Introduction à l analyse numérique : exemple du cloud computing

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à l analyse numérique : exemple du cloud computing"

Transcription

1 Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui!

2 Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Des EDO aux EDP 2 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? L analyse numérique à la rescousse 3 Application au cloud computing

3 Equations aux dérivées partielles et modélisation Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Des EDO aux EDP 2 L analyse numérique pour résoudre ces EDP 3 Application au cloud computing

4 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Le ressort k raideur du ressort, m masse du poids. d 2 x dt 2 (t) + k m x(t) = g

5 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation Système proies-prédateurs d x dt (t) = a x(t) b x(t)y(t), d y dt (t) = c x(t)y(t) d y(t). avec a, b, c, d > 0.

6 Introduction à l analyse numérique : exemple du cloud computing Equations aux dérivées partielles et modélisation Des EDO aux EDP Une équation différentielle à plusieurs variables Certaines grandeurs varient en temps et en espace comme par-exemple : la température dans une barre chauffée en un point. T 2T (x, t) K (x, t) = 0 (équation de la chaleur 1D). t x 2 la densité et la vitesse d un fluide incompressible (liquide). ρ + div(q) = 0, t u + u. u = p ν 2 u, t div(u) = 0. (équations de Navier-Stokes).

7 Equations aux dérivées partielles et modélisation Des EDO aux EDP Qu est-ce que le cloud computing Définition Wikipedia Le cloud computing est l accès via le réseau, à la demande et en libre-service, à des ressources informatiques virtualisées et mutualisées. "Accéder à des ressources dont on n a pas à gérer l infrastructure sous-jacente". Exemples : De petites utilisations à de grosses demandes (plusieurs échelles) Accès à une interface logicielle : téléchargement de musique. Accès à un espace mémoire : stockage de mails. Accès à un gros espace de calcul pour des entreprises sur des machines du cloud.

8 Equations aux dérivées partielles et modélisation Des EDO aux EDP Qu est-ce que le cloud computing Concrètement : Tout service se traduit en un nombre de requêtes par seconde. Exemple : Un calcul lancé sur une machine équivaut à n requêtes par seconde. Les clients louent des applications. On évalue leur besoin (en requêtes/s) et on leur accorde un nombre initial de machines. A certains temps, on éteint ou allume des machines suivant le besoin instantané. Problème : On aimerait le faire automatiquement et dynamiquement sous critères.

9 Equations aux dérivées partielles et modélisation Des EDO aux EDP Définitions et notations φ o : Capacité du système. x ]0, 1[ : Taux de complétion d une tâche. ρ(x, t) : Densité de requêtes complétées au niveau x au temps t. m(t) = 1 0 de travail. ρ(x, t)dx : Charge φ i (t) : Taux de requêtes entrantes. client 3 client 1 Cloud resources client 2 (φ (2) 0 ) client 4 (φ (4) 0 )

10 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, v(t) = φ o max(1, m(t)).

11 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, t m = φ i (t) ρ(1, t)v(t). v(t) = φ o max(1, m(t)).

12 Equations aux dérivées partielles et modélisation Des EDO aux EDP Conservation de la masse Les équations t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0, t m = φ i (t) ρ(1, t)v(t). v(t) = φ o max(1, m(t)). ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t).

13 Equations aux dérivées partielles et modélisation Des EDO aux EDP Loi du temps de réponse d(x, t 0, x 0 ) : Temps que met une requête pour passer du niveau de complétion x 0 à x à l instant t 0. Le temps de complétion d une requête au temps t est : D(t) = d(1, t, 0). Donnée cruciale pour évaluer combien de temps le client va attendre. Service time equation t d + v(t) x d = 1, x ]0, 1[, t > 0 d(0, t, 0) = 0

14 Equations aux dérivées partielles et modélisation Des EDO aux EDP Loi du temps de réponse d(x, t 0, x 0 ) : Temps que met une requête pour passer du niveau de complétion x 0 à x à l instant t 0. Le temps de complétion d une requête au temps t est : D(t) = d(1, t, 0). Donnée cruciale pour évaluer combien de temps le client va attendre. u = t d Service time equation t u + v(t) x u = 0, x ]0, 1[, t > 0 u(0, t) = t D(t) = t u(1, t)

15 L analyse numérique pour résoudre ces EDP Table des matières 1 Equations aux dérivées partielles et modélisation 2 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? L analyse numérique à la rescousse 3 Application au cloud computing

16 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Ces équations résolues explicitement Explicite = Dont on on connait l expression. Avoir l expression pour avoir des représentations graphiques. x (t) + f (t)x(t) = g(t). ax (t) + bx (t) + cx(t) = 0. t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0

17 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Des cas qui restent rares Theorem (de Cauchy) Soit f : I Ω R R n R de classe C 1 (I Ω) et localement lipschitzienne en espace par rapport à la seconde variable, alors pour toute donnée initiale (t 0, x 0 ), il existe une unique solution maximale au problème de Cauchy : { x (t) = f (t, x(t)),. x(t 0 ) = x 0.

18 L analyse numérique pour résoudre ces EDP Peut-on toujours en avoir les solutions? Des cas qui restent rares. Pour la plupart des EDP, on recherche des théorèmes d existence et unicité sans espoir d avoir une solution explicite. Existence et unicité n est pas garantie non plus : Pas de démonstration d existence de solutions régulières pour Navier-Stokes (pb à 1 million de dollar). Comment représenter les solutions graphiquement si on n a pas leurs expressions?

19 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Discrétiser en temps et espace Idée générale Faute d avoir la solution, on en calcule une approximation et on la représente. Se ramener à un ensemble fini de points où évaluer la solution. Transformer les équations en un système fini qui se résout "à la main". Plus le nombre de points est grand plus on est précis.

20 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Discrétiser en temps et espace Idée générale Faute d avoir la solution, on en calcule une approximation et on la représente. (t, x) R + [0, 1] (t n = n t, x j = j x), n, j N. ρ(t, x) ρ(t n, x j ) = ρ n j L( t, x )(ρ) = 0 ρ n+1 = f (ρ 0, ρ 1,..., ρ n ) ρ non explicite ρ n+1 calculé.

21 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Rappel des équations Le modèle sans les conditions aux bords t ρ + v(t) x ρ = 0, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) v(t) = φ o max(1, m(t)) t u + v(t) x u = 0, x ]0, 1[, t > 0 D(t) = t u(1, t)

22 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Exemple du schéma pour le cloud Implicit finite volume scheme from Jaisson [?] v n = ρ n+1 j φ o max(1, m n ) = ρ n j t x (ρn+1 j ρ n+1 j 1 )v n m n+1 = m n + t(φ n+1 i ρ n+1 N v n ) u n+1 j = uj n t x (un+1 j u n+1 j 1 )v n D n+1 = t n+1 u n+1 N

23 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Les conditions initiales et bords Les conditions ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t). u(0, t) = t Sur le schéma ρ 0 j = ρ 0 (x j ) m 0 ρ n+1 0 v n = φ n+1 i. u n+1 0 = t n+1

24 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse D autres méthodes de discrétisation Différences finies. Volumes finis. Eléments finis. Méthode de Boltzmann sur réseau....

25 L analyse numérique pour résoudre ces EDP L analyse numérique à la rescousse Critères de légitimité d un schéma Comment juger si l approximation est bonne? Consistance : Condition pour que la solution exacte vérifie le schéma de la manière la plus précise qui soit. Stabilité : La solution n explose pas, reste controlée ( ρ n+1 ρ n ). Ces critères permettent de dire des choses sur la convergence de l approximation vers la solution exacte.

26 Application au cloud computing Table des matières 1 Equations aux dérivées partielles et modélisation 2 L analyse numérique pour résoudre ces EDP 3 Application au cloud computing

27 Application au cloud computing Premiers résultats du schéma φi (t) (requests/mn) Requests input rates t (hours) unsaturated saturated 150 saturated 200 D(t) (mn) Response times t (hours) unsaturated saturated 150 saturated 200 Figure: Basic model validation.

28 Application au cloud computing Le problème posé et traduction mathématique On a : des clients avec chacun un ensemble de ressources disponibles (fonction de leur achat). On veut pour chaque client : satisfaire un temps maximal de réponse. satisfaire un temps minimal pour économiser des machines non nécessaires. permettre l utilisation d un surplus de machines si nécessaire.

29 Application au cloud computing Le problème posé et traduction mathématique On a : des clients avec chacun un système de capacité φ o. On veut pour chaque client : T min < D(t) < T max EN TOUT TEMPS. Capacité pour chaque client réhaussée à φ o (1 + φ ɛ0 ), φ ɛ0 ]0, 1[. client 3 client 1 Cloud resources client 2 (φ (2) 0 ) client 4 (φ (4) 0 )

30 Application au cloud computing Outil : l optimisation PHASE D ETEINTE ET ALLUMAGE DES MACHINES Problème d optimisation Trouver la capacité φ n o au temps t n qui réalise : J n (φ o) = (n+1) t n t Min φ o ]0;φo]J n(φ o) (D(t, φ o) T min ) 2 + (D(t, φ o) T max ) 2 dt

31 Application au cloud computing Résultat sur un client φi (t) (requests/mn) Requests input rate t (hours) input D(t) (mn) Response times t (hours) fixed elastic Tmin Tmax Figure: Capacity optimization influence.

32 Application au cloud computing Que faire pour plusieurs clients Cloud resources Cloud resources client 1 extra Free VM client 2 extra Free VM client 2 client 2 extra client 1 extra client 1 client 2 client 1

33 Application au cloud computing Résultats sur plusieurs clients φi (t) (requests/mn) Requests input rate t (hours) client 0 client 1 φo(t) (requests/mn) Capacity evolution t (hours) client 0 client 1 D(t) (mn) Response times client 0 client 1 Tmin Tmax t (hours)

34 Application au cloud computing Arrêter des requêtes trop longues 1 But : Laisser tomber les requêtes trop longues. 2 Notations : τ = τ(t) le ratio de requêtes abandonnées. τ = 0 quand D(t) T th et est une constante positive sinon. T th le seuil. Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 v(t) = φ o max(1, m(t))

35 Application au cloud computing Arrêter des requêtes trop longues Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) τ(t)m(t) v(t) = φ o max(1, m(t))

36 Application au cloud computing Arrêter des requêtes trop longues Modified PDE model t ρ + v(t) x ρ = τ(t)ρ, x ]0, 1[, t > 0 t m = φ i (t) ρ(1, t)v(t) τ(t)m(t) v(t) = φ o max(1, m(t)) ρ(x, 0) = ρ 0 (x) m(0) = 1 0 ρ 0 (x)dx 0 ρ(0, t)v(t) = φ i (t)

37 Application au cloud computing Influence de la suppression de requêtes φi (t) (requests/mn) φo(t) (requests/mn) Requests input rate t (hours) Capacity evolution t (hours) Response times input τ = 0 τ = 1 τ = 10 τ = 100 τ = 1000 D(t) (mn) t (hours) Tmin Tmax Tth

38 Application au cloud computing Response times D(t) (mn) 0.1 τ = 0 τ = 1 τ = 10 τ = 100 τ = 1000 Tmin Tmax Tth Figure: Influence of requests cessation, T th = 3T max, detail

39 Application au cloud computing Dimensionnement du client Comment attribuer un nombre initial de machines au client? Achat = Prévision d input. Lancer le code sur cette prévision. Retenir la capacité maximale utilisée.

40 Conclusion A retenir EDP : Outil pour modéliser une infinité de problèmes physiques. En général, impossible d en expliciter la solution. Outil de simulation, approximation de ces solutions : analyse numérique. Etapes : modélisation, approximation numérique, représentation graphique. MERCI DE VOTRE ATTENTION!

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Systèmes différentiels. 1 Généralités, existence et unicité des solutions

Systèmes différentiels. 1 Généralités, existence et unicité des solutions Systèmes différentiels Cours de YV, L3 Maths, Dauphine, 2012-2013 Plan du cours. Le cours a pour but de répondre aux questions suivantes : - quand une équation différentielle a-t-elle une unique solution

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

TP Synthèse d images: Simulation physique -Animation detissus- CPE

TP Synthèse d images: Simulation physique -Animation detissus- CPE TP Synthèse d images: Simulation physique -Animation detissus- CPE durée-4h 2011-2012 FIGURE 1 Resultats possibles de la simulation de tissus. 1 Butdu TP Le but de ce TP est d implémenter le calcul et

Plus en détail

Équations de Navier-Stokes dans des domaines quelconques

Équations de Navier-Stokes dans des domaines quelconques Équations de Navier-Stokes dans des domaines quelconques Sylvie Monniaux Univ. Paul Cézanne Aix-Marseille 3, France Séminaire EDP, Rennes 2008 Sylvie Monniaux (Univ. P. Cézanne) NS dans Ω qcq Rennes, mars

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

TABLE DES MATIÈRES. Introduction... 1 Un bref aperçu historique... 1 Contenu des exposés... 5 Références... 7

TABLE DES MATIÈRES. Introduction... 1 Un bref aperçu historique... 1 Contenu des exposés... 5 Références... 7 TABLE DES MATIÈRES Préface... v Introduction... 1 Un bref aperçu historique..................................... 1 Contenu des exposés.......................................... 5 Références....................................................

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS.

Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS. Journées Nationales de l APMEP 2006 MODELISATION MATHEMATIQUE DE PHENOMENES PHYSIQUES, DU COLLEGE AU BTS. Problème : (Thème : Primitives, équations différentielles linéaires du 1 er ordre à coefficients

Plus en détail

UE CMP Concepts et Méthodes de la Physique

UE CMP Concepts et Méthodes de la Physique UE CMP Concepts et Méthodes de la Physique Cours 2 EVOLUTION TEMPORELLE (1) 0 Organisation de l UE 0 - Une expérience pendant le cours 1 Introduction : la notion de système 2 Evolution temporelle linéaire

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier Modélisation, équations aux dérivées partielles, 16h de cours, 16h de TDs 1 er février 2013 Marie Hélène

Plus en détail

La relation Ressource - Consommateur. 1 - La logistique. Claude Lobry, Universitéde Nice et INRIA Modemic Septembre 2015

La relation Ressource - Consommateur. 1 - La logistique. Claude Lobry, Universitéde Nice et INRIA Modemic Septembre 2015 La relation Ressource - Consommateur 1 - La logistique Claude Lobry, Universitéde Nice et INRIA Modemic Septembre 2015 La relation Ressource - Consommateur 1 - La logistique Qu est ce qu une équation différentielle?

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Automatique Modélisation et commande de systèmes par représentation d état

Automatique Modélisation et commande de systèmes par représentation d état Automatique Modélisation et commande de systèmes par représentation d état Marc BACHELIER - PPS5 October 30, 2013 Abstract Ce cours a pour objectif de faire découvrir des méthodes de conception de commande

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/83 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail

Ce Livre Blanc vise ainsi à vous expliquer concrètement tous les bénéfices d un standard téléphonique pour votre entreprise et vos collaborateurs :

Ce Livre Blanc vise ainsi à vous expliquer concrètement tous les bénéfices d un standard téléphonique pour votre entreprise et vos collaborateurs : AVANT-PROPOS Dans un marché des Télécoms en constante évolution, il est important pour les petites et moyennes entreprises de bénéficier de solutions télécoms qui répondent parfaitement à leurs besoins

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau Formation à la C F D Computational Fluid Dynamics Formation à la CFD, Ph Parnaudeau 1 Qu est-ce que la CFD? La simulation numérique d un écoulement fluide Considérer à présent comme une alternative «raisonnable»

Plus en détail

A. Chauffage d une maison en hiver

A. Chauffage d une maison en hiver Banque Agro - Véto A - 0711 PHYSIQUE Durée : 3 heures 30 minutes L usage d une calculatrice est interdit pour cette épreuve. Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur

Plus en détail

«Pièges», «erreurs» et pathologie des calculs numériques

«Pièges», «erreurs» et pathologie des calculs numériques Session de formation continue ENPC «Pièges», «erreurs» et pathologie des calculs numériques 6-8 octobre 2010 Philippe Mestat (LCPC) «Pièges» pour débutant?. Conditions limites en déplacements : il faut

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

TECHNICIEN SUPERIEUR TERRITORIAL. CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008

TECHNICIEN SUPERIEUR TERRITORIAL. CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008 TECHNICIEN SUPERIEUR TERRITORIAL CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008 Vérification des connaissances mathématiques des candidats, au moyen de tableaux ou graphiques à constituer ou compléter,

Plus en détail

Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle.

Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle. Modèles continus de supply chains. Application à la modélisation d une architecture de calcul parallèle. B. Dadoun L. Feuilloley S. Zhang Équipe encadrante : F. De Vuyst, F. Salvarani, D. Bouche, P. Jaisson

Plus en détail

Gestion de tâches dans un centre d appels multicanal

Gestion de tâches dans un centre d appels multicanal Gestion de tâches dans un centre d appels multicanal Thèse de Benjamin Legros, Encadrée par Oualid Jouini, Directeur de thèse: Yves Dalery Etude en collaboration avec Ger Koole Participation de l entreprise

Plus en détail

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45)

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) Exercice 1 Galilée à Pise (5,5 points) O i Selon la légende, Galilée (1564-1642) aurait étudié la chute des corps en lâchant divers objets du sommet

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail

Calcul Scientifique L2 Maths Notes de Cours

Calcul Scientifique L2 Maths Notes de Cours Calcul Scientifique L2 Maths Notes de Cours Le but de ce cours est d aborder le Calcul Scientifique, discipline arrivant en bout d une d une chaîne regroupant divers concepts tels que la modélisation et

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Relations fondamentales de la dynamique des milieux continus déformables

Relations fondamentales de la dynamique des milieux continus déformables Relations fondamentales de la dynamique des milieux continus déformables Lois universelles de la physique des milieux continus conservation de la masse bilan de quantité de mouvement bilan de moment cinétique

Plus en détail

Modèles continus de supply chains Application à la modélisation d une architecture de calcul parallèle

Modèles continus de supply chains Application à la modélisation d une architecture de calcul parallèle Rapport de stage de L3 Modèles continus de supply chains Application à la modélisation d une architecture de calcul parallèle Benjamin Dadoun, Laurent Feuilloley, Siyu Zhang 2 juillet 2012 Équipe encadrante

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Modélisation & simulation des groupes motopropulseurs. p. 129 à 132

Modélisation & simulation des groupes motopropulseurs. p. 129 à 132 Modélisation & simulation des groupes motopropulseurs ff p. 129 à 132 Fondamentaux Peut être organisé en intra-entreprise Introduction à la modélisation & la simulation des GMP & du contrôle 5 Jours

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Projet de Recherche (PRE)

Projet de Recherche (PRE) Projet de Recherche (PRE) Spécialité : SIM Année Scolaire : 011/01 Simulation numérique d un problème de mécanique des fluides Étude des effets de la compressibilité dans le problème du piston Auteur :

Plus en détail

SIMULATION NUMÉRIQUE DU LANCEMENT D UNE TORPILLE SOUS-MARINE JULIEN NAVE PIERRE MATHARAN

SIMULATION NUMÉRIQUE DU LANCEMENT D UNE TORPILLE SOUS-MARINE JULIEN NAVE PIERRE MATHARAN SIMULATION NUMÉRIQUE DU LANCEMENT D UNE TORPILLE SOUS-MARINE JULIEN NAVE PIERRE MATHARAN 28 JANVIER 2013 1 SIMULATION TORPILLE SOUS-MARINE 2 1. Introduction On a choisi d étudier la torpille chinoise ET36,

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date Guide de SolidWorks Flow Simulation pour l enseignant Présentateur Date 1 Qu'est-ce que SolidWorks Flow Simulation? SolidWorks Flow Simulation est un logiciel d'analyse des écoulements de fluide et du

Plus en détail

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges.

Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. Stage au LaMME : résoudre x 2 + x = 3 4, à travers les âges. 16 au 19 décembre 2014 Table des matières 1 Introduction 2 2 Identités remarquables 3 3 Résoudre x 2 + 2bx = c 6 4 L équation x 2 + x = 3 4

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

Analyse numérique avec Python

Analyse numérique avec Python Analyse numérique avec Python PTSI Lycée Eiffel mai 14 Retour au Python pour ce dernier gros chapitre de l année (un tout petit chapitre final sera sûrement consacré aux rudiments de Scilab), où nous allons

Plus en détail

Fonctions affines. Table des matières

Fonctions affines. Table des matières Fonctions affines Table des matières 1 fonction linéaire, fonction constante, fonction affine 3 1.1 activités.............................................. 3 1.1.1 activité 1 : fonction linéaire et variation

Plus en détail

Récupération d énergie

Récupération d énergie Récupération d énergie Le sujet propose d étudier deux dispositifs de récupération d énergie soit thermique (problème 1) soit mécanique (problème 2) afin de produire une énergie électrique. Chaque problème

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Equations différentielles

Equations différentielles Maths PCSI Cours Table des matières Equations différentielles 1 Généralités 2 1.1 Solution d une équation différentielle................................ 2 1.2 Problème de Cauchy.........................................

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

TD 1 : Introduction à Maple

TD 1 : Introduction à Maple TD 1 : Septembre-Octobre 2011 Maple, qu est-ce que c est? Maple est - en gros - une calculatrice très évoluée. Au contraire de vos petites machines portables, il sait non seulement manipuler les nombres,

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

Optimisation de trajectoire pour une mission Ariane 5

Optimisation de trajectoire pour une mission Ariane 5 Optimisation de trajectoire pour une mission Ariane 5 Ludovic Goudenège (sur la base d un projet de Pierre Martinon) ENSTA - Module IN103 Septembre 2012 Plan 1 Quelques données et chiffres 2 Dynamique

Plus en détail

QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer

QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice 1. 20 % de 120 est égal à : A 240 B 24 C 144 D 96 Réponse juste : B 20 %

Plus en détail

Présentation du plan de cours et du site Internet

Présentation du plan de cours et du site Internet Cours #1: Introduction à la modélisation et au contrôle de procédés industriels Guy Gauthier, ing., Ph.D. 6 janvier 015 Source de l image: www.mlssystems.com/thermoforming.htm Présentation du plan de cours

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Résolution d un problème d assimilation variationnelle 4D-VAR par des modèles réduits POD adaptatifs

Résolution d un problème d assimilation variationnelle 4D-VAR par des modèles réduits POD adaptatifs Résolution d un problème d assimilation variationnelle 4D-VAR par des modèles réduits POD adaptatifs G. TISSOT, L. CORDIER, B. R. NOACK Institut Pprime, Dpt. Fluides, Thermique et Combustion, 8636 Poitiers

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Ce que l élève doit retenir La distance d arrêt d un véhicule est la somme de la distance parcourue pendant le temps de réaction du conducteur et de la distance de freinage.

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Groupe : (h, k) ( 5, 12)

Groupe : (h, k) ( 5, 12) Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet

Plus en détail

Technologie de pompe : Une meilleure efficacité énergétique dans les installations de froid

Technologie de pompe : Une meilleure efficacité énergétique dans les installations de froid ETUDE SPECIALISEE Une meilleure efficacité énergétique dans les installations de froid Conformément aux recommandations EDL (Efficacité et prestations de service énergétiques) des mesures ciblées doivent

Plus en détail

Illustrations : Exp du bateau à eau, machine Bollée

Illustrations : Exp du bateau à eau, machine Bollée Thermodynamique 4 Machines thermiques Illustrations : Exp du bateau à eau, machine Bollée Simulation gtulloue // cycles moteur A savoir - Définir une machine thermique - Bilan énergétiques et entropiques

Plus en détail

1 Outils mathématiques pour la Physique

1 Outils mathématiques pour la Physique Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier TUE 302 : Outil Physique et Géophysique 1 Outils mathématiques pour la Physique k Daniel.Brito@ujf-grenoble.fr

Plus en détail

La surveillance réseau des Clouds privés

La surveillance réseau des Clouds privés La surveillance réseau des Clouds privés Livre blanc Auteurs : Dirk Paessler, CEO de Paessler AG Gerald Schoch, Rédactrice technique de Paessler AG Publication : Mai 2011 Mise à jour : Février 2015 PAGE

Plus en détail

Cours et applications

Cours et applications MANAGEMENT SUP Cours et applications 3 e édition Farouk Hémici Mira Bounab Dunod, Paris, 2012 ISBN 978-2-10-058279-2 Table des matières Introduction 1 1 Les techniques de prévision : ajustements linéaires

Plus en détail

Modélisation du risque de crédit et asymétrie d information

Modélisation du risque de crédit et asymétrie d information Modélisation du risque de crédit et asymétrie d information David Kurtz, Groupe de Recherche Opérationnelle 10 juin 2004, Université de Poitiers Introduction [1] (1) Le risque de crédit (2) Modèles structurels

Plus en détail

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels 3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4

Plus en détail

Physique. De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale

Physique. De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale Physique TSI 4 heures Calculatrices autorisées De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale 2012 Ce problème aborde quelques aspects du Programme Apollo, qui permit à l Homme de

Plus en détail

Éléments de correction

Éléments de correction Éléments de correction Sujet zéro de l'épreuve informatique et modélisation de systèmes physiques Étude d un capteur de modification de fissure : fissuromètre Q1. Déterminer sa masse linéique. Masse linéique

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail