application au cloud computing Premiers résultats du schéma φi (t) (requests/mn) Requests input rates t (hours) unsaturated saturated 150 saturated 200 D(t) (mn) Response times t (hours) unsaturated saturated 150 saturated 200 Figure: Basic model validation.

28 Application au cloud computing Le problème posé et traduction mathématique On a : des clients avec chacun un ensemble de ressources disponibles (fonction de leur achat). On veut pour chaque client : satisfaire un temps maximal de réponse. satisfaire un temps minimal pour économiser des machines non nécessaires. permettre l utilisation d un surplus de machines si nécessaire.

29 Application au cloud computing Le problème posé et traduction mathématique On a : des clients avec chacun un système de capacité φ o. On veut pour chaque client : T min < D(t) < T max EN TOUT TEMPS. Capacité pour chaque client réhaussée à φ o (1 + φ ɛ0 ), φ ɛ0 ]0, 1[. client 3 client 1 Cloud resources client 2 (φ (2) 0 ) client 4 (φ (4) 0 )

30 Application au cloud computing Outil : l optimisation PHASE D ETEINTE ET ALLUMAGE DES MACHINES Problème d optimisation Trouver la capacité φ n o au temps t n qui réalise : J n (φ o) = (n+1) t n t Min φ o ]0;φo]J n(φ o) (D(t, φ o) T min ) 2 + (D(t, φ o) T max ) 2 dt

31 Application au cloud computing Résultat sur un client φi (t) (requests/mn) Requests input rate t (hours) input D(t) (mn) Response times t (hours) fixed elastic Tmin Tmax Figure: Capacity optimization influence.

32 Application au cloud computing Que faire pour plusieurs clients Cloud resources Cloud resources client 1 extra Free VM client 2 extra Free VM client 2 client 2 extra client 1 extra client 1 client 2 client 1

33 Application au cloud computing Résultats sur plusieurs clients φi (t) (requests/mn) Requests input rate t (hours) client 0 client 1 φo(t) (requests/mn) Capacity evolution t (hours) client 0 client 1 D(t) (mn) Response times client 0 client 1 Tmin Tmax t (hours)

34 Application au cloud computing Arrêter des requêtes trop longues 1 But : Laisser tomber les requêtes trop longues. 2 Notations : τ = τ(t) le ratio de requêtes abandonnées. τ = 0 quand D(t) T th et est une constante positive sinon. T th le seuil. Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 v(t) = φ o max(1, m(t))

35 Application au cloud computing Arrêter des requêtes trop longues Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) τ(t)m(t) v(t) = φ o max(1, m(t))

36 Application au cloud computing Arrêter des requêtes trop longues Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) τ(t)m(t) v(t) = φ o max(1, m(t)) ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t)

37 Application au cloud computing Influence de la suppression de requêtes φi (t) (requests/mn) φo(t) (requests/mn) Requests input rate t (hours) Capacity evolution t (hours) Response times input τ = 0 τ = 1 τ = 10 τ = 100 τ = 1000 D(t) (mn) t (hours) Tmin Tmax Tth

38 Application au cloud computing Response times D(t) (mn) 0.1 τ = 0 τ = 1 τ = 10 τ = 100 τ = 1000 Tmin Tmax Tth Figure: Influence of requests cessation, T th = 3T max, detail

39 Application au cloud computing Dimensionnement du client Comment attribuer un nombre initial de machines au client? Achat = Prévision d input. Lancer le code sur cette prévision. Retenir la capacité maximale utilisée.

40 Conclusion A retenir EDP : Outil pour modéliser une infinité de problèmes physiques. En général, impossible d en expliciter la solution. Outil de simulation, approximation de ces solutions : analyse numérique. Etapes : modélisation, approximation numérique, représentation graphique. MERCI DE VOTRE ATTENTION!

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Systèmes différentiels. 1 Généralités, existence et unicité des solutions

Systèmes différentiels. 1 Généralités, existence et unicité des solutions Systèmes différentiels Cours de YV, L3 Maths, Dauphine, 2012-2013 Plan du cours. Le cours a pour but de répondre aux questions suivantes : - quand une équation différentielle a-t-elle une unique solution

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS.

Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS. Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS. Problème : (Thème : Primitives, équations différentielles linéaires du 1 er ordre à coefficients

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

UE CMP Concepts et Méthodes de la Physique

UE CMP Concepts et Méthodes de la Physique UE CMP Concepts et Méthodes de la Physique Cours 2 EVOLUTION TEMPORELLE (1) 0 Organisation de l UE 0 - Une expérience pendant le cours 1 Introduction : la notion de système 2 Evolution temporelle linéaire

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Gestion de tâches dans un centre d appels multicanal

Gestion de tâches dans un centre d appels multicanal Gestion de tâches dans un centre d appels multicanal Thèse de Benjamin Legros, Encadrée par Oualid Jouini, Directeur de thèse: Yves Dalery Etude en collaboration avec Ger Koole Participation de l entreprise

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Contrôle en Cours de Formation Diplôme préparé Baccalauréat Professionnel : Séquence 1 - Semestre 1. Session.

Contrôle en Cours de Formation Diplôme préparé Baccalauréat Professionnel : Séquence 1 - Semestre 1. Session. Contrôle en Cours de Formation Diplôme préparé Baccalauréat Professionnel : Séquence 1 - Semestre 1 LP Nelson Mandela 8 rue Julien Pranville BP 168 91154 Etampes Cedex Session. Nom :.. Prénom :.. Note

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Cours d Algorithmique et structures de données 1

Cours d Algorithmique et structures de données 1 Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique

Plus en détail

Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle.

Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle. Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle. B. Dadoun L. Feuilloley S. Zhang Équipe encadrante : F. De Vuyst, F. Salvarani, D. Bouche, P. Jaisson

Plus en détail

TP Synthèse d images: Simulation physique -Animation detissus- CPE

TP Synthèse d images: Simulation physique -Animation detissus- CPE TP Synthèse d images: Simulation physique -Animation detissus- CPE durée-4h 2011-2012 FIGURE 1 Resultats possibles de la simulation de tissus. 1 Butdu TP Le but de ce TP est d implémenter le calcul et

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date Guide de SolidWorks Flow Simulation pour l enseignant Présentateur Date 1 Qu'est-ce que SolidWorks Flow Simulation? SolidWorks Flow Simulation est un logiciel d'analyse des écoulements de fluide et du

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Chapitre III. M.Reghioui - 2011 1

Chapitre III. M.Reghioui - 2011 1 Chapitre III Gestion des stocks M.Reghioui - 2011 1 Contenu du chapitre Introduction Stocks et paramètres Politiques d approvisionnement Conclusion M.Reghioui - 2011 2 1. Introduction M.Reghioui - 2011

Plus en détail

Entraînement au concours ACM-ICPC

Entraînement au concours ACM-ICPC Entraînement au concours ACM-ICPC Concours ACM-ICPC : format et stratégies Page 1 / 16 Plan Présentation Stratégies de base Page 2 / 16 Qu est-ce que c est? ACM-ICPC : International Collegiate Programming

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

L informatique en BCPST

L informatique en BCPST L informatique en BCPST Présentation générale Sylvain Pelletier Septembre 2014 Sylvain Pelletier L informatique en BCPST Septembre 2014 1 / 20 Informatique, algorithmique, programmation Utiliser la rapidité

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Classe de 5 ème Domaine d application : Habitat et ouvrages Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Nous proposons deux séquences ayant pour problématiques: 1) Quel est le secteur économique

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Équations de Navier-Stokes dans des domaines quelconques

Équations de Navier-Stokes dans des domaines quelconques Équations de Navier-Stokes dans des domaines quelconques Sylvie Monniaux Univ. Paul Cézanne Aix-Marseille 3, France Séminaire EDP, Rennes 2008 Sylvie Monniaux (Univ. P. Cézanne) NS dans Ω qcq Rennes, mars

Plus en détail

Ce Livre Blanc vise ainsi à vous expliquer concrètement tous les bénéfices d un standard téléphonique pour votre entreprise et vos collaborateurs :

Ce Livre Blanc vise ainsi à vous expliquer concrètement tous les bénéfices d un standard téléphonique pour votre entreprise et vos collaborateurs : AVANT-PROPOS Dans un marché des Télécoms en constante évolution, il est important pour les petites et moyennes entreprises de bénéficier de solutions télécoms qui répondent parfaitement à leurs besoins

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1 Exemple de sujet n 1 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 1 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Les Clusters Les Mainframes Les Terminal Services Server La virtualisation De point de vue naturelle, c est le fait de regrouper

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

PG208, Projet n 3 : Serveur HTTP évolué

PG208, Projet n 3 : Serveur HTTP évolué PG208, Projet n 3 : Serveur HTTP évolué Bertrand LE GAL, Serge BOUTER et Clément VUCHENER Filière électronique 2 eme année - Année universitaire 2011-2012 1 Introduction 1.1 Objectif du projet L objectif

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE INAUGURATION DE L INSTITUT HENRI FAYOL 17/05/2013 DE L OPTIMISATION MATHEMATIQUE

Plus en détail

Rappel sur les bases de données

Rappel sur les bases de données Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 MODÈLES DE DYNAMIQUE DES POPULATIONS N désigne l effectif d une population isolée. dn(t) dt MODÈLE DE MALTHUS (1766-1834) dn(t)

Plus en détail

Présentation de Citrix XenServer

Présentation de Citrix XenServer Présentation de Citrix XenServer Indexes Introduction... 2 Les prérequis et support de Xenserver 6 :... 2 Les exigences du système XenCenter... 3 Avantages de l'utilisation XenServer... 4 Administration

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges NOUVELLE-LÉDONIE Décembre 0 Durée : h00 alculatrice autorisée Exercice : Questionnaire à choix multiples points et exercice est un questionnaire à choix multiples

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Cinématique des fluides

Cinématique des fluides Cinématique des fluides L. Menguy, PSI*, Lycée Montesquieu, Le Mans février 2011 Plan du cours - Cinématique des fluides Description lagrangienne et eulérienne Notion de trajectoire et de ligne de courant

Plus en détail

GESTION D HISTORIQUES GESTION DE PREVISIONS PLANIFICATION AVANCEE

GESTION D HISTORIQUES GESTION DE PREVISIONS PLANIFICATION AVANCEE ADVANCED PLANNING SCHEDULE GESTION D HISTORIQUES GESTION DE PREVISIONS PLANIFICATION AVANCEE Votre contact : Pierre Larchères 06 30 35 96 46 18, rue de la Semm - 68000 COLMAR p.larcheres@agelis.fr PRESENTATION

Plus en détail

OAR Cloud - Une infrastructure légère de Cloud Computing basée sur OAR

OAR Cloud - Une infrastructure légère de Cloud Computing basée sur OAR OAR Cloud - Une infrastructure légère de Cloud Computing basée sur OAR Polytech Grenoble, INRIA 2013 1 / 21 1 2 Plan 3 4 5 2 / 21 1 2 Plan 3 4 5 3 / 21 OAR Cloud Les objectifs du projet Dénition plus précise

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges.

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. 16 au 19 décembre 2014 Table des matières 1 Introduction 2 2 Identités remarquables 3 3 Résoudre x 2 + 2bx = c 6 4 L équation x 2 + x = 3 4

Plus en détail

Sujet 6: MRP/ERP v. optimisation: modélisation et algorithmes

Sujet 6: MRP/ERP v. optimisation: modélisation et algorithmes Sujet 6: MRP/ERP v. optimisation: modélisation et algorithmes MSE3312: Planification de production et gestion des opérations Andrew J. Miller Dernière mise au jour: December 6, 2010 Dans ce sujet... 1

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

EASYDENTAM, votre gestion de laboratoire dentaire simplifiée...

EASYDENTAM, votre gestion de laboratoire dentaire simplifiée... EASYDENTAM, votre gestion de laboratoire dentaire simplifiée... PRÉSENTATION Développé par Dentasoft, avec l'étroite collaboration de prothésistes confirmés, EASYDENTAM est un logiciel de gestion informatique

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

PLAN MULTIMEDIA DANS LES ECOLES UN ESPACE DE STOCKAGE NUMERIQUE (NAS) DANS VOTRE ECOLE. Sommaire

PLAN MULTIMEDIA DANS LES ECOLES UN ESPACE DE STOCKAGE NUMERIQUE (NAS) DANS VOTRE ECOLE. Sommaire PLAN MULTIMEDIA DANS LES ECOLES UN ESPACE DE STOCKAGE NUMERIQUE (NAS) DANS VOTRE ECOLE Sommaire Un espace de stockage numérique (NAS) Qu est-ce que c est? A quoi ça sert? Comment je l utilise? Comment

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Optimisation de trajectoire pour une mission Ariane 5

Optimisation de trajectoire pour une mission Ariane 5 Optimisation de trajectoire pour une mission Ariane 5 Ludovic Goudenège (sur la base d un projet de Pierre Martinon) ENSTA - Module IN103 Septembre 2012 Plan 1 Quelques données et chiffres 2 Dynamique

Plus en détail

Recherche Opérationnelle

Recherche Opérationnelle Chapitre 2 : Programmation linéaire (Introduction) Vendredi 06 Novembre 2015 Sommaire 1 Historique 2 3 4 5 Plan 1 Historique 2 3 4 5 La programmation linéaire est un cadre mathématique général permettant

Plus en détail

Rappel mathématique Germain Belzile

Rappel mathématique Germain Belzile Rappel mathématique Germain Belzile Note : à chaque fois qu il est question de taux dans ce texte, il sera exprimé en décimales et non pas en pourcentage. Par exemple, 2 % sera exprimé comme 0,02. 1) Les

Plus en détail

REQUEA Sizing REQUEA DEIMENSIONNEMENT DU SERVEUR APPLICATIF REQUEA. REQUEA - Sizing des Serveurs d Applications REQUEA. Requea

REQUEA Sizing REQUEA DEIMENSIONNEMENT DU SERVEUR APPLICATIF REQUEA. REQUEA - Sizing des Serveurs d Applications REQUEA. Requea REQUEA - Sizing des Serveurs d Applications REQUEA REQUEA Requea 1 Bd Vivier Merle Tour Société Suisse Lyon, 693 REQUEA Sizing DEIMENSIONNEMENT DU SERVEUR APPLICATIF REQUEA T +33 ()4 72 11 44 87 F +33

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES. Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat

CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES. Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat CALCUL ELMENTS FINIS ET OPTIMISATION DE FORME DANS LES STRUCTURES AEROSPATIALES Pr. BOUDI El Mostapha Ecole Mohammadia d Ingénieurs Rabat En quelques mots Objectif : Contrôle des calculs par la Méthode

Plus en détail

TABLE DES MATIÈRES. Introduction... 1 Un bref aperçu historique... 1 Contenu des exposés... 5 Références... 7

TABLE DES MATIÈRES. Introduction... 1 Un bref aperçu historique... 1 Contenu des exposés... 5 Références... 7 TABLE DES MATIÈRES Préface... v Introduction... 1 Un bref aperçu historique..................................... 1 Contenu des exposés.......................................... 5 Références....................................................

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Niveau de la classe : troisième ou seconde

Niveau de la classe : troisième ou seconde Olivier PILORGET et Luc PONSONNET - Académie de Nice - TraAM 2013-2014 " PERIMETRE DE SECURITE AUTOUR D UNE PISCINE" Niveau de la classe : troisième ou seconde Testée avec une classe de seconde sur une

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail