CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté"

Transcription

1 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons les systèmes qui se composent de deux ou plusieurs oscillateurs qui sont couplés dans une certaine façon et qui ont plus d'une pulsation d'oscillation. Nous allons voir que ce couplae produit de nouveaux et d importants effets physiques. Chacune des pulsations correspondent à une manière différente dans laquelle le système peut osciller. Ces différentes façons sont appelés «modes normaux». es modes normaux d'un système sont caractérisés par le fait que toutes les parties du système oscillent avec la même pulsation. es oscillateurs sont couplé parce qu ils se trouvent rarement dans un isolement complet et sont énéralement capables d osciller avec de différentes façons. es oscillateurs couplés sont éalement importants car ils ouvrent la voie à la compréhension des ondes dans les milieux continus. e mouvement des ondes dépend des systèmes voisins qui vibrent et qui sont couplées entre elles et peuvent donc transmettre de l énerie entre elles. Définition : Un système est à plusieurs derés de liberté (ddl) si plusieurs coordonnées indépendantes sont nécessaires pour décrire son mouvement. Il y a autant d équations de arane que de derés de liberté ou de coordonnées énéralisées. IV.1 Systèmes à derés de liberté Pour l étude des systèmes à deux derés de liberté, il est nécessaire d écrire deux équations différentielles du mouvement que l on peut obtenir à partir des équations de arane : d dt q 1 d dt q q 1 = 0 q = 0 Un système à derés de liberté possède 0 coordonnées énéralisées, 0 équations différentielles et 0 pulsations propres ( ω 1, ω ). IV.1.1 es type de couplaes a) Couplae Elastique : e couplae dans les systèmes mécaniques est assuré par élasticité. Dans les systèmes électriques, on trouve les circuits couplés par capacité, ce qui est équivalent au couplae par élasticité. C C k k 1 m 1 m C es équations différentielles correspondantes sont : x 1 + δ 1 x 1 + ω x 1 = a 1 x x + δ x + ω x = a x 1 Tels que : a 1 x et a x 1 sont les termes de couplae. a 1 et a sont des constantes. Pae 1

2 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté b) Couplae Visqueux : e couplae dans les systèmes mécaniques est assuré par amortisseur. Dans les systèmes électriques, on trouve les circuits couplés par résistance, équivalents au couplae par amortisseur. C C 1 k m 1 m es équations différentielles correspondantes sont : x 1 + δ 1 x 1 + ω x 1 = b 1 x x + δ x + ω x = b x 1 Tels que : b 1 x et b x 1 sont les termes de couplae. b 1 et b sont des constantes. c) Couplae Inertiel : e couplae dans les systèmes mécaniques est assuré par inertie. Dans les systèmes électriques, on trouve les circuits couplés par inductance, équivalents au couplae par inertie. C C 1 m 1 θ m es équations différentielles correspondantes sont : x 1 + δ 1 x 1 + ω x 1 = c 1 x x + δ x + ω x = c x 1 Tels que : c 1 x et c x 1 sont les termes de couplae. c 1 et c sont des constantes. IV.1. Méthode énérale de résolution des équations de mouvement. Pour un système mécanique, la mise en équation du système couplé passe par la méthode à suivre suivante : 1 On écrit les équations différentielles en fonction des coordonnées énéralisées. On fait l hypothèse que le système admet des solutions harmoniques. Ce qui sinifie que le système peut osciller avec la même pulsation pour tous les oscillateurs. 3 a résolution des systèmes d équations permet d obtenir pulsations particulières ω 1 et ω ; ce sont les pulsations propres. 4 - On substitue ensuite ω 1 dans l'une des équations et l on obtient le 1 er mode propre. On substitue ensuite ω dans l'une des équations et l on obtient le ème mode propre. 5 On écrit les solutions énérales des équations différentielles du mouvement. Pae

3 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté IV.1.3 Exemples de systèmes a DD IV Pendules couplés : (Couplae Elastique) y y x Considérons deux pendules qui sont couplés par un ressort horizontal de constante de raideur k à une distance a de l'axe de rotation. a O k O 1. Equations différentielles du mouvement : es coordonnées des éléments du système : a masse m 1 se trouve à une distance l 1 de O. l 1 m 1 l m m 1 x m 1 = l 1. sin y m1 = l 1. cos x m 1 = l 1 θ 1cos y m 1 = l 1 θ 1 sin v² m1 = l 1 ²θ 1 a masse m se trouve à une distance l de O. m x m = l. sin θ x m = l θ cos θ v² y m = l. cos θ m = l ²θ y m = l θ sin θ k = {a. sin a. sinθ = a(sin sinθ ) énerie cinétique du système : T = Tm 1 + Tm = 1 mv m mv m Tm 1 = 1 m 1(x m 1 + y m1 ) = 1 m 1l 1 θ 1 (cos θ 1 + sin θ 1 ) Tm 1 = 1 m 1l² 1 θ 1 Tm = 1 m (x m + y m ) = 1 m l θ (cos θ + sin θ ) Tm = 1 m l² θ T = 1 (m 1l² 1 θ 1 + m l² θ ) énerie potentielle du système : U = U k + U m1 +U m Si on choisi comme oriine des éneries potentielles l axe (Ox) on a pour les deux masses : U m1 +U m = m 1 l 1. cos m l. cos θ (e sine moins vient du fait que la masse m est inférieur à l axe choisi). U = 1 ka (sin sinθ ) m 1 l 1. cos m l. cos θ a fonction de arane sera donc : = T U = 1 m 1l² 1 θ 1 m l² θ ka (sin sinθ ) +m 1 l 1. cos +m l. cos θ On remarque bien deux coordonnées énéralisées qui décrit le mouvement donc on aura deux équations de arane : d dt = 0 d dt = 0 θ θ d dt = m 1 l 1θ 1.. = ka cos (sin sinθ ) m 1 l 1 sin m 1 l 1θ 1 + ka cos (sin sinθ ) + m 1 l 1 sin = 0 sin θ θ Dans le cas des faibles oscillations, les anles sont très petits on a : cos θ 1 θ 1 Pae 3

4 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté m 1 l 1θ 1 + ka ( θ ) + m 1 l 1 = 0 Donc les 0 équations différentielles du mouvement sont : m 1l 1θ 1 + (ka + m 1 l 1 ) = ka θ. (1) m l θ + (ka + m l )θ = ka. () emarques : e terme de couplae ka² est en fonction de k donc le couplae est élastique. Si a = 0 ou k = 0 couplae nul : les deux systèmes sont indépendant. es deux équations différentielles possèdent 0 solutions (t)et θ (t).. On fait l hypothèse que le système admet des solutions harmoniques : Donc : (t) = A 1 sin(ωt + φ) et θ (t) = A sin(ωt + φ ) Tels que : A 1, A, φ et φ, ω est l une des pulsations propres du système. (t) = A 1 sin(ωt + φ) θ 1 = ω² θ (t) = A sin(ωt + φ ) θ = ω²θ On remplace dans les équations (1) et () donc : (ka + m 1 l 1 m 1 l² 1 ω²) ka²θ = 0. (3) ka² + (ka + m l m l² ω²)θ = 0. (4) 3. Calcul des pulsations propres : On suppose que m 1 = m = m, l 1 = l = l ka + ml ml² ω² ka² ka² ka + ml ml² ω² = 0 θ 0 Ces deux équations accepteront une solution si le déterminant =0 ka + ml ml² ω² ka² ka² ka + ml ml² ω² = 0 (ka + ml ml ω ) (ka ) = 0 (ka + ml ml ω ) (ka ) = 0 ka + ml ml ω = +ka ka ω² 1 = + k l m (a)² l ω² = tels que : ω 1 : la 1ère pulsation propre ω : la ème pulsation propre l emarques Si a = 0 ou = 0, le couplae est nul ω² 1 = ω² = l orsque le système oscille avec une de ses 0 pulsations on dit que le système oscille dans un de ses deux modes. 4. es modes d oscillations e mode c est l état dans lequel les éléments dynamiques du système effectuent une oscillation harmonique avec la même pulsation qui correspond à une de ses deux pulsations. 4.1 Calcul des modes d oscillations : Dans chaque mode les deux masses effectuent des mouvements harmoniques simples avec la même pulsation (ω 1 ou ω ) et les deux pendules passent par la position d équilibre au même instant. Premier mode : on remplace dans (3) ou (4) par ω² 1 = + k l m (a)² : l On obtient après calcul : θ = emarques : Dans le premier mode les deux pendules ont la même pulsation ω 1, la même amplitude et un déphasae π. es deux pendules ont des mouvements opposés. Pae 4

5 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté Elonation et compression du ressort chaque période sauf au point du milieu du ressort. θ Deuxième mode : on remplace dans (3) ou (4) par ω² = l : On obtient après calcul : θ = emarque : es deux pendules se déplacent dans le même sens. e ressort ne subit aucune variation de sa lonueur. θ = 5. Calcul des solutions des équations différentielles : Chacune des mouvements et θ possède deux composantes harmoniques de pulsations ω 1 ou ω Comme les équations différentielles sont linéaires, toute combinaison de solutions reste solution du système. a solution énérale s écrit alors comme une combinaison linéaire des deux solutions. (t) = A 1 sin(ω 1 t + φ 1 )+B 1 sin(ω t + φ ) θ (t) = A sin(ω 1 t + φ 1 )+B sin(ω t + φ ) Dans le premier mode : ω = ω 1 θ = A 1 = A V 1 1 1, V 1 est le 1 er vecteur propre Dans le deuxième mode : ω = ω θ = B 1 = B V 1 1, V est le ème vecteur propre Donc : (t) = Asin(ω 1 t + φ 1 ) + Bsin(ω t + φ ) θ (t) = Asin(ω 1 t + φ 1 ) + Bsin(ω t + φ ) 6. Calcul des constantes A, B, φ 1 et φ Supposons que : (t) = θ 0, θ 1(t) = 0 θ (t) = 0, θ (t) = 0 θ 1(t) = Aω 1 cos(ω 1 t + φ 1 ) + Bω cos(ω t + φ ) θ (t) = Aω 1 cos(ω 1 t + φ 1 ) + Bω cos(ω t + φ ) (0) = Asin(φ 1 ) + Bsin(φ ) = θ 0 θ (0) = Asin(φ 1 ) + Bsin(φ ) = 0 et θ 1(0) = Aω 1 cos(φ 1 ) + Bω cos(φ ) θ (0) = Aω 1 cos(φ 1 ) + Bω cos(φ ) φ 1 = φ = ± π A = B = θ 0 Donc : (t) = θ0 sin ω 1t + π + sin(ω t + π ) θ (t) = θ 0 sin ω 1t + π + sin(ω t + π ) avec : cosα + cosβ = cos α+β cos α β cosα cosβ = sin α+β sin α β sin α + π = cos α Pae 5

6 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté On obtient : (t) = θ 0 cos ω ω1 θ (t) = θ 0 sin ω ω 1 t. cos ω +ω 1 t t. sin ω +ω 1 t 7. Phénomène de battement : orsque le couplae est faible (k faible), les pulsations propres des oscillateurs (ω 1 et ω ) sont voisines (ω 1 ω ω = ω ω 1 est faible), il se produit un phénomène de battement. es oscillateurs se transmettent de l énerie entre eux et vibres avec une pulsation ω éal à la moyenne des deux pulsations propres ω = 1 (ω + ω 1 ) avec une période éale à T = π ω = battement est éale à ω B = 1 (ω ω 1 ), avec une période T B = 4π ω ω 1 4π ω +ω 1 Tandis que la pulsation du 4π T B = ω ω 1 θ 4π T = ω + ω 1 IV.1.3. Pendules couplés : (Couplae inertiel) Considérons deux pendules qui sont couplés par une masse m 1 qui se trouve à une distance l 1 de l'axe de rotation. 1. Equations différentielles du mouvement : es coordonnées des éléments du système : a masse m 1 se trouve à une distance l 1 de O. m 1 x m 1 = l 1. sin x m 1 = l 1 θ 1cos v² y m1 = l 1. cos θ m1 = l 1 ²θ² 1 1 y m 1 = l 1 sin a masse m se trouve à une distance (l 1 + l ) de O. y O l 1 x m 1 θ l m x m = l 1. sin + l. sin θ y m = l 1. cos l. cos θ x m = l 1 θ 1cos + l θ 1cos θ y m = l 1 θ 1 sin + l θ sin θ m Calcul de v m v² m = l 1 cos + l θ cos θ + (l 1 sin + l θ sin θ )² v² m = l² 1 θ 1 + l² θ + l 1 cos. l θ cos θ + l 1 sin. l θ sin θ v² m = l² 1 θ 1 + l² θ + l 1 l θ (cos cos θ + sin sin θ ) Or : cos ( θ ) = cos cos θ + sin sin θ ) v² m = l² 1 θ 1 + l² θ + l 1 l θ cos ( θ ) Dans le cas des faibles oscillations, les anles sont très petits on a : {cos ( θ ) 1 Donc : v² m = l² 1 θ 1 + l² θ + l 1 l θ 1 θ = (l 1 + l θ )² énerie cinétique du système : T = Tm 1 + Tm = 1 mv m mv m Pae 6

7 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté Tm 1 = 1 m 1(x m 1 + y m1 ) = 1 m 1l 1 θ 1 (cos θ 1 + sin θ 1 ) Tm 1 = 1 m 1l² 1 θ 1 Tm = 1 m v² m = 1 m (l 1 + l θ )² T = 1 m 1l 1θ m l 1 + l θ énerie potentielle du système : U = U m1 +U m Si on choisi comme oriine des éneries potentielles l axe (Ox) on a pour les deux masses : U m1 +U m = m 1 l 1. cos m (l 1. cos + l. cos θ ) (e sine moins vient du fait que la masse m est inférieur à l axe choisi). U = l 1 (m 1 + m ) cos m l. cos θ a fonction de arane sera donc : = T U = 1 m 1l² 1 θ m l 1 + l θ + l 1 (m 1 + m ) cos +m l. cos θ On remarque bien deux coordonnées énéralisées qui décrit le mouvement donc on aura deux équations de arane : d dt d dt θ d dt = m 1 l 1θ 1 + m l 1 (l 1 θ 1 + l θ ) = l 1 (m 1 + m ) sin = 0 θ = 0 m 1 l 1θ 1 + m l 1θ 1 + m l 1 l θ + l 1 (m 1 + m ) = 0 (m 1 +m )l 1 θ 1 + l 1 (m 1 + m ) = m l 1 l θ On divise sur (m 1 +m )l 1 et on trouve : l 1 θ 1 + = m l (m 1 +m )l 1 θ d dt = m l (l 1 θ 1 + l θ ) θ θ = m l. sin θ m l l 1 θ 1 + l θ + m l. θ = 0 m l θ + m l. θ = m l l 1 θ 1 On divise sur m l et on trouve : l θ + θ = l 1 θ 1 Donc les 0 équations différentielles du mouvement sont : l 1θ 1 + = m l (m 1 +m )l 1 θ. (1) l θ + θ = l 1 θ 1 (). On fait l hypothèse que le système admet des solutions harmoniques : Donc : (t) = A 1 sin(ωt + φ) et θ (t) = A sin(ωt + φ ) Tels que : A 1, A, φ et φ, ω est l une des pulsations propres du système. (t) = A 1 sin(ωt + φ) θ 1 = ω² θ (t) = A sin(ωt + φ ) θ = ω²θ On remplace dans les équations (1) et () donc : ( l 1ω²) m l (m 1 +m )l 1 ω²θ = 0. (3) l ω θ l 1 ω² = 0 (4) Pae 7

8 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté lω² lω² 3. Calcul des pulsations propres : On suppose que m 1 = m = m, l 1 = l = l lω ( lω²) l ω²θ = 0. (5) lω θ lω²θ = 0 (6) = 0 θ 0 lω² Ces deux équations accepteront une solution si le déterminant =0 ω² 1 = ω² = l(1+ 1 ) l(1 1 ) lω² lω² lω lω² = 0 lω² 1 lω² = 0 ; C est l équation aux valeurs propres. lω² lω² = 0 lω² = lω² 1 lω² Ce sont les valeurs propres. 3.Calcul des modes d oscillations ou les vecteurs propres : Premier mode : on remplace dans (5) ou (6) par ω² 1 = l(1+ 1 ) l( l(1 + 1 ) ( l( l(1 + 1 ) ) θ ) = 0 ( Deuxième mode : on remplace dans (5) ou (6) par ω² = ) = 1 θ (1+ 1 ) θ = : c est le premier mode l(1 1 ) On trouve : θ = : c est le deuxième mode. 4. Calcul des solutions des équations différentielles : ω i valeurs propres. Chacune des mouvements et θ possède deux composantes harmoniques de pulsations ω 1 ou ω. Comme les équations différentielles sont linéaires, toute combinaison de solutions reste solution du système. a solution énérale s écrit alors comme une combinaison linéaire des deux solutions. (t) = Asin(ω 1 t + φ 1 ) + Bsin(ω t + φ ) θ (t) = A sin(ω 1 t + φ 1 ) B sin(ω t + φ ) IV.1.4 Généralisation aux systèmes à n derés de liberté : Principe des opérateurs IV Enerie cinétique énéralisée (Opérateur associé à l énerie cinétique) Un système à n derés de liberté possède n variables : x 1, x, x 3, x n. énerie cinétique énéralisée ; T= 1 m 1x m x + 1 m nx n Si m 1 = m = m n = m T = 1 m(x 1 + x + x n ) T = 1 m n i=1 x i. (1) Pae 8

9 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté Soit le vecteur vertical (colonne) : x = x 1 x. KET. x n Soit le vecteur horizontal (line) : x = (x 1, x, x n ) BAS x x = ( x 1, x, x n ) x 1 x n. = i=1. x n x i m T = 1 (x 1, 0 m x, x 3, x n) 0 0 m m x x = ( x 1, x, x n) x 1 x = n i=1 x i T = 1 m x x x 1 x x 3. x n.. x n T = 1 x T x T : Matrice carrée (nxn), Opérateur associé à T. es éléments de τ sont déduits des dérivées T IV.1.4. Enerie potentielle énéralisée (Opérateur associé à l énerie potentielle) T= 1 k 1x k x + 1 k nx n. Si k 1 = k = k n = k U = 1 k(x 1 + x + x n ) U = 1 k n x i=1 i. () k U = 1 k x x U = 1 0 k x U x. Tel que : U = 0 0 k k U : Matrice carrée (nxn), Opérateur associé à U. es éléments de U sont déduits des dérivées U IV Equation différentielle e aranien (la fonction de arane) : = T U = 1 x T x 1 x U x Equation de arane : d = 0 dt x ı x i = 1 x T x x ı x ı = 1 x U x x i x i On a : x ı x ı x T x = I i T x et x i x U x = I i U x avec I i vecteur unité. I 1 = (1,0,0,0,.0), I = (0,1,0,0,.0),.. I n = (0,0,0,0,.1). = I i T x d dt = I x i T x ı x i = I i U x I i T x + I i U x = 0, c est l équation de arane. T x + U x = 0 x + T 1 x = 0 d² x + x = 0 dt² = T 1. U : Opérateur associé au aranien, T 1 : Matrice inverse de T. x i x i Pae 9

10 CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté IV Equation aux valeurs propres : a solution de l équation d² x + x = 0 peut être sous la forme complexe : Cejωt dt² d² x dt² = ω² x ω² x + x = 0 ( ω ) x = 0, ( ω ) x = 0 Det [ ω I] = 0, c est l équation aux valeurs propres. ω i : valeurs propres. valeurs propres : Exemple : = , équation aux valeurs propres : ω I= 11 1 ω = 11 ω 1 ω 11 ω 1 1 ω = 0 ( 11 ω )( ω ) 1. 1 = 0 A chaque valeur propre ω i correspond un vecteur propre V ı, ω 1 V 1 x 11, ω x 1 V x 1 x Pour : ω = ω 1 : ( ω 1 ) V 1 = 0 11 ω ω x 11 = 0 x ( 11 ω 1 )x x 1 = 0 1 x 11 ( ω 1 )x 1 = 0 x 11 et x 1? Pour : ω = ω : ( ω ) V = 0 11 ω 1 1 ω x 1 = 0 x 0 x 1 et x? IV Solution des équations différentielle : x 1(t) x (t) =A V e 1 j(ω 1t+φ 1 ) + BV e j(ω t+φ ) = A x 11 e j(ω 1t+φ 1 ) + B x 1 e j(ω t+φ ) x 1 x eferences: x 1(t) = Ax 11 e j(ω 1t+φ 1 ) + Bx 1 e j(ω t+φ ) x (t) = Ax 1 e j(ω 1t+φ 1 ) + Bx e j(ω t+φ ) 1. Mini manuel de mécanique du point, Henry, M. Delorme, N. 1. Fundamentals Of Physics Extended 8 th Edition By Halliday 3. Vibrations and waves, Geore C. Kin 4. The physics of vibrations and waves, Sixth Edition, H. J. Pain 5. Cours de vibrations I, Emannuel Vient 6. Waves and Oscillations,.N. Choudhuri Pae 10

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

M4 OSCILLATEUR HARMONIQUE

M4 OSCILLATEUR HARMONIQUE M4 OSCILLATEUR HARMONIQUE I Modèle de l oscillateur harmonique (O.H.) I. Exemples Cf Cours I. Définition Définition : Un oscillateur harmonique à un degré de liberté x (X, θ,... ) est un système physique

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1

harmonique CHAPITRE 1 Oscillateur Introduction Plan du chapitre1 CHAPITRE 1 Oscillateur harmonique Introduction L oscillateur harmonique est un concept important en physique car il permet notamment de décrire le comportement autour d une position d équilibre de nombreux

Plus en détail

pendule pesant pendule élastique liquide dans un tube en U

pendule pesant pendule élastique liquide dans un tube en U Chapitre 2 Oscillateurs 2.1 Systèmes oscillants 2.1.1 Exemples d oscillateurs Les systèmes oscillants sont d une variété impressionnante et rares sont les domaines de la physique dans lesquels ils ne jouent

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement Chapitre 1 OSCILLATEUR HARMONIQUE harmonique étudié dans ce chapitre est un oscillateur mécanique constitué d un ressort et d une masse. Cet exemple simple permettra L oscillateur d introduire le concept

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Énergie potentielle - Énergie

Énergie potentielle - Énergie MPSI - 2006/2007 - Mécanique I - Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté page 1/6 Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté Dans le chapitre

Plus en détail

Oscillateurs amortis et forcés - Résonance

Oscillateurs amortis et forcés - Résonance Année 01-013 École Nationale d Ingénieurs de Tarbes Enseignements Semestres 5-5 et 7 App Oscillateurs amortis et forcés - Résonance Intervenant Karl DELBÉ Karl.Delbe@enit.fr La publication et la diffusion

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

PHYSIQUE I QUELQUES OSCILLATIONS. Corrigé de M ELABDALLAOUI Professeur agrégé CPGE Marrakech. R r mɺ (C) 2

PHYSIQUE I QUELQUES OSCILLATIONS. Corrigé de M ELABDALLAOUI Professeur agrégé CPGE Marrakech. R r mɺ (C) 2 PHYSIQUE I ---8 QUELQUES OSCILLATIONS Corrié de M ELABDALLAOUI Professeur aréé CPGE Marrakech I. ail fixe la vitesse du point I est nulle : v I = v C + Ω CI = r ɺ α α + ɺ θ k r r = ( r ) ɺ α + rɺ θ α ce

Plus en détail

DEVOIR DE SYNTHESE N 2. Les solutions tampons

DEVOIR DE SYNTHESE N 2. Les solutions tampons MINESTERE DE L EDUCATION DIRECTION REGIONALE DE NABEUL LYCÉE TAIEB MEHIRI MENZEL TEMIME PROPOSÉ PAR : MOHAMED CHERIF, AHMED RAIES, SALWA RJEB. EPREUVE : SCIENCES PHYSIQUES NIVEAU: 4 EME SECTION : SC.EXPERIMENTALES

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Effet d une onde électromagnétique sur un atome à deux niveaux

Effet d une onde électromagnétique sur un atome à deux niveaux Université Pierre et Marie Curie Master de sciences et technologie Interaction matière-rayonnement Effet d une onde électromagnétique sur un atome à deux niveaux Introduction On considère un système atomique

Plus en détail

TD : Oscillateur harmonique

TD : Oscillateur harmonique TD : Oscillateur harmonique Observation du chromosome X par microscopie à force atomique. À gauche : nanoparticules observées par microscopie à force atomique (AFM, SP1-P2). Image du Dr. K. Raghuraman

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Mécanique du Point Matériel

Mécanique du Point Matériel (1) (1) Université Cadi Ayyad Faculté des Sciences Semlalia Département de Physique Année universitaire 2013/2014 Chapitre VII : Oscillateur harmonique 1 Introduction 2 3 Chapitre VII: Oscillateur harmonique

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

Oscillateur harmonique - Régime libre

Oscillateur harmonique - Régime libre Mécanique 2 - Oscillations libres page 1/9 Oscillateur harmonique - Régime libre Table des matières 1 Oscillateur harmonique 1 2 Oscillations libres 2 2.1 Pulsation propre - Isochronisme des oscillations........

Plus en détail

Etude de la période d un pendule simple

Etude de la période d un pendule simple Etude de la période d un pendule simple Préparation à l Agrégation de Physique ENS Cachan June 3, Figure 1: Photographie du dispositif expérimental pour étudier la variation de la période d un pendule

Plus en détail

Tension d alimentation : V CC. i C R C R B

Tension d alimentation : V CC. i C R C R B Chapitre 4 Polarisation du transistor bipolaire à jonction 4.1 Le problème de la polarisation 4.1.1 Introduction Dans le chapitre 3, nous avons analysé un premier exemple de circuit d amplification de

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

ONDES & ELECTROMAGNETISME

ONDES & ELECTROMAGNETISME ONDES & ELECTROMAGNETISME M. NICOLAS ondes mécaniques 10h ME, MT, GC H. TORTEL ondes électromagnétiques 10h ME, MT 2009 / 2010 Plan du cours 1. Domaines d application 2. Définitions et rappels 3. L oscillateur

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

I. Première observation

I. Première observation PCSI1 Lycée Michelet L OSCILLATEUR HARMONIQUE Introduction Lorsqu une onde se propage (onde acoustique, onde à la surface de l eau), on observe localement un mouvement oscillant (oscillation des particules

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Oscillateur harmonique (CORRIGES)

Oscillateur harmonique (CORRIGES) Oscillateur harmonique (CORRIGES) 1. Mesure de masse en apesanteur : a) Système ; chaise, de masse m o représentée par un point matériel M de masse m o. Actions : poids et rappel du ressort. La RFD (ou

Plus en détail

Série 7 : circuits en R.S.F.

Série 7 : circuits en R.S.F. Série 7 : circuits en R.S.F. 1 Documents du chapitre Action d un circuit du 1er ordre sur un échelon de tension et sur une entrée sinusoïdale : Déphasage de grandeurs sinusoïdales et représentation de

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Puissance = 7.4 La puissance mécanique

Puissance = 7.4 La puissance mécanique Nous avons vu comment le travail effectué par une force peut faire varier l énergie cinétique d un objet. La puissance mécanique développée par une force est une autre grandeur physique qui est reliée

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Bases mathématiques pour l économie et la gestion

Bases mathématiques pour l économie et la gestion Bases mathématiques pour l économie et la gestion Bases mathématiques Pour l économie et la gestion - Table des matières PREMIERE PARTIE : QUELQUES OUTILS Chapitre : Traitement de systèmes d'équations..

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Equations dierentielles

Equations dierentielles Equations dierentielles Université Mohammed I Faculté des Sciences Département de Mathématiques Oujda. Plan 1 Introduction 2 3 Résponsable du cours : Pr. NAJIB TSOULI. 1 Introduction 2 3 Introduction Une

Plus en détail

Étude statique du tire bouchon

Étude statique du tire bouchon Méthodologie MP1 Étude statique Tire-bouchon Étude statique du tire bouchon On s intéresse à l aspect statique du mécanisme représenté en projection orthogonale sur la figure 1. Le tire bouchon réel est

Plus en détail

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010 ELECTROTECHNIQUE Électromagnétisme Michel PIOU Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles Édition: 0/06/00 Extrait de la ressource en ligne MagnElecPro sur le site Internet Table

Plus en détail

Mini-projet guidé 09 Octobre 17 Décembre 2015

Mini-projet guidé 09 Octobre 17 Décembre 2015 Projet d Investigation et d Intégration 215-216 1/5 4 OPTIMISTION DU FONCTIONNEMENT D UN SCENSEUR Mini-projet guidé 9 Octobre 17 Décembre 215 Introduction : Le projet «Optimisation du fonctionnement d

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB MODÉLISATION D UNE SUSPENSION ET ÉTUDE DE SON COMPORTEMENT DYNAMIQUE La suspension d une automobile est habituellement assurée par quatre systèmes

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

I. Limites : 1. Limites usuelles : Dans la suite, f est une fonction de R dans R et son ensemble de définition est noté D f.

I. Limites : 1. Limites usuelles : Dans la suite, f est une fonction de R dans R et son ensemble de définition est noté D f. Fonctions numériques d une variable réelle Dans la suite, f est une fonction de R dans R et son ensemble de définition est noté D f. On note alors : D f = { R ; f() eiste} On note C f sa courbe représentative.

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 4 : Les ondes Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. IV- Les ondes Finalité du chapitre Pour

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

L élève doit avoir une connaissance pratique de la force normale, du poids, des schémas d équilibre et de l analyse graphique.

L élève doit avoir une connaissance pratique de la force normale, du poids, des schémas d équilibre et de l analyse graphique. Leçon Frottement L applet Frottement simule le mouvement d une pile de livres tirée sur une surface rugueuse par un dynamomètre de traction. Préalables L élève doit avoir une connaissance pratique de la

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES NOM :. PRENOM : NUMERO DE CANDIDAT :... EPREUVE DE PHYSIQUE DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES Lire attentivement les consignes afin de vous placer dans les meilleures conditions de réussite

Plus en détail

Vibrations des systèmes à 1 degré de liberté

Vibrations des systèmes à 1 degré de liberté MSX Vibrations Vibrations des systèmes à degré de liberté Quelques exemples de modélisation Le système à degré de liberté constitue le modèle le plus simple d une structure. En réalité les structures ne

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Automatisation d une scie à ruban

Automatisation d une scie à ruban Automatisation d une scie à ruban La machine étudiée est une scie à ruban destinée à couper des matériaux isolants pour leur conditionnement (voir annexe 1) La scie à lame verticale (axe z ), et à tête

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Étude des régimes alternatifs Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Plan du chapitre s sur les

Plus en détail

Chapitre 5: Oscillations d un pendule élastique horizontal

Chapitre 5: Oscillations d un pendule élastique horizontal 1 re B et C 5 Oscillations d'un pendule élastique horizontal 40 Chapitre 5: Oscillations d un pendule élastique horizontal 1. Définitions a) Oscillateur écanique * Un systèe écanique qui effectue un ouveent

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Lycée François Arago Perpignan M.P.S.I. 2012-2013 TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Exercice 1 - Influence du chemin de transformation. Une mole de

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Le Système de Récupération de l Energie Cinétique (SREC)

Le Système de Récupération de l Energie Cinétique (SREC) Concours EPITA 011 Epreuve de Sciences Industrielles pour l ingénieur Le Système de Récupération de l Energie Cinétique (SREC) Tous documents interdits Calculatrice autorisée Durée : h L augmentation de

Plus en détail

Licence SPI Cinématique et Mécanismes. Introduction à la théorie des mécanismes

Licence SPI Cinématique et Mécanismes. Introduction à la théorie des mécanismes Licence SPI Cinématique et Mécanismes Introduction à la théorie des mécanismes Mobilité, hyperstatisme, singularité Plan Problèmes/Objectifs Quelques exemples Graphe mécanisme Nombre de cyclomatique Analyse

Plus en détail

Introduction aux vibrations

Introduction aux vibrations Introduction aux vibrations Human Induced Vibration of Steel Structures 11/4/28 RFS2-CT-27-33 Vue d ensemble Vue d ensemble Les bases Equation du mouvement Fréquence propre Masse modale Amortissement Vibrations

Plus en détail

Interaction sol structure (notions) Spécifications, règlements: ASN,EC8, ASCE 4.98

Interaction sol structure (notions) Spécifications, règlements: ASN,EC8, ASCE 4.98 Interaction sol structure (notions) Problème physique: Nécessité de prendre en compte l interaction lorsqu il existe une différence de masse ou de raideur entre le sol et la structure. Incertitudes sur

Plus en détail

point d application F r intensité: 4 unités

point d application F r intensité: 4 unités A. MÉCANIQUE A1. Forces I) appels 1) Effets d une force: définition Une force est une grandeur physique qui se manifeste par ses effets a) effet dynamique : Une force est une cause capable de produire

Plus en détail

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test Navigation PY401os (2011-2012) Collège École de Commerce PER Université Impressum Connecté sous le nom «Bernard Vuilleumier» (Déconnexion) Réglages Outils de travail Outils de travail Accueil Cours Collège

Plus en détail

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I.

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. 1. Modèle de voiture MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. Un modèle simpli é de voiture peut être obtenu en supposant le véhicule soumis uniquement à la force de traction u dûe au moteur

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Introduction générale

Introduction générale Chapitre 1 Introduction générale Ce chapitre est consacré à une présentation rapide des méthodes numériques qui sont étudiées en détail dans ce cours Nous y donnons une approche très simplifiée des quatre

Plus en détail

COURS DE THERMODYNAMIQUE

COURS DE THERMODYNAMIQUE 1 I.U.. de Saint-Omer Dunkerque Département Génie hermique et énergie COURS DE HERMODYNAMIQUE 4 e semestre Olivier ERRO 2009-2010 able des matières 1 Mathématiques pour la thermodynamique 4 1.1 Dérivées

Plus en détail

Etude du mouvement du pendule couplé

Etude du mouvement du pendule couplé Etude du mouvement du pendule couplé Matthieu Schaller matthieu.schaller@epfl.ch 12 novembre 2007 Table des matières 1 Introduction 2 2 Equations du mouvement 2 2.1 Formalisme de Lagrange.....................

Plus en détail

Chapitre 15 Isolation en base des bâtiments. Document de référence: Eurocode 8, EN1998-1 Chapitre 10

Chapitre 15 Isolation en base des bâtiments. Document de référence: Eurocode 8, EN1998-1 Chapitre 10 Chapitre 15 Isolation en base des bâtiments. Document de référence: Eurocode 8, EN1998-1 Chapitre 10 But: permettre un mouvement relatif de la base par rapport au sol réduction du déplacement imposé du

Plus en détail

Analyse dynamique des structures du génie civil. V. Denoël

Analyse dynamique des structures du génie civil. V. Denoël Analyse dynamique des structures du génie civil V. Denoël Dernière mise à jour : 27 octobre 2 Table des matières Introduction 3 2 Systèmes à un degré de liberté 5 2. Établissement de l équation du mouvement..................

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail